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Abstract

In recent years, RNA-seq has emerged as a powerful technology in estimation of gene or transcript expression.
‘Union-exon’ and transcript based approaches are widely used in gene quantification. The ‘Union-exon’ based
approach is simple, but it does not distinguish between isoforms when multiple alternatively spliced transcripts are
expressed from the same gene. Because a gene is expressed in one or more transcript isoforms, the transcript
based approach is more biologically meaningful than the ‘union exon’-based approach. However, estimating the
expression of individual isoform is intrinsically challenging because different isoforms of a gene usually have a high
proportion of genomic overlap. Recently, a number of tools have been developed for RNA-seq isoform quantification.
We review those methods and their main features to serve as guidance for users to choose suitable tools for their
specific projects.

Keywords: Bioinformatics tools; RNA-seq gene; Spliced transcripts;
Isoforms; Union-exon; Human transcriptome; Annotation databases

Introduction
Production of distinct mRNA isoforms from the same gene locus is

common phenomena in metazoans. According to gene annotation in
GENCODE Release 25, there are around 60,000 annotated genes,
including protein coding, lncRNA and processed pseudogene, which
produce about 200,000 transcripts in the human transcriptome (http://
www.gencodegenes.org). Of those annotated genes, 20,000 are protein
coding genes, which in turn produce about 144,000 transcripts. The
current annotation gives an estimate of 7 transcript isoforms per
protein coding gene; however, the annotation is far from complete. A
recent study suggests that more than 1/3 of tissue dependent
transcripts have complex local splicing variations (LSVs), where an
exon can be involved in more than two alternative junctions [1]. These
LSVs can produce a large number of alternatively spliced isoforms per
gene locus, generating a much more diverse human transcriptome
than previously estimated.

Alternative splicing is a process by which exons or portions of exons
or noncoding regions within a pre-mRNA transcript are differentially
joined or skipped, resulting in multiple isoforms being encoded by a
single gene. The process of splicing occurs in a large ribonucleoprotein
(RNP) machine called the spliceosome, which functions in a dynamic
assembly-disassembly cycle involving five small nuclear
ribonucleoprotein (snRNP) complexes (U1, U2, U4/U6, and U5).

New insights suggest that constitutive splicing primarily occurs co-
transcriptionally in the nucleus, whereas alternative splicing mainly
occurs post-transcriptionally [2-4]. Alternative splicing generates a
tremendous amount of proteomic diversity in humans and
significantly affects various functions in cellular processes, tissue
specificity, developmental states, and disease conditions. Errors in
alternative splicing can lead to various diseases, including muscle

disorders [5,6] and cancers [7-9], emphasizing the need to accurately
quantify isoform expression.

RNA sequencing (RNA-seq) is emerging as a new technology in
transcriptome profiling. Beyond quantifying gene expression, the data
generated by RNA-seq facilitates discovery of novel transcripts,
identification of alternatively spliced genes, and detection of allele
specific expression [10-12]. Compared with microarray technology,
RNA-seq not only overcomes some of the technical limitations
including varying probe performance and nonspecific hybridization,
but can also detect alternative splicing isoforms and subtle changes of
splicing under different physiological conditions [13].

Furthermore, RNA-seq allows for the detection of novel transcript
species in well studied organisms, such as unique transcripts in certain
tissues or in rare cell types, and has been instrumental to catalog the
diversity of novel transcript species including long non-coding RNA,
miRNA, siRNA, and other small RNA classes [14].

Gene Quantification
Recently, quite a number of methods have been developed for the

inference of gene and isoform abundance. In general, these methods
can be divided into two categories: ‘union exon’-based approach and
transcript-based approach, as illustrated in Figure 1. The ‘union exon’-
based methods, such as FeatureCounts and HTSeq is widely used in
RNA-seq gene quantification because of its simplicity [15,16].

First, all overlapping exons from a gene are merged into ‘union
exons’. Then, per-gene read counts are aggregated by intersecting all
mapped reads with ‘union exons’ of the gene. Compared with
transcript level quantification, reads can generally be assigned to genes
with higher confidence. However, gene-level counts do not distinguish
between isoforms when multiple alternatively spliced transcripts are
expressed from the same gene. Consequently, some important events
such as isoform switches and minor isoform expression changes are
masked at the gene level, as shown in Figure 2. For UHRR (Universal
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Human Reference RNA), both transcripts are expressed, and the
expression of the short isoform ENST00000375512 is supported by 48
exon-exon spanning reads between exons #7 and #8 (colored in
indigo). However, in human brain sample HBRR_C4, only the long
transcript ENST00000356884.6 is expressed.

At the gene level, overall, there is not much difference between
sample UHRR_C1 and HBRR_C4. As a result, the expression change
in minor isoform ENST00000375512 is masked at the gene level.
Therefore, ignoring transcript isoforms and counting reads at the gene
level does not always give correct answers [17,18].

The side-by-side comparison of ‘union exon’-based approach and
transcript-based method revealed that gene expression levels are
significantly underestimated by ‘union exon’-based approach in some
cases, and the average of RPKM from ‘union exons’-based method is
less than 50% of the mean expression obtained from transcript-based
approach [19]. Consequently, the ‘union exons’-based approach in
gene quantification is discouraged despite of its popularity. Other
studies also suggest that tools that quantify expressions at the
transcript level give better results than at the gene level [20].

Figure 1: Illustration of different gene quantification methods. A) A hypothetical gene, its two isoforms and read coverage profile. Assuming
that the sum of mapped reads from all genes is 1 million, and each small and large exon is 1 kb and 2 kb long, respectively. B) ‘Union-exon’
based approach. After exon flattening, the ‘union exons’ are 2 kb, 1 kb and 2 kb long, respectively. The calculated RPKM is 6.4. C) transcript-
based approach. Mapped reads are first assigned to individual isoforms, and the corresponding expressions for the two isoforms are 2 RPKM
and 6 RPKM, respectively. In this calculation, the entire gene expression is 8 RPKM.

Multiple mRNA transcripts can be generated from a gene locus by
the usage of alternative transcription start site, alternative splicing and
alternative polyadenylation. Different isoforms of the gene typically
have a high proportion of overlapping exons (Figure 3). The
transcriptome landscape is further complicated by the prevalence of
gene overlap on the same or opposite strands in DNA [21].

Therefore, accurate estimation of expression levels of individual
isoforms is intrinsically very difficult. In the following sections, we will
review methods available for isoform quantification with a focus on
recent advancement in this field. We classify the methods into two
main categories: tools that consider only known transcripts and those
that incorporate novel transcript discovery.

Isoform Quantification of Known Transcripts
If the transcriptome of a species is annotated, its annotation

databases can be leveraged to map and quantify the expression of most

common transcripts. For the human genome, RefGene [22], Ensembl
[23] and the UCSC [24] annotation database are most frequently used.
The choice of gene annotation can have a significant impact on
quantification even at the gene level [25]. In addition to annotation
databases, it is possible to incorporate novel transcripts discovered
from de novo assembly into existing annotations. One of the most
popular assemblers is the TRINITY package [26].

A large number of RNA-seq specific mapping algorithms have been
developed to align large numbers of sequence reads to a reference
genome and/or transcriptome, including Bowtie [27,28], TopHat2 [29],
STAR [30], GSNAP [31], and Map Splice [32]. Most of the tools require
SAM/BAM files as inputs, which are generated by the aligners
described above. Some new isoform quantification tools have their
own built-in mapping algorithms and can take sequencing reads as
inputs directly, instead of aligned SAM/BAM files [33-36].

Citation: Zhang C, Zhang B, Vincent MS, Zhao S (2016) Bioinformatics Tools for RNA-seq Gene and Isoform Quantification. Next Generat
Sequenc & Applic 3: 140. doi:10.4172/2469-9853.1000140

Page 2 of 6

Next Generat Sequenc & Applic, an open access journal
ISSN: 2469-9853

Volume 3 • Issue 3 • 1000140



Nearly all isoform quantification algorithms use either maximum
likelihood (ML) estimate or Bayesian inference and expectation-
maximization (EM) methods to assign ambiguously mapped reads to
transcript isoforms, and they differ mainly in EM convergence speed
and some other important features.

Table 1 summarizes these tools and their features, including run
time, bias correction, multi-threading, stranded protocol support and

indel read alignments. The output of these tools usually reports the
uncertainty of isoform quantification as well. By appropriately
accounting for uncertainty in quantification, more accurate
downstream differential analyses were obtained at both the gene and
isoform levels. Sleuth [18] is a downstream analyses tool specifically
developed for differential analyses at the transcript level.

Figure 2: Minor isoform changes are masked at the gene level. Gene BICD2 (Ensembl ID: ENSG00000185963.9) consists of two very similar
isoforms. At the gene level, overall, there is not much difference between sample UHRR_C1 and HBRR_C4, as shown in read coverage
profiles. However, the difference is dramatic at the transcript level. For human brain sample HBRR_C4, only the long transcript
ENST00000356884.6 is expressed; while in sample UHRR_C1, both isoforms are present. Note in sample UHRR_C1, there are 48 reads that
span across the junction site between exons #7 and #8 (colored in indigo), and such reads can only originate from the short transcript
ENST00000375512. The stranded RNA-seq dataset were downloaded from Illumina’s Base Space, consisting of 2 UHRR (Universal Human
Reference RNA) and 2 HBRR (Human Brain Reference RNA) samples. Only UHRR_C1 and HBRR_C4 are shown in the figure.

RSEM is an accurate and user-friendly software tool for quantifying
transcript abundances from RNA-seq data [37]. It estimates the ML of
relative abundances of the transcript isoforms and then fractionally
assigns reads to the isoforms based on these abundances. The
assignments of reads to isoforms come from iterations of EM method.
According to the comparative assessment [20], RSEM is relatively slow.
Recent tools, such as eXpress [38], aim to reduce the computational
burden of isoform quantification by substantially altering the EM
algorithm.

It improves the convergence speed using an online-EM algorithm
that models indels, fragment length, sequencing errors and corrects
sequence-specific fragment biases. Tigar2 utilizes Bayesian inference as
an alternative to ML estimation and provides better accuracy for
longer reads and supports for variable-length reads produced by Ion
Torrent PGM sequencer [39,40]. However, Tigar2 is by far the slowest
algorithm, taking more than 9 hours to process 100 million reads even
with multi-thread processing [20]. BitSeq also uses Bayesian inference
and a user can choose either markov chain monte carlo (MCMC) or
variational Bayesian (VB) methods for quantification [41,42]. MCMC
is generally slower than VB method, but provides better accuracy.

For the isoform quantification, not all information in the alignment
is necessary. Simply the knowledge of the transcripts and positions to

which a given read maps is sufficient for quantification purpose. In
support of such ‘analysis-efficient’ computation, the concept of quasi-
mapping, lightweight-alignment or pseudo alignment has been
introduced recently [33-36]. With appropriate optimization, such tools
can map and quantify 100 million reads in 10 minutes even on a
laptop. Sailfish was initially implemented using a k-mer approach [35].

It entirely skips read mapping, a time-consuming step, and provides
quantification estimates much faster than existing approaches.
However, shredding reads into k-mers discards valuable information
present in whole reads, and accordingly, results in loss of accuracy,
since each k-mer can potentially align to more transcripts than the
read itself. To circumvent this issue, Kallisto uses fast hashing of k-
mers together with the transcriptome de Bruijn graph to produce a list
of transcripts that are compatible with each read while avoiding
alignment of individual bases [36].

K-mer based Sailfish has now been deprecated, and the latest
Sailfish uses the quasi-mapping procedure provided by RapMap [34],
as opposed to individual k-mer counting, for transcript-level
quantification to increase accuracy without sacrificing speed.
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Figure 3: Diagram of the complexity of gene structures. Multiple isoforms generated by alternative splicing, together with overlapping genes,
make accurate quantification at the transcript level difficult. Assigning ambiguous reads in overlapping regions to its true origin is hard. Genes
on the plus strand are colored in blue while genes on the minus strand in green.

Run time Algorithm

Bias correction Stranded protocol

Multi-thread

support Indel alignments

Cufflinks +++ ML No Yes Yes Yes

RSEM +++ ML No Yes Yes No

eXpress ++ ML Yes Yes No Yes

Tigar2 +++++ VB No No Yes Yes

BitSeq

VB:+++ MCMC/

Yes No Yes YesMCMC:++++ VB

Kallisto + ML Yes Yes Yes Yes

Salmon + VB/ML Yes Yes Yes Yes

Sailfish + VB/ML Yes Yes Yes Yes

Note: The run time, algorithm used, support for bias correction, stranded library preparation protocol, multi-thread computing and indel alignments of popular tools are
compared. For a sample with 50 million reads running on a typical HPC with multi-thread computing turned on, run time over 8 hours is considered “+++++”, less than
3 hours but more than 1 hour is considered “+++”, less than 30 minutes but more than 10 minutes is considered “++”, and less than 10 minutes is considered “+”

Table 1: Features of isoform quantification packages.

Interestingly, the developer of Sailfish introduces Salmon [33],
another novel method and software tool for isoform quantification that
exhibits state-of-the-art accuracy while being significantly faster than
most other tools. Salmon achieves this through a two-phase inference
procedure, a reduced data representation, and the quasi-mapping
algorithm of RapMap. During its online phase, in addition to
performing streaming inference of transcript abundances, Salmon also
constructs a highly-reduced representation of the sequencing
experiment.

Specially, Salmon constructs “rich” equivalence classes over all of the
sequenced fragments to greatly reduce the time required to perform

iterative optimization. Both Salmon and Sailfish allow users to choose
between ML estimate and VB inference for isoform quantification.
However, there are a few main differences between Sailfish and
Salmon. One is that Salmon implements a dual-phase inference
algorithm, consisting of both an online and offline phase, while Sailfish
uses only an offline algorithm. Salmon also accepts alignment files in
SAM/BAM format, making it a flexible tool for isoform quantification,
but Sailfish does not. Another difference is that Salmon contains richer
models for bias correction, whereas Sailfish does not.
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Isoform Quantification in Conjunction with Novel
Transcript Discovery

Transcriptome analysis from RNA-seq data typically involves two
sub-problems, i.e. identification of the set of isoforms and estimation
of the abundance of these isoforms. If no annotation for a species of
interest is available or novel transcript discovery is desired, isoform
structures have to be constructed from RNA-seq data first [43]. One
popular approach is to include novel transcript discovery and
quantification in the same package. These tools include Cufflinks [44],
Scripture [45], IsoLasso [46], NSMAP [47], SLIDE [48], iReckon [49],
Traph [50], MiTie [51], and FlipFlop [52]. These tools either assemble
the transcriptome ab initio, or use existing annotations to infer new
splicing junctions. The discovered novel transcripts can then be used
or added to existing annotations for quantification. However, recent
reviews indicate that the quantification algorithms provided by these
tools are not on par with tools from the previous category [20,53]. This
is because identification of isoforms from RNA-seq data is far from
being solved and is still challenging, due in particular to the
incomplete nature of RNA-seq reads and the fact that the number of
potential candidate isoforms is very large, growing almost
exponentially with the number of exons. As a result, the performance
reported by the state-of-the-art algorithms is often unsatisfactory.

Cufflinks is perhaps one of the most popular tools for novel
transcripts discovery and quantification. It assembles transcripts ab
initio and merges them with existing annotations and then quantify
the transcripts [44]. In a sense, the quantification strategy in Cufflinks
is similar to one iteration of the EM algorithm used in RSEM [37].
During assembly, Cufflinks attempts to explain the observed reads with
minimum number of isoforms. iReckon [49] is introduced for
simultaneous determination of the isoforms and estimation of their
abundances. Their probabilistic approach incorporates multiple
biological and technical phenomena, including novel isoforms, intron
retention, unspliced pre-mRNA, PCR amplification biases, and
multimapped reads. iReckon utilizes regularized EM to accurately
estimate the abundances of known and novel isoforms [49].

The strategy of simultaneously discovering and quantifying
transcripts is also adopted by many other state-of-the-art methods (e.g.
SLIDE [48], StringTie [54], IsoLasso [46] and CIDANE [55]. Similar to
iReckon, SLIDE requires existing annotations and cannot perform de
novo assembly. A unique advantage of SLIDE is that it has the
flexibility of incorporating other transcriptomic data, such as RACE,
CAGE, and EST, to increase isoform discovery accuracy. IsoLasso [46]
is based on the well-known LASSO algorithm, a multivariate
regression method designated to seek a balance between the
maximization of prediction accuracy and the minimization of
interpretation. By including some additional constraints in the
quadratic program involved in LASSO, IsoLasso is able to make the set
of assembled transcripts as complete as possible StringTie [54]. It is
another popular assembler developed by Salzberg group. It uses a
network flow algorithm for the simultaneous discovery and
quantification of transcripts. Another advantage of StringTie is that it is
part of the HISAT2-StringTie-Ballgown workflow and requires less
effort to setup the entire RNA-seq data analysis pipeline [56]. CIDANE
[55] is a novel framework for genome-based transcript reconstruction
and quantification from RNA-seq reads. Its algorithmic core not only
reconstructs transcripts ab initio, but also allows the use of the growing
annotation of known splice sites, transcription start and end sites, or
full-length transcripts, which are available for most model organisms.
Accurately estimating isoforms in multiple samples is an important

preliminary step to differential expression analysis at the level of
isoforms. One promising direction to improve isoform identification
and quantification is to exploit several samples at the same time, such
as biological replicates or time course experiments. If some isoforms
are shared by several samples, potentially with different abundances,
the identifiability issue may vanish and the statistical power of the
deconvolution methods may increase due to the availability of more
data for estimation. The joint RNA isoform detection and
quantification from multiple RNA-seq samples is effective in reducing
false positive transcript discoveries [43,57].

Conclusions
In this review, we summarize the tools for gene and transcript

isoform quantification and provide guidance for end users to choose
the tools with desired features. Each of the tools offers unique features
that are suitable for answering specific research questions. RNA-seq is
emerging as a powerful approach for identification and quantification
of transcript isoforms. However, short read fragments that cover only
part of the transcript make it difficult to reconstruct full-length
transcripts, especially for those expressed at low levels.
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