
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

A multidimensional dynamic time warping algorithm for efficient
multimodal fusion of asynchronous data streams
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a b s t r a c t

To overcome the computational complexity of the asynchronous hidden Markov model (AHMM), we

present a novel multidimensional dynamic time warping (DTW) algorithm for hybrid fusion of

asynchronous data. We show that our newly introduced multidimensional DTW concept requires

significantly less decoding time while providing the same data fusion flexibility as the AHMM. Thus, it

can be applied in a wide range of real-time multimodal classification tasks. Optimally exploiting mutual

information during decoding even if the input streams are not synchronous, our algorithm outperforms

late and early fusion techniques in a challenging bimodal speech and gesture fusion experiment.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

A major aim of the science of human–machine-communication
is to adapt the machine to the human and not vice versa.
Therefore many researchers consider the aspects of interhuman
communication as a paradigm for a user-friendly human–machine
interface [69]. For instance, interhuman communication not only
uses acoustic information but also visual: looking at the lips, the
eyes, the gestures, and the face of the conversational partner helps
to understand and interpret his/her intention [41]. In general,
using more than just one sense increases redundancy in the
information flux, which leads to higher robustness and enables
humans to understand the transferred information, even if part of
it is disturbed or missing.

Multimodal systems are an attempt to adapt the advantages of
interhuman communication to human–machine communication
by using more than one input device in order to make human–
machine interaction robust, flexible, and natural [69]. Examples
for multimodal systems causing higher robustness are the
combination of speech and gestures or the fusion of speech
recognition and lip-reading: by using both modalities the speech
recognition rate could significantly be increased [12]. Further,
multimodal systems can achieve a higher flexibility, as the user
has the possibility to switch between modalities as needed, e.g.
during the changing conditions of mobile use. Many persons make
use of hands-free speech input for voice dialing a car cell phone,

but prefer pen input in public to avoid revealing private
information [41].

From the signal processing point of view, a great challenge in
designing multimodal systems is the integration of data coming
from different modalities in order to reliably extract accurate
information. In general, three different data fusion strategies can
be distinguished: early fusion, hybrid fusion, and late fusion. Late
fusion systems separately decode the data streams before merging
the individual results to a valid multimodal pattern. Such systems
scale up easily but do not optimally exploit mutual information
[2]. Early fusion architectures preprocess multimodal data in a
way that the streams reach the same sampling rate and integrate
data to a single stream, which then has to be classified. Thereby
mutual information can only be considered correctly if the
streams are perfectly synchronous, which cannot always be
guaranteed in practice [13]. A promising approach to overcome
the disadvantages of both, late and early fusion, are hybrid
systems like the asynchronous hidden Markov model (AHMM)
first introduced in [7]. The AHMM concept has successfully
been applied to various problems like meeting analysis [75],
multimodal person identification [8], audio-visual speech recog-
nition [7], or bimodal speech and gesture interfaces [2].

The main drawback of the AHMM is its high computational
complexity. Therefore in this work a dynamic time warping
(DTW) algorithm is modified in a way that it is applicable to
multimodal data streams, even if they are not synchronous. We
show how an increase of the dimensionality of a standard DTW
can model the asynchronity between the streams while requiring
less computational power than the AHMM. The multidimensional
DTW, as introduced in this work, assumes bimodal data streams.
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However, the extension to more than two input modalities is
straightforward. Thereby our fusion strategy is not limited to a
certain modality combination (such as speech and gestures), but
can in principle be applied to any multimodal recognition task.
Like all hybrid fusion approaches, our algorithm is superior to late
fusion techniques whenever there is a statistical dependence
between the two modalities. It enables the modeling of asyn-
chronity and can handle bimodal data streams with different
sampling rates, different length, and varying temporal character-
istics. Since our approach requires ‘‘reference streams’’ for each
multimodal class, we derive a training algorithm which uses
multiple references to increase the prototypicality of a single
reference stream, so that during decoding, only one reference is
needed per class.

In our speech and gesture fusion experiment, we assume
(class-wise) pre-segmented data. Yet, we show how our multi-
dimensional DTW can be expanded so that it carries out
classification and segmentation simultaneously. We first intro-
duce a three-dimensional DTW that can process conventional
continuous (potentially asynchronous) bimodal feature vectors
and uses synchronized bimodal reference patterns. We propose a
simple method to synchronize the reference patterns which is
also used in our experiments. In order to handle cases when
modalities are highly correlated and synchronized reference
streams cannot be assumed, we derive a four-dimensional DTW
that does not require synchronized references. Finally, a modifica-
tion of the three-dimensional DTW is presented, allowing discrete
clustered feature vectors instead of continuous features.

This article is structured as follows: Section 2 investigates
related work while Section 3 outlines the principles of multimodal
integration and summarizes different input components and
fusion strategies. In Section 4 we shortly review the asynchronous
hidden Markov model before we explain our multidimensional
dynamic time warping approach in Section 5. The derived
algorithm is applied in a bimodal speech and gesture input fusion
problem in Section 6 before we conclude in Section 7.

2. Related work

The expansion of dynamic time warping to multiple dimen-
sions is only rarely found in literature. There exist a few works
which describe extensions of the DTW algorithm to include
multiple dimensions, yet they differ significantly from the
algorithm derived in this work, as they are not able to model
the asynchronity of data coming from different modalities,
representing a fusion strategy that combines the advantages of
late and early fusion: in [67,28], a ‘‘multidimensional’’ DTW is
used for (unimodal) gesture recognition and sensor fusion,
respectively. Yet, in these works the term ‘‘multidimensional’’
refers to the size of the feature vectors, coming from the same

modality and not to the number of degrees of freedom in the
DTW distance matrix. Consequently, these approaches use the
conventional two-dimensional distance matrix, whose entries
are calculated from multidimensional feature vectors of a test
sequence and a reference sequence. Thus, these algorithms cannot
be applied for similarity measurements of two multimodal data
streams.

Also the ‘‘multidimensional’’ DTW used in [16] that is used for
detecting texture similarities in images, simply measures the
similarity between two multidimensional (yet not multimodal)
series. Again, the feature vectors of the two streams that shall be
aligned consist of multiple entries, however, eventually only two
unimodal streams are aligned via DTW.

Similarly, DTW dimensionality expansions that have been
applied for indexing multidimensional time-series in order to

discover and analyze similar trajectories in GPS tracking, motion
capturing, or handwriting recognition [68], just refer to the
dimensionality of unimodal feature vectors and not to the
dimensionality of the search space to align data.

The only technique that bears some similarity to our multi-
dimensional DTW is the multipattern DTW introduced in [35].
This algorithm was developed for joint decoding of multiple
speech patterns to increase noise robustness. It attempts to find
the best alignment between multiple speech patterns, which are
known to come from the same speaker and belong to the same
class. Thereby the multipattern DTW is used as preprocessing for
a multidimensional hidden Markov model. Yet, this algorithm
cannot be applied for multimodal data fusion since it compares
only multiple versions of unimodal sequences (i.e. the reference
sequence is unimodal).

By contrast, the multidimensional DTW concept that has been
applied in [64] to improve the standard DTW by allowing to
control the warping function curvature is completely different
from the approach in this work. It attempts to influence the
curvature of the warping function by augmenting the DTW
dimensionality. After estimating the multidimensional warping
function, it is projected onto the original dimension to provide the
sought after warping function.

Reviewing all approaches referred to as ‘‘multidimensional
DTW’’ in literature, one can identify the research gap that a DTW
approach which uses a more than two-dimensional search space
to align and classify potentially asynchronous multimodal data
(equivalently to the AHMM) does not exist so far.

3. Multimodal integration

In a multimodal system multiple input components are
combined for a better handling of computers or to improve the
recognition performance. These input components are based on
different disciplines of pattern recognition [69,3,42,71]. A popular
input modality is speech recognition (usually based on hidden
Markov models (HMM) [47,48]), for example in applications like
telephone dialers [49], access control systems [51], service robots
[52], or voice input in cars [60,24]. Gesture recognition is another
modality that is increasingly used in multimodal systems [77,10].
In contrast to pen-based gesture detection which can be used to
replace mouse navigation [18], video-based gesture recognition
requires relatively high computational performance [3,32] and
is applied e.g. for video surveillance [22,4] or sign language
recognition [26]. Further important modalities are lip-reading
[12,17,65], face recognition [6,11,5], handwriting recognition
[45,54,30,55], or eye tracking [57,72,63,1].

Multimodal systems must process data provided by various
recognition modules and merge them into one single semantic
interpretation [27]. Common approaches are temporal integration
[40], statistical integration [29], semantical integration [43],
and rule-based integration [14]. Taking into account the level of
integration, one can distinguish three major categories of multi-
modal integration: early fusion (integration at the feature level),
late fusion (integration at a semantic level), and hybrid fusion.

3.1. Early fusion

Early fusion means integrating the signals at the feature level.
This implies that the signals coming from the different modalities
have to be modified in a way that they reach the same sample
rate. At each time step of the sampled signal the Ni features from
M different modalities have to be concatenated in one large
feature vector of dimension

PM
i¼1 Ni. Alternatively, if the unimodal

feature vectors are mapped to a defined number of Si symbols
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according to a codebook, for the integrated signal a new codebook
consisting of

QM
i¼1 Si symbols is necessary. Having to deal with

high-dimensional feature vectors and large codebooks, respec-
tively, early fusion requires great computational power [29].
Furthermore, the high dimensionality increases the number of
degrees of freedom. Therefore a large amount of training data is
needed, which often is expensive or not available. As early fusion
merges the modalities at each time step, the signals have to be
perfectly synchronous. Otherwise early fusion produces feature
vectors or symbols that have not been learned during the training
phase. Integrating the signals at the feature level leads to good
recognition results if the signals are synchronous and highly
correlated like speech and lip movement [76], as the correlation
structure of the modes can be taken into account automatically
via learning [29].

Early fusion is applied in the automotive industry for collision
mitigation systems [66], audio-visual speech recognition [38],
affect recognition [73,59,56], or interest recognition [58]. Other
approaches for multimodal integration, like the coupled HMM
[37] or the multistream HMM [31], are also based on early fusion.

3.2. Late fusion

In late fusion architectures signals are integrated at a semantic
level. Signals are modeled separately and combined later, during
the decoding phase. Each mode has an individual recognizer
which is trained independently, so there is no explicit learning of
the joint probability of the modalities. Late fusion uses unimodal
training data, which is not as rare as multimodal data needed for
early fusion [29] and profits from mature, well-engineered
unimodal recognition techniques [2]. Furthermore, late fusion
systems scale up easier because no re-training is necessary if
further modalities are to be integrated. Other advantages of late
fusion are easier handling of modalities which are temporarily
missing and a higher degree of modularity. In contrast to early
fusion architectures, mutual information coming from another
modality is not considered during the recognition of a single
mode, which causes late fusion to perform worse than early fusion
if the modalities are correlated like in bimodal emotion recogni-
tion [21] or when using lip-reading for enhanced speech
recognition. Multimodal fusion at the semantic level has been
applied in systems like Bolt’s ‘‘Put-that-there’’ [10], ShopTalk [15],
finger-pointer [19], and others like in [36,70,62].

3.3. Hybrid fusion

Hybrid systems for multimodal integration are an attempt to
combine the advantages of late and early fusion. They aim to be as
flexible as late fusion architectures, which can be scaled up more
easily and can handle asynchronous data streams. At the same
time hybrid systems should be able to exploit mutual information
from other modalities during the recognition process. One
realization is the asynchronous input/output HMM [9] which
can be applied for audio-visual speech recognition. Another
example for hybrid systems is the asynchronous hidden Markov
model [7] which will be briefly reviewed in the next section as it
forms the basis of comparison for the algorithm introduced in this
article.

4. The asynchronous hidden Markov model

In order to handle multimodal data streams, the conventional
HMM concept can be extended to an asynchronous hidden
Markov model [7]. This section introduces the AHMM, since it

will be compared to the newly introduced multidimensional DTW
in Section 5.3.3. The AHMM can model the joint likelihood of two
observation sequences. The two streams, each coming from a
different modality, do not necessarily have to be synchronous, so
the AHMM can be applied to a wide range of problems like
meeting analysis [75], person identification [8], audio-visual
speech recognition [7], or bimodal speech and gesture interfaces
[2]. However, both training and decoding require great computa-
tional power, especially if the ratio of the input stream lengths is 1

2

(see Section 5.3.3).
An asynchronous hidden Markov model allows to model pð~x;~yÞ

which is the joint likelihood of two observation streams of a
bimodal system. T is the length of stream ~x and S is the length of
stream ~y, whereas it is assumed that SrT. Similar to a standard
HMM, an AHMM has N different states qt ¼ 1 . . .N that are
synchronized with stream ~x. At each time step t a state emits a
symbol from stream ~x. At the same time a state can (with the
probability eðiÞ) also emit a symbol from stream ~y. Every time a ~y
symbol is emitted, the variable tt ¼ 0 . . . S is incremented until the
last ~y symbol has been emitted. Therefore tt can be seen as a
second hidden variable which models the alignment between ~x

and ~y. The additional variable tt is included by adding a third
dimension s to the trellis (see Fig. 1).

To calculate the likelihood pð~x;~yjlÞ of a bimodal observation
given a certain AHMM l, we need a forward path variable aði; s; tÞ
[7] that, unlike the corresponding forward path variable in
standard HMM, depends on three indices which are state,
alignment, and time:

aði; s; tÞ ¼ pðqt ¼ i; tt ¼ s;~xt ;~ysÞ ð1Þ

Provided that s40 (meaning that the model already has
emitted a ~y symbol), the induction step is

aði; sþ 1; t þ 1Þ ¼ ½1� ei�

�pð~xtþ1jqtþ1 ¼ iÞ
XN

j¼1

pðqtþ1 ¼ ijqt ¼ jÞ � aðj; sþ 1; tÞ

þei � pð~xtþ1;~ysþ1jqtþ1 ¼ iÞXN

j¼1

pðqtþ1 ¼ ijqt ¼ jÞ � aðj; s; tÞ ð2Þ

For the joint likelihood of the two observations the following
termination equation holds:

pð~x;~yjlÞ ¼
XN

j¼1

aðj; S; TÞ ð3Þ

Fig. 1. 3D trellis of the asynchronous hidden Markov model.
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The Viterbi decoding algorithm is similar to the forward path
calculation. However, the sums have to be replaced by max
operators. Via backtracking the best state-sequence and the most
probable alignment of the two streams can be obtained.

Calculating the forward path variable for all possible combina-
tions of i, s, and t, the complexity of the AHMM algorithm
is OðN2STÞ as each induction step approximately requires N

summations. If the alignment between ~x and ~y is forced in a way
that jt � T=Sjok with k being a constant indicating the maximum
stretching between the streams, the complexity is reduced to
OðN2TkÞ [7]. In [2] it was shown that the complexity is reduced
to OðN2½TS� S2 þ T�Þ if a values that cannot be part of a valid
path through the three-dimensional trellis are ignored. The path
restriction is implied by the fact that all ~y symbols have to be
emitted until the last time step and the assumption that at every
time step the number of emitted ~y symbols cannot be larger than
the number of emitted ~x symbols and therefore srt. As shown in
[7], considerations concerning the time complexity of the AHMM
are also valid for the space complexity, so that complexities in
time and space are equal.

5. Multidimensional dynamic time warping

As an alternative to likelihood-based tools like hidden Markov
models, the dynamic time warping (DTW) algorithm has been
successfully applied in recognition tasks related to speech or
music processing [53,39,25,33]. The DTW algorithm calculates the

distance between an input sequence and a reference sequence
which can be seen as the prototype of a certain class. As these two
sequences may have different lengths or may differ in their
temporal characteristics, the DTW algorithm performs a nonlinear
distortion of the time axis so that the maximum correlation can
be determined. Besides the distance, which can be seen as a
similarity measure between an input pattern and a stored
reference pattern, the DTW also delivers a warping function that
maps each sample of the spoken word to the corresponding
sample of the reference word.

DTW-based processing of multimodal data streams is
possible if either the modalities are combined using early
fusion or if the streams are classified separately and
combined afterwards, which would be a late fusion approach.
However, as mentioned before, both techniques have disadvan-
tages: early fusion is very complex, as the dimensionality of
the pattern vectors increases and cannot be applied successfully
if the streams are not synchronized, whereas late fusion does
not exploit mutual information during decoding. To avoid
these drawbacks, we show how the dynamic time warping
algorithm can be expanded to a hybrid fusion concept that
uses mutual information coming from the other modality
in an efficient way and can be applied to asynchronous
data streams. Similar to the asynchronous hidden Markov
model, where the second modality is modeled by a third
dimension in the trellis, we expand the dimensionality of the
DTW distance matrix.

5.1. Three-dimensional dynamic time warping

Our three-dimensional dynamic time warping (3D-DTW)
algorithm searches for the best alignment between a synchro-
nized reference sequence RðiÞ, containing features of both
modalities, an input sequence T1ðjÞ, and another input sequence
T2ðkÞ, coming from the second modality. The lengths of RðiÞ, T1ðjÞ,
and T2ðkÞ are I, J, and K, respectively. Their alignment can be
visualized by a path through a three-dimensional distance matrix
(see Fig. 2). The projection of the path to the i2j-plane
corresponds to the DTW-path that maps input stream T1ðjÞ to
the features of the first modality of reference sequence RðiÞ (Fig. 3,
mid). Consequently the nonlinear distortion of input stream T2ðkÞ,
which is compared to the features of the second modality of RðiÞ

can be seen in the path projection to the i2k-plane (Fig. 3, left),
whereas the path in the j2k-plane represents the best alignment
between the two potentially asynchronous input streams T1ðjÞ and
T2ðkÞ (Fig. 3, right).

Similar to asynchronous hidden Markov models, the three-
dimensional dynamic time warping algorithm does not a priori
decide about the alignment of the two input sequences,

Fig. 2. Three-dimensional distance matrix: cell DðI; J;KÞ represents the accumu-

lated distance of the best stream alignment.

Fig. 3. Projections of the path: i–k-plane, i–j-plane, j–k-plane.
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which would be an early fusion approach, but determines the best
alignment of the sequences, so that they are optimally corre-
lated to a synchronized reference of the bimodal pattern.
In contrast to late fusion architectures, both modalities are
taken into account during the decoding phase as the developing
of the path, which determines the accumulated distance between
input and bimodal reference pattern, is influenced by both
modalities. Thus, this extension of the dynamic time warping
algorithm to a three-dimensional DTW can be called a hybrid
fusion approach.

5.1.1. Extended reference vector

For our three-dimensional DTW we use a reference stream
RðiÞ ¼ ½~rð1Þ;~rð2Þ; . . . ;~rðIÞ� that consists of the reference features of
both modalities, whereas we assume that in the case of highly
correlated modalities (like in a speech and lip-reading pattern
recognition problem) the modalities of the reference stream are
perfectly synchronized. However, the input sequences do not
necessarily have to be synchronous, as outlined before. In case we
cannot assume synchronized references, the multidimensional
DTW can be extended to a four-dimensional DTW which will be
treated in Section 5.2.

If the sample rates of R1, being the reference stream of the first
modality, and R2 (reference of the second modality) differ, the
shorter stream has to be upsampled in a way that both references
are of equal length (see Fig. 4). After that, a reference stream

RðiÞ ¼
~r1ð1Þ ~r1ð2Þ . . . ~r1ðIÞ

~r2ð1Þ ~r2ð2Þ . . . ~r2ðIÞ

 !

can be built, with I being the length of the longer one of the
streams R1 and R2. This reference RðiÞ corresponds to the i-axis of
the three-dimensional distance matrix.

5.1.2. Distance calculation

In order to find a distance measure for every cell of the three-
dimensional distance matrix, we have to consider the reference
sequence

RðiÞ ¼ ½~rð1Þ;~rð2Þ; . . . ;~rðIÞ�

as well as the two input streams

T1ðjÞ ¼ ½~t1ð1Þ;~t1ð2Þ; . . . ;~t1ðJÞ�

and

T2ðkÞ ¼ ½~t2ð1Þ;~t2ð2Þ; . . . ;~t2ðKÞ�

The distance matrix is of dimension I � J � K and its elements can
be calculated as

dði; j; kÞ ¼
XN

n¼1

½r1;nðiÞ � t1;nðjÞ�
2 þ g �

XM
m¼1

½r2;mðiÞ � t2;mðkÞ�
2 ð4Þ

n ¼ 1 . . .N counts the features of the first input sequence T1ðjÞ,
whereas m ¼ 1 . . .M counts the features of T2ðkÞ. With g, a factor
to weight the distance coming from the individual modalities is
introduced. In case of g41 we enlarge the influence of mode T2ðkÞ

on the result of the bimodal pattern recognition problem. For
instance if we think of a speech recognition system that processes
acoustic and visual information we probably would choose go1, if
T1ðjÞ represents the acoustic information, since most information
is delivered by the speech signal.

Similar to the unimodal DTW [34], the best alignment of RðiÞ,
T1ðjÞ, and T2ðkÞ can be visualized by a warping function F that
determines the path through the distance matrix (Fig. 2), going
from cell dð1;1;1Þ to cell dðI; J;KÞ. This function F, which consists of
L samples gði; j; kÞ, can be expressed as follows:

F ¼ gð1Þ; gð2Þ; . . . ; gðLÞ ð5Þ

gðlÞ ¼ ðiðlÞ; jðlÞ; kðlÞÞ ð6Þ

l ¼ 1; . . . ; L ð7Þ

For the calculation of the best path, a three-dimensional
accumulated distance matrix D is needed, whereas its endpoint
DðI; J;KÞ is equivalent to the total accumulated distance between
the reference sequence RðiÞ and the two input streams T1ðjÞ

and T2ðkÞ:

DðI; J;KÞ ¼ min
F

XL

l¼1

dðgðlÞÞ ð8Þ

Considering a cell Dði; j; kÞ with iZ2, jZ2, and kZ2, the
accumulated distance can be determined by choosing the
best of seven possible preceding cells. If cell Dði; j; kÞ is reached
by a movement parallel to one of the axes, the distance dði; j; kÞ is
added to the accumulated distance of the preceding cell. In
case Dði; j; kÞ is reached by a movement parallel to one of
the planes i2k, i2j, or j2k, the distance dði; j; kÞ is weighted by
factor 2 because otherwise diagonal movements would be
preferred. Consequently dði; j; kÞ has to be weighted by factor 3 if
cell Dði� 1; j� 1; k� 1Þ is considered as preceding cell as this
movement could also be reached by three successive movements
parallel to the three axes i, j, and k. These considerations result in
the equation

Dði; j; kÞ ¼ min

Dði� 1; j; kÞ þ dði; j; kÞ

Dði; j� 1; kÞ þ dði; j; kÞ

Dði; j; k� 1Þ þ dði; j; kÞ

Dði� 1; j� 1; kÞ þ 2dði; j; kÞ

Dði� 1; j; k� 1Þ þ 2dði; j; kÞ

Dði; j� 1; k� 1Þ þ 2dði; j; kÞ

Dði� 1; j� 1; k� 1Þ þ 3dði; j; kÞ

ðiZ2; jZ2; kZ2Þ

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

The values of D along the axes i, j, and k are

Dði;1;1Þ ¼ Dði� 1;1;1Þ þ dði;1;1Þ

Dð1; j;1Þ ¼ Dð1; j� 1;1Þ þ dð1; j;1Þ

Dð1;1; kÞ ¼ Dð1;1; k� 1Þ þ dð1;1; kÞ ð10Þ

Fig. 4. A simple upsampling algorithm: stream R1 is of length I, stream R2 is of

length S. It is assumed that I4S, so R2 has to be upsampled to length I. The

algorithm defines a temporary stream R�2 of size I � S from which every S th sample

is taken. c denotes a count variable.
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For the planes i2k, i2j, and j2k three possible preceding cells
have to be evaluated:

Dði; j;1Þ ¼ min

Dði� 1; j;1Þ þ dði; j;1Þ

Dði; j� 1;1Þ þ dði; j;1Þ

Dði� 1; j� 1;1Þ þ 2dði; j;1Þ

8><
>: ð11Þ

Dði;1; kÞ ¼ min

Dði� 1;1; kÞ þ dði;1; kÞ

Dði;1; k� 1Þ þ dði;1; kÞ

Dði� 1;1; k� 1Þ þ 2dði;1; kÞ

8><
>: ð12Þ

Dð1; j; kÞ ¼ min

Dð1; j� 1; kÞ þ dð1; j; kÞ

Dð1; j; k� 1Þ þ dð1; j; kÞ

Dð1; j� 1; k� 1Þ þ 2dð1; j; kÞ

8><
>: ð13Þ

For the starting condition we define

Dð1;1;1Þ ¼ 3dð1;1;1Þ ð14Þ

In Fig. 5 the corresponding path diagram is visualized,
considering the seven possible preceding cells as corners of a
cube. Of course Eq. (9) is only one possible realization of the 3D-
DTW.

Using the 3D-DTW for the classification of a bimodal input
sequence, the three-dimensional dynamic time warping algorithm
has to be carried out C times so that the input can be compared to
the references of all C classes c ¼ 1 . . .C. As the different reference
sequences usually have different lengths, we have to perform a
path length normalization (e.g. scaling the total distances
DcðIc ; J;KÞ with 1=Ic) before the distances can be used for
classification.

The path through the three-dimensional matrix D can be
obtained via backtracking from cell DðI; J;KÞ to Dð1;1;1Þ. Starting
from the endpoint of the accumulated distance matrix (DðI; J;KÞ),
the best preceding cell of every cell along path F has to be detected
until the origin Dð1;1;1Þ is reached.

5.1.3. 3D-DTW decoding example

In the following we show a simple example of a bimodal
classification problem and its solution using the 3D-DTW
introduced in Section 5.1. For simplicity it is assumed that the
pattern sequences of both modalities consist of only one feature
per time step (N ¼ 1 and M ¼ 1). Furthermore, both modalities
shall be equally weighted (g ¼ 1). The pre-segmented bimodal
input stream, consisting of the sequences T1ðjÞ and T2ðkÞ shall be
assigned to one of the two classes A and B, which are represented
by the two reference sequences RAðiÞ and RBðiÞ:

RAðiÞ ¼
2 2 3

3 2 1

� �

RBðiÞ ¼
0 1 0

1 2 3

� �

Both references are of length three, thus IA ¼ IB ¼ 3. The length
J of the input stream coming from the first modality is three, the
length K of the second input is two:

T1ðjÞ ¼ ð1 1 0Þ

T2ðkÞ ¼ ð2 3Þ

The 3D-DTW algorithm first computes the three-dimensional
distance matrices for both references, according to Eq. (4). The
two matrices dA and dB can be seen in Fig. 6.

The next step is the calculation of the accumulated distance
matrices DA and DB (see Fig. 7) considering Eqs. (9)–(14).

The final classification outcome can be obtained when
comparing the normalized accumulated distances DA;normðIA; J;KÞ

and DB;normðIB; J;KÞ which are

DA;norm ¼
DAðIA; J;KÞ

IA
¼

28

3
¼ 9:3

and

DB;norm ¼
DBðIB; J;KÞ

IB
¼

6

3
¼ 2

Since DB;normoDA;norm, the input is assigned to class B.

5.1.4. Segmentation

Like the unimodal DTW, the three-dimensional DTW algorithm
can be extended in a way that it also finds the segment borders of
continuous input streams. For that purpose the 3D-DTW has to be
carried out simultaneously for all C reference sequences of the
inventory. Consequently, the three-dimensional distance matrix
consists of C different fields, one for each bimodal reference word
(see Fig. 8). Similar to the segmentation algorithm for the
standard DTW [61] we define the ‘‘best end’’ D%ðj; kÞ that
denounces the value DðIc ; j; kÞ of the reference c having produced
the lowest accumulated distance of all C references in question.
With Ic being the length of reference sequence c we define

D%ðj; kÞ ¼ min
c

DðIc ; j; k; cÞ ð15Þ

Fig. 5. Three-dimensional path diagram with weighting factors corresponding to

Eq. (9).

Fig. 6. Distance matrices for the classes A and B.

Fig. 7. Accumulated distance matrices for the classes A and B.
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The preceding cell of a cell in the lowest j2k-plane Dð1; j; kÞ of
every reference pattern can either be one of the cells Dð1; j� 1; kÞ,
Dð1; j; k� 1Þ, or Dð1; j� 1; k� 1Þ of the same reference or a cell in
the upper j2k-plane of the ‘‘best’’ preceding pattern which can be
D%ðj� 1; kÞ, D%ðj; k� 1Þ, or D%ðj� 1; k� 1Þ. So we can derive the
following equation for the distance between the reference words:

Dð1; j; kÞ ¼ min

Dð1; j� 1; kÞ þ dð1; j; kÞ

Dð1; j; k� 1Þ þ dð1; j; kÞ

Dð1; j� 1; k� 1Þ þ 2dð1; j; kÞ

D%ðj� 1; kÞ þ dð1; j; kÞ

D%ðj; k� 1Þ þ dð1; j; kÞ

D%ðj� 1; k� 1Þ þ 2dð1; j; kÞ

8>>>>>>>>><
>>>>>>>>>:

ð16Þ

Whenever the algorithm finds the beginning of a new word the
path ‘‘jumps’’ from the top j2k-plane of the preceding word to the
lower j2k plane of the new word and one of the values D%ðj� 1; kÞ,
D%ðj; k� 1Þ, or D%ðj� 1; k� 1Þ is accumulated. Similar to the two-
dimensional DTW, ‘‘jumps’’ correspond to segment borders,
however, in this case we are able to find a segment border of a
bimodal data stream even if the streams are not synchronous. This
would mean that jak at the segment borders.

In order to find D%ðj; kÞ we have to compare the values DðIc; j; kÞ

of all C reference sequences.
As we want these distances to be comparable without any

complicated path length normalizations, we apply the following
rule for the accumulated distance within the reference words:

Dði; j; kÞ ¼ min

Dði; j� 1; kÞ þ dði; j; kÞ

Dði� 1; j� 1; kÞ þ dði; j; kÞ

Dði� 2; j� 1; kÞ þ dði; j; kÞ

Dði; j; k� 1Þ þ dði; j; kÞ

Dði� 1; j; k� 1Þ þ dði; j; kÞ

Dði� 2; j; k� 1Þ þ dði; j; kÞ

Dði; j� 1; k� 1Þ þ 2dði; j; kÞ

Dði� 1; j� 1; k� 1Þ þ 2dði; j; kÞ

Dði� 2; j� 1; k� 1Þ þ 2dði; j; kÞ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð17Þ

This implies that for a certain combination of j and k, the same
number of distances have been accumulated in all of the fields of
the distance matrix so that the distances of the different reference
sequences can be compared directly.

Similar to the standard DTW, we can obtain the path through
the three-dimensional accumulated distance matrix via back-
tracking.

5.1.5. Path restrictions and complexity

A strong divergence of the path from a thought line connecting
the cells Dð1;1;1Þ and DðI; J;KÞ of the accumulated distance matrix
would mean an extreme distortion of the time axis of the input
vectors and thus a very high asynchronity of the data streams. To
avoid such unrealistic extreme distortions, the path can be
restricted in a way that it is forced not to leave a certain corridor
of a predefined width. This also saves computational power. To
define the width of the restricted path, we introduce a path
restriction variable r (0oro1, see Fig. 9). The valid corridor is
defined by the following coordinates ði; j; kÞ:

A ¼ ðr � I;0;0Þ ð18Þ

B ¼ ðI; ð1� rÞ � J;KÞ ð19Þ

C ¼ ð0; r � J;0Þ ð20Þ

D ¼ ðð1� rÞ � I; J;KÞ ð21Þ

E ¼ ð0;0; r � KÞ ð22Þ

F ¼ ðI; J; ð1� rÞ � KÞ ð23Þ

0oro1

Without any path restriction, the computational complexity of
the 3D-DTW is Oð2IJKÞ (both in time and space) as the distance
matrix and the accumulated distance matrix are of size I � J � K . If
the valid domain for the path is restricted, not every cell of the
matrices d and D has to be calculated, which leads to a reduction
of complexity. Since the reduced complexity is equivalent to the
volume of the corridor which defines the valid domain for the
path, the complexity can be determined via geometric considera-
tions. Therefore two cases have to be distinguished:

� if ro0:5, a path restriction in the i–j-plane leads to a valid
domain that can be composed of two triangles, two rectangles,
and one parallelogram in the i–j-plane (Fig. 10, left). Taking into
account the path restriction in the i–k-plane, the volume of the
corridor can be calculated by weighting the area of the rectangles
and triangles by 1:5 � r � K and the area of the parallelogram by
2 � r � K. Consequently, the volume of the corridor is

2 � 1:5 � r � K � ð0:5r2IJ þ r2IJÞ þ 2 � r � K � ð1� 2rÞIð1� rÞJ

Fig. 9. Global path restriction for path restriction variable r ¼ 0:25: the path is

forced to run within the corridor defined by A;B;C;D;E and F.

Fig. 8. Simultaneous calculation of the 3D-distance matrix for three reference

sequences.
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� if r40:5, the domain in the i–j-plane is composed of two
rectangles, two triangles and one large rectangle in the middle
(Fig. 10, right). An additional path restriction in the i–k-plane
leads to a scaling factor 0:5 � ðr þ 1Þ � K for triangles and
rectangles and a factor K for the rectangles in the middle. In
this case the volume of the corridor can be given as

2 � 0:5 � ðr þ 1Þ � K � ð0:5ð1� rÞ2IJ þ rð1� rÞIJÞ þ K � ð2r � 1ÞIJ

Consequently, a restriction of the valid domain for the path
leads to a reduction of computational complexity from Oð2IJKÞ to

Oðð17r3 � 12r2 þ 4rÞIJKÞ for ro0:5 ð24Þ

Oðð�r3 � r2 þ 5r � 1ÞIJKÞ for r40:5 ð25Þ

Fig. 11 shows how complexity decreases if r gets lower. In
Table 1 the derived complexity of the three-dimensional DTW is

compared to the complexity of the asynchronous HMM (see
also Sections 4 and 5.3.3). For comparison, also the complexities of
late and early fusion using DTW are listed. In the case of late
fusion, I1 and I2 denote the lengths of the reference streams
belonging to the first and the second modality, whereas in
the case of early fusion I represents the length of the bimodal
reference.

To further reduce the computational complexity of our
3D-DTW, we also applied Monte Carlo sampling. However, this
had a negative effect on recognition rates and was therefore not
considered any further.

5.1.6. Training

One problem of unimodal pattern classification based on
dynamic time warping is the determination of a suitable reference
sequence for every class. As the reference sequence should
represent a certain class, we expect that the reference is similar
to all patterns that are to be assigned to the represented class.
Consequently, the task is to find an average or typical sequence of a
class. Since the patterns of a certain class may be of different
length or differ in their temporal characteristics, it is not sufficient
to average the samples of a set of training sequences at every time
instant. Therefore we use a training algorithm that uses dynamic
time warping to find out how the training material has to be
temporally distorted, so that the samples can be averaged. The
algorithm is outlined in Fig. 12.

At first an initial reference sequence of length L is selected,
whereas L is the median of the lengths of all sequences in the
training set. Then the first training sequence is picked. Via
dynamic time warping the most probable alignment between
the initial reference and the current training sequence is
determined. Consequently, every sample of the current training
pattern is assigned to a sample of the reference sequence. In every

Fig. 11. Complexity of the three-dimensional DTW algorithm versus path

restriction variable r.

Table 1
Time and space complexity of the AHMM, late (lf) and early (ef) fusion DTW, as

well as three-dimensional DTW for a path restriction variable ro0:5: unrestricted

and restricted.

Unrestricted

AHMM OðN2STÞ

3DDTW Oð2IJKÞ

DTW(lf) Oð2ðI1J þ I2KÞÞ

DTW(ef) Oð2IJÞ

Restricted

AHMM OðN2½TS� S2 þ T�Þ

3DDTW Oðð17r3 � 12r2 þ 4rÞIJKÞ

DTW(lf) Oð2rð2� rÞðI1J þ I2KÞÞ

DTW(ef) Oð2rð2� rÞIJÞ

Fig. 12. DTW training algorithm, L: median of the lengths of all training

sequences; Ref: initial reference sequence; c: counts the training sequences;

sequencec: current training sequence; r: counts the samples of Ref; n: number of

samples of sequencec that are assigned to Ref ðrÞ; ntot: total number of values that

have been assigned to Ref ðrÞ so far; S: sum of the values that are assigned to Ref ðrÞ.

Fig. 10. Geometric composition of the valid domain in the i–j-plane for path

restriction variable ro0:5 (left) and r40:5 (right).
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iteration the samples of the reference sequence are updated by
averaging the samples that have been assigned to it so far.

In order to obtain a reference sequence for the three-
dimensional DTW, the references of both modalities are trained
as shown above and merged as outlined in Fig. 4.

5.2. Four-dimensional dynamic time warping

So far it was assumed that the reference sequences of both
modalities are synchronous. Merging them to a unique extended
reference sequence implies deciding about the alignment be-
tween the references a priori. If we do not want to fix the
alignment between R1 and R2, a fourth dimension has to be added
to the dynamic time warping concept. This means that not only
the temporal distortion between T12R, T22R, and T12T2 is
modeled, but also the alignment between R1, being the reference
of the first modality, and R2, being the reference of the second
modality. The four-dimensional dynamic time warping algorithm
computes the accumulated distance between a bimodal input,
consisting of the sequences T1ðjÞ and T2ðkÞ, and a bimodal
reference R1ðiÞ and R2ðlÞ. Therefore we define

R1ðiÞ ¼ ½~r1ð1Þ;~r1ð2Þ; . . . ;~r1ðIÞ�

R2ðlÞ ¼ ½~r2ð1Þ;~r2ð2Þ; . . . ;~r2ðLÞ�

T1ðjÞ ¼ ½~t1ð1Þ;~t1ð2Þ; . . . ;~t1ðJÞ�

T2ðkÞ ¼ ½~t2ð1Þ;~t2ð2Þ; . . . ;~t2ðKÞ� ð26Þ

Now the distance matrix is four-dimensional and has size
I � J � K � L, where L is the length of R2ðlÞ. Every cell of d can be
computed as

dði; j; k; lÞ ¼
XN

n¼1

½r1;nðiÞ � t1;nðjÞ�
2 þ g �

XM
m¼1

½r2;mðlÞ � t2;mðkÞ�
2 ð27Þ

As in Eq. (4), n ¼ 1 . . .N counts the features of T1ðjÞ and m ¼

1 . . .M counts the features of T2ðkÞ. Again, g is the weighting factor
for the individual modalities. The path determined by the warping
function F, which now has four coordinates, goes from cell
dð1;1;1;1Þ to cell dðI; J;K ; LÞ. To calculate the cells of the four-
dimensional accumulated distance matrix Dði; j; k; lÞ, the best of 15
preceding cells in question has to be chosen. Similar to the three-
dimensional case, weighting factors for dði; j; k; lÞ have to be
introduced in a way that diagonal movements and movements
parallel to axes are equally treated. Consequently, the cells of D

can be calculated as follows:

Dði; j; k; lÞ ¼ min

Dði� 1; j; k; lÞ þ dði; j; k; lÞ

Dði; j� 1; k; lÞ þ dði; j; k; lÞ

Dði; j; k� 1; lÞ þ dði; j; k; lÞ

Dði; j; k; l� 1Þ þ dði; j; k; lÞ

Dði� 1; j� 1; k; lÞ þ 2dði; j; k; lÞ

Dði� 1; j; k� 1; lÞ þ 2dði; j; k; lÞ

Dði� 1; j; k; l� 1Þ þ 2dði; j; k; lÞ

Dði; j� 1; k� 1; lÞ þ 2dði; j; k; lÞ

Dði; j� 1; k; l� 1Þ þ 2dði; j; k; lÞ

Dði; j; k� 1; l� 1Þ þ 2dði; j; k; lÞ

Dði; j� 1; k� 1; l� 1Þ þ 3dði; j; k; lÞ

Dði� 1; j; k� 1; l� 1Þ þ 3dði; j; k; lÞ

Dði� 1; j� 1; k; l� 1Þ þ 3dði; j; k; lÞ

Dði� 1; j� 1; k� 1; lÞ þ 3dði; j; k; lÞ

Dði� 1; j� 1; k� 1; l� 1Þ þ 4dði; j; k; lÞ

ðiZ2; jZ2; kZ2; lZ2Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð28Þ

In case one (or more) of the indices i, j, k, or l is smaller than 2,
Eq. (28) has to be modified analogue to the principle explained in
Section 5.1.2 (Eqs. (9)–(14)).

A disadvantage of the four-dimensional DTW approach is its
high computational complexity: without any path restriction the
complexity of the 4D-DTW is Oð2IJKLÞ. Similar to the 3D-DTW, the
domain for the valid path can be restricted by defining a corridor
through four-dimensional space, leading to a reduction of
complexity and an avoidance of extreme distortions.

5.3. Probability-based dynamic time warping

Working with pattern vectors, the similarity of two vectors can
easily be determined by evaluating the Euclidian distance (see e.g.
Eq. (4)). However, distance calculations of high-dimensional
pattern vectors used in speech recognition require great compu-
tational power. An alternative to processing pattern vectors is the
introduction of discrete symbols, enumerating clusters in a
multidimensional space. So every pattern vector is assigned to a
certain symbol representing a cluster. As these clusters can be
enumerated arbitrarily, neighboring clusters do not necessarily
have similar symbol numbers. Therefore the distance or difference

between two symbol numbers has no significance, since it does
not indicate the similarity of the symbols. This means that the
dynamic time warping algorithm has to be modified in order to be
applicable to input streams consisting of discrete symbols. Our
modified version of the DTW will be called probability-based

dynamic time warping in the following.

5.3.1. Distance calculation

Instead of reference sequences consisting of a time series of
pattern vectors, the probability-based DTW uses a probability
matrix P to measure the similarity of the reference and the input
stream, which is a series of discrete symbols. Therefore for every
class a set of training sequences is used to train a matrix PðiÞ that
defines the probability of a certain symbol at a certain time
instant of the reference sequence:

PðiÞ ¼

p1ð1Þ p1ð2Þ . . . p1ðIÞ

p2ð1Þ p2ð2Þ . . . p2ðIÞ

^ ^ & ^

pSð1Þ pSð2Þ . . . pSðIÞ

0
BBBB@

1
CCCCA ð29Þ

I denotes the length of the reference sequence and S is the
number of discrete symbols in the alphabet. psðiÞ is the probability
of symbol s in time step i.

psðiÞ ¼ pðsjt ¼ iÞ ð30Þ

If the distance between sample i of a reference sequence PðiÞ and
sample j of an input stream TðjÞ has to be calculated, we can use
reference PðiÞ as a look-up-table and convert the probability of the
symbol of sample j of TðjÞ into a distance measure by evaluating
column i of PðiÞ. Consequently, for the probability-based version of
the standard 2D-DTW we can define

dði; jÞ ¼ ð1� psðiÞ � f Þ � x ð31Þ

whereas s is the number of the symbol occurring at sample j of T.
With the variables f and x the dynamics of dði; jÞ can be affected. x

determines the maximum possible distance dði; jÞ in case psðiÞ ¼ 0.
For large symbol alphabets we choose f41 as for a large number of
possible symbols psðiÞ tends to be small and most values of dði; jÞwill
be close to x.

For the three-dimensional DTW, an extended P-matrix contain-
ing the probability distributions of both modalities is needed.
Regarding the individual references Pa and Pb of the modalities
a and b, the extended reference sequence PðiÞ can be obtained
by upsampling and merging Pa and Pb similar to the procedure
for standard references consisting of pattern vectors, which
has been outlined in Fig. 4. Then the extended bimodal reference

M. Wöllmer et al. / Neurocomputing 73 (2009) 366–380374



Author's personal copy
ARTICLE IN PRESS

P is

PðiÞ ¼

pa;1ð1Þ pa;1ð2Þ . . . pa;1ðIÞ

pa;2ð1Þ pa;2ð2Þ . . . pa;2ðIÞ

^ ^ & ^

pa;Sa
ð1Þ pa;Sa

ð2Þ . . . pa;Sa
ðIÞ

pb;1ð1Þ pb;1ð2Þ . . . pb;1ðIÞ

pb;2ð1Þ pb;2ð2Þ . . . pb;2ðIÞ

^ ^ & ^

pb;Sb
ð1Þ pb;Sb

ð2Þ . . . pb;Sb
ðIÞ

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð32Þ

Sa denotes the size of the symbol alphabet for mode a, Sb

indicates the number of symbols for mode b. pm;sðiÞ is the
probability that symbol s occurs in sample i of the reference Pm

of mode m. A distance measure denoting the similarity of the
bimodal reference P at sample i and the two input sequences Ta (at
sample j) and Tb (at sample k) can be defined as follows:

dði; j; kÞ ¼ ð1� pa;sa ðiÞ � faÞ � xa þ ð1� pb;sb
ðiÞ � fbÞ � xb ð33Þ

sa is the symbol that occurs at sample j of Ta, whereas sb stands
for the symbol occurring at sample k of stream Tb. As outlined
before, the factors fa and fb are used to adapt to the size of the
symbol alphabet, so we can choose fa ¼ const � Sa and
fb ¼ const � Sb. xa and xb can be seen as weighting factors that
control the influence of the individual modalities on the result of
the classification, similar to the factor g in Eq. (4).

The accumulated distance matrix for the probability-based 3D-
DTW can be calculated the same way as for the standard 3D-DTW.

5.3.2. Training

As mentioned before, a reference PðiÞ has to be trained using a
set of training sequences. Therefore we use an algorithm that
updates matrix PðiÞ after every training iteration in a way that PðiÞ

represents a time series of probability distributions, characteriz-
ing a certain class. The principle of the algorithm is the same as
the training strategy explained in Fig. 12. The only difference is
that now probability distributions are derived for every sample of
the reference by simply counting the number of occurrences of a
certain symbol assigned to a given sample of the reference stream,
instead of averaging the values assigned to a sample (as in Section
5.1.6). Again, the training algorithm first picks an initial reference
sequence of length L, whereas L is the median of the lengths of all
sequences in the training set. Then every cell of the reference PðiÞ

is initialized with 1=S which implies that at the beginning all
symbols have equal probabilities at every sample of reference PðiÞ.
From now on PðiÞ is updated with every iteration of the training
algorithm, whereas the best alignment of a new training sequence
and the current reference PðiÞ is determined via probability-based
dynamic time warping, analogous to the procedure outlined in
Section 5.1.6.

5.3.3. Comparison of AHMM and three-dimensional probability-

based DTW

Since the three-dimensional probability-based DTW (3D-
PBDTW) processes probabilities instead of distances, this DTW
concept is an approach towards statistical models like the
asynchronous hidden Markov model. Therefore it seems reason-
able to compare the three-dimensional probability-based DTW
with the AHMM in order to outline the differences. Table 2 shows
varieties and similarities of the two concepts.

The main advantage of the three-dimensional DTW is its lower
computational complexity compared to the AHMM. As outlined in
[2], the complexity of the AHMM strongly depends on the ratio
between the length of the two streams (see Fig. 13). If the input
sequences are of equal length, the AHMM corresponds to an early
fusion architecture since in every time step two symbols have to
be emitted. Consequently computational complexity decreases if
the lengths of both input streams are similar.

As explained in Section 5.1.5, for a given path restriction
variable r, the complexity of the probability-based 3D-DTW
increases linearly with the length of the sequences. Fig. 13
compares the complexities of the restricted AHMM and the 3D-
PBDTW at a path restriction variable r ¼ 0:15 for different
numbers of AHMM states and 3D-DTW reference vector lengths,

Table 2
Comparison of the asynchronous HMM and the three-dimensional probability-

based DTW.

AHMM 3D-PBDTW

3D trellis: q (state), 3D dist. matrix: i (ref.),

t (stream 1), s (stream 2) j (stream 1), k (stream 2)

States characterized by emission

probabilities

Reference characterized by symbol

probability distributions

Starting points ðq; t; sÞ ¼ ðq;1;0Þ or

ðq;1;1Þ; q ¼ 1 . . .N
Starts at ði; j; kÞ ¼ ð1;1;1Þ

Ergodic: 2N possible transitions; linear:

four possible transitions

According to Eq. (9): seven possible

transitions

Implicit path restriction (see Section 4) Explicit path restriction (see Fig. 9)

Fig. 13. Complexity in % versus length of the second input stream (in % of the length of the first input stream)—Comparison of AHMM (curved line) and probability-based

3D-DTW (dashed straight lines) for a path restriction variable of r ¼ 0:15; number of AHMM states: 10, 15, 20, 25, 30 (the more states, the higher complexity); number of

samples of 3D-DTW reference sequence: 40, 60, 80, 100, 120 (the more samples, the higher complexity).
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respectively (see also Table 1 in Section 5.1.5). Note that the path
restriction variable r ¼ 0:15 resulted in the best 3D-DTW
performance in our speech and gesture experiment (see Fig. 14).
For a typical scenario (25 AHMM states, length of the 3D-DTW
reference vector is equal to 100, path restriction variable r ¼ 0:15,
length of the second input stream is equal to 70% of the length of
the first input stream) the 3D-DTW speed-up factor would be 5.1,
compared to the AHMM.

6. Experiments

6.1. Speech and gesture data

The multimodal data set which was used to evaluate the
performance of the three-dimensional DTW is the speech and
gesture data set that had also been applied in [2]. A sequence of
this data set consists of two partially asynchronous streams, one
of them being a speech signal, the other one being a mouse-
gesture signal. The speech stream can be assigned to one of 11
words, namely the English digits from one to nine, including zero

and oh. Furthermore, 10 different mouse-gestures can be distin-
guished: up, down, left, right, downup, updown, leftright, rightleft,
clockwise and counterclockwise. The speech and gesture data are
combined to 26 different multimodal input commands which are
to be classified (i.e. ‘‘four-counterclockwise’’, ‘‘zero-rightleft’’, etc.).
For each of the 26 multimodal commands 216 training sequences
and 104 test sequences are available. Sixty percent of the
sequences are synchronous, meaning that speech and gesture
stream both start at t ¼ 0 but can be of different length. Forty
percent of the data are sequential, which means that the gesture
stream starts at time t ¼ 0 and the speech stream starts at some
time instant t40. Thereby the offset between gesture and speech
is chosen randomly. The maximum distance between the end of
the gesture stream and the beginning of the speech stream was set
to 20 frames. Synchronity was chosen according to user studies
in [44].

To keep AHMM computing time within the bounds of
possibility, both, speech and gesture stream, consist of discrete
symbols instead of multidimensional pattern vectors. Conse-
quently the probability-based DTW (see Section 5.3) has been
applied for DTW-based decoding. In the gesture stream, mouse
movements were discretized with a codebook size of eight
symbols. For the speech stream the Aurora speech database was
used. Every 10 ms a 20 ms-Hamming Window was used to extract
39 features: a pattern vector includes 12 melfrequency cepstral
coefficients plus energy, as well as their first and the second order

temporal derivatives. Applying K-means clustering with 25
iterations, the 39-dimensional pattern vectors were then dis-
cretized with a codebook of only 50 symbols in order to keep
AHMM decoding complexity computationally feasible.

6.2. Unimodal classification

At first the performance of the individual classifiers was
examined. Table 3 shows the recognition rates if only the isolated
speech stream is to be assigned to one of the 11 word classes or if
the isolated gesture stream (10 different classes) shall be
classified. For the gesture classification discrete ergodic HMM
with 20 states had been trained (20 EM-iterations). The speech
sequences were classified using discrete ergodic HMM with 15
states (10 EM-iterations). For the probability-based DTW, the
path restriction variable was set to r ¼ 0:2 for both training
and decoding. Factor x (see Eq. (31)) was chosen as 100, whereas
factor f was set to 10 for speech decoding and to 1 for gesture
decoding, respectively. As Table 3 illustrates, HMM for speech
recognition outperform the DTW by nearly 12%. The performance
of unimodal gesture recognition is slightly better when using
HMM.

6.3. Late fusion

In order to classify the 26 different multimodal speech and
gesture commands via dynamic time warping, first of all a late
fusion strategy had been applied. Thereby the speech and the
gesture stream were classified separately. A multimodal command
is recognized correctly if the speech and the gesture stream had
been assigned to the right class. As outlined before, this strategy
does not exploit mutual information. Setting the parameters r, x,
and f as in Section 6.2 leads to an average recognition rate of
62.08%.

6.4. Early fusion

Using an early fusion DTW-based classification scheme, 459
multimodal symbols were introduced to merge the bimodal data
into a unimodal representation prior to decoding. Aiming not to
lose information during the early fusion process, every possible
combination of eight gesture symbols and 50 speech symbols has
to be mapped to one multimodal symbol. Taking into account
empty samples due to the asynchronity of the streams, we get
ð8þ 1Þ � ð50þ 1Þ ¼ 459 different multimodal symbols. Classifica-
tion was carried out using the parameters r ¼ 0:2, x ¼ 100, and
f ¼ 10. Due to the high degree of asynchronity of the data, early
fusion performs worse than late fusion (average early fusion
recognition rate: 46.84%).

6.5. Hybrid fusion

As a realization of hybrid fusion, the three-dimensional DTW
derived in Sections 5.1 and 5.3 has been tested on the speech and
gesture data set. The training algorithm outlined in Section 5.3.2

Fig. 14. Recognition rate using the 3D-DTW versus path restriction variable r.

Table 3
Unimodal recognition rates (with number of different classes) of the individual

classifiers for speech and gesture sequences.

Classifier Speech (# clas.) Gesture (# clas.)

HMM 92.5% (11) 89.9% (10)

DTW 80.7% (11) 87.6% (10)
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was applied to acquire the extended reference vectors for
each class. Both modalities were weighted equally (xa ¼ xb, see
Eq. (33)) and parameters x and f were chosen as in Section 6.2. The
best average recognition rate (72.75%) could be attained for a path
restriction variable r ¼ 0:15 (see Fig. 14). The 3D-DTW out-
performed the four-dimensional dynamic time warping algorithm
derived in Section 5.2 which achieved an average recognition rate
of 57.70%. Thus, we can conclude that the increase in uncertainty
due to the additional degrees of freedom for the four-dimensional
backtracking path has a stronger influence on the recognition
performance than the drawback of having to decide a priori about
the alignment of the modes in the extended bimodal reference
sequence as we do when applying the 3D-DTW.

6.6. Classification using hidden Markov models

We further applied different fusion strategies for HMM-based
classification of the bimodal speech and gesture data set. Late
fusion HMM reached an average recognition rate of 67.19% (15
word states; five gesture states), whereas due to the high degree
of asynchronity of the data, early fusion HMM could not achieve
rates better than guessing. The asynchronous hidden Markov
model introduced in [7] was proven to be the best HMM-based
strategy to fuse data, since it attained an average recognition rate
of 77.62% (25 states).

6.7. Comparison of fusion strategies

Table 4 compares the recognition rates applying DTW-based
and HMM-based structures to classify the speech and gesture data
set. The results for HMM-classification can also be found in [2].
Using late fusion, mutual information cannot be exploited since
the modalities do not influence each other during the decoding
process. However, late fusion systems profit from the strength of

the individual classifiers. Due to the good performance of
unimodal HMM-classification (see Table 3) late fusion HMM
outperform dynamic time warping by 5%. Applying early fusion
systems leads to recognition rates lower than 50% for both HMM
and DTW, as these concepts are not able to generalize the high
asynchronity in the data set. Comparing the performance of the
asynchronous HMM and the probability-based three-dimensional
DTW, which both are hybrid fusion concepts, we note that the
recognition rate of the 3D-DTW is almost 5% (absolute) lower
than the rate for the AHMM. However, if we compare late and
hybrid fusion, the gain of performance exploiting mutual
information in hybrid fusion systems is 10% for both HMM
and DTW.

Determining the statistical significance of the difference
between 3D-DTW and AHMM performance according to [20]
results in a p-value of 3:4� 10�5. Thus, the performance
difference can be seen as statistically significant, using the
common significance level of 0.001.

The great advantage of the 3D-DTW becomes obvious if we
take into account the computational complexity of the AHMM and
the 3D-DTW: Fig. 15 shows how complexity of both algorithms
depend on the ratio of the lengths of the input streams. For typical
parameter values that were also used in the speech and gesture
classification experiment (path restriction variable r ¼ 0:15, 25
AHMM states, 3D-DTW reference sequence length equal to 100)
the complexity of the 3D-DTW is much lower, leading to a speed-
up factor of up to 8.4. This makes the algorithm attractive for real-
time applications and quick online adaptation by simple reference
sequence addition.

7. Conclusion and discussion

In this work a dynamic time warping algorithm has been
extended in a way that it can model asynchronous multimodal
data streams. The concept can be seen as a hybrid fusion approach
that uses mutual information from other modalities during the
decoding process. Since the algorithm is also applicable to data
streams which are not synchronous, it combines the advantages of
both late and early fusion. By adding a third dimension to the
distance matrix, not only the temporal distortion between an
input and a reference sequence, but also the optimal alignment
between two input streams coming from different modalities is
determined. Decoding is based on a distance measure that allows
to weight the modes according to their importance for pattern
classification. After some modifications of the derived 3D-DTW, it

Table 4
Comparison of recognition rates (26 multimodal classes) for different fusion

strategies using DTW-based or HMM-based classifiers; for hybrid fusion the 3D-

DTW and the AHMM have been applied.

Fusion strategy (3D-)DTW (%) (A-)HMM (%)

Late fusion 62.08 67.19

Early fusion 46.84 3.85

Hybrid fusion 72.75 77.62

Fig. 15. Complexity in % versus length of the second input stream (in % of the length of the first input stream)—Comparison of AHMM (curved line) and probability-based

3D-DTW (dashed straight lines) for a path restriction variable of r ¼ 0:15; number of AHMM states: 25; number of samples of 3D-DTW reference sequence: 100.
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was shown that the algorithm can also carry out segmentation of
bimodal data streams, even if they are not synchronous.
Computational complexity could be reduced by restricting the
valid domain of the backtracking path, which also excludes
extreme time distortions. In order to overcome the problem of
finding an accurate reference sequence for a certain class, a
training procedure that iteratively improves the reference, has
been developed. A further expansion of the DTW concept, that
avoids merging the reference sequences of both modalities to a
bimodal reference by adding a fourth dimension, could not
convince in the experiments. Modifying the 3D-DTW to a
probability-based DTW allows classifying bimodal sequences that
consist of discrete symbols instead of usual pattern vectors. This
probability-based DTW was compared to other statistical tools for
multimodal classification, like the asynchronous hidden Markov
model.

A challenging bimodal speech and gesture data set was used
to evaluate the performance of the three-dimensional DTW
algorithm and to compare it to other concepts. The 3D-DTW
outperforms a late fusion DTW by more than 10% (17% relative
improvement) but still could not reach the recognition rate of the
AHMM which is 5% higher (6.7% relative). However, both time and
space complexity of the 3D-DTW is reduced by a factor of up to
8.4 with respect to the AHMM. Consequently, the 3D-DTW is an
attractive alternative to AHMM whenever the speed of decoding
or the amount of required memory is relevant.

Besides the performance gap between the proposed 3D-DTW
and the AHMM, a few limitations of the initial algorithm as
introduced in this work can be observed. One such limitation
is the fact that the modality importance weight (factor g, see
Section 5.1.2) is not learned automatically, but still has to be set by
hand. Further, better distance measures and a more problem-
adequate calculation of the accumulated 3D-DTW distance matrix
might be included in future versions of the algorithm. A general
limitation of the DTW concept is that major inter-class variations
can only be captured by using more than one reference per class,
which is not as elegant and effective as the Gaussian mixture
approach for HMM-based modeling. Another shortcoming of the
proposed 3D-DTW is the assumption of synchronized reference
streams (in contrast to the input streams which do not have to
be synchronized). However, with the 4D-DTW we presented a
strategy to overcome this limitation.

Future research effort could be spent on the DTW-based
classification of strongly correlated bimodal data, like speech
and lip-movements. Furthermore, it would be interesting to
examine how a slope constraint of the backtracking path affects
the performance of the 3D-DTW. The performance gap
between the 3D-DTW and the asynchronous HMM could be
eliminated by including multiple references in a k-nearest-
neighbor approach or by defining prototypes not only in the
feature space but also for the stream alignment by appropriate
clustering (such as k-means). For future works the principle of
dimensionality expansion for hybrid fusion of multiple data
streams may also be applied to more powerful classifiers such
as long short-term memory recurrent neural nets [23,74] or
hidden conditional random fields [46,50]. Yet, the experiments
in this work prove that the derived 3D-DTW algorithm is a
promising approach of multimodal integration via dynamic
time warping.
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