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xv

PREFACE

In the nine years since the publication of the first edition of Spread
Spectrum Communications, the world’s political situation has changed con-
siderably. The U.S. Department of Defense has reduced its support for the
development of new communication systems as well as their acquisition.
One might question the need for a second edition of a book written about
robust techniques for anti-jamming (AJ) and low-probability-of-intercept
(LPI) communications.

However, while it is already painfully clear that the close of the Cold War
has not ended warfare, the past decade has also ushered in a new era of
mobile communications. The qualities that make spread-spectrum tech-
niques useful in military communications—fine time-resolution, low power-
density, privacy, and a high immunity to interference—are also extremely
desirable in today’s mobile communications systems. Encouraged by enlight-
ened FCC actions, spread-spectrum technology is being transferred from the
Department of Defense to the arena of commercial mobile cellular com-
munications. The emerging markets for spread-spectrum systems have the
potential to dwarf those of the past.

Are the design techniques for military communication systems truly
applicable to the commercial environment? Does yesteryear’s jammer have
anything to teach us about managing multiple-user noise in a spread-spec-
trum multiple-access radio network? The answer—an unqualified “yes”—is
attested to by the successes of companies that are penetrating the commer-
cial marketplace with spread-spectrum products.

This revised edition contains new material on the emerging commercial
applications of spread-spectrum techniques as well as minor modifications
to the book’s original fourteen chapters. We believe that since it is based on
sound engineering principles and is not bound to a particular implementa-
tion technology, it will retain its usefulness for the foreseeable future.

Marvin K. Simon
Jim K. Omura
Robert A. Scholtz
Barry K. Levitt
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PREFACE TO FIRST EDITION

Not more than a decade ago, the discipline of spread-spectrum (SS) com-
munications was primarily cloaked in secrecy. Indeed, most of the informa-
tion available on the subject at that time could be found only in documents
of a classified nature.

Today the picture is noticeably changed.The open literature abounds with
publications on SS communications, special issues of the IEEE Transactions
on Communications have been devoted to the subject, and the formation of
an annual conference on military communications, MILCOM, now offers a
public forum for presentation of unclassified (as well as classified) papers
dealing with SS applications in military systems. On a less formal note, many
tutorial and survey papers have recently appeared in the open literature, and
presentations on a similar level have taken place at major communications
conferences. Finally, as further evidence we cite the publication of several
books dealing either with SS communications directly or as part of the more
general electronic countermeasures (ECM) and electronic counter-counter
measures (ECCM) problem. References to all these forms of public docu-
mentation are given in Section 1.7 of Chapter 1, Part 1.

The reasons for this proliferation can be traced to many sources. While it
is undoubtedly true that the primary application of SS communications still
lies in the development of enemy jam-resistant communication systems for
the military, largely within the confines of classified programs, the emergence
of other applications, in which both the military and civilian sectors are
involved, as playing a role of ever-increasing importance. For example, to
minimize mutual interference, the flux density of transmissions from radio
transmitters must often be maintained at acceptably low radiation levels. A
convenient way to meet these requirements is to spread the power spectrum
of the signal before transmission and despread it after reception—the non-
hostile equivalent of the military low-probability-of-intercept (LPI) signal
design.

Another instance in which SS techniques are particularly useful in a non-
anti-jam application is in multiple-access communications in which many
users share a single communication channel.The assignment of a unique SS
sequence to each user allows him or her to transmit simultaneously over the
common channel with a minimum of mutual interference, simplifying the
network control requirements.

xvi
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Extremely accurate positioning can be computed by using signals from
several satellites in synchronous and asynchronous orbits. Satellites trans-
mitting pseudorandom noise sequences modulated onto the transmitted car-
rier signal provide the means for accomplishing the required range and
distance determination at any point on the earth.

Finally, SS techniques can improve the reliability of transmission in fre-
quency-selective fading and multipath environments. Spreading the band-
width of the transmitted signal over a wide range of frequencies reduces its
vulnerability to interference and often provides some diversity gain at the
receiver.

At the heart of all these potential applications lies the increasing use of
digital forms of modulation for transmitting information, driven by the
tremendous advances made over the last decade in microelectronics. This
trend no doubt will continue, and thus it should not be surprising that more
and more applications for spread-spectrum techniques will continue to sur-
face. Indeed, the state-of-the-art is advancing so rapidly (e.g., witness the
recent improvements in frequency synthesizers boosting frequency hop
rates from the Khops/sec to the Mhops/sec ranges over SS bandwidths in
excess of a GHz) that today’s primarily theoretical concepts will be realized
tomorrow.

Unclassified research and developments in spread-spectrum communica-
tions have arrived at a point of maturity necessary to justify a textbook on
SS communications that goes far beyond the level of those available on
today’s market. Such is the purpose of Spread Spectrum Communications.
Contained within the fourteen chapters of its three volumes is an in-depth
treatment of SS communications that should appeal to the specialist already
familiar with the subject as well as the neophyte with little or no background
in the area. The book is organized into five parts, within which the various
chapters are for the most part self-contained. The exception is Chapter 3,
Part 1, which deals with basic concepts and system models and serves as a
basis for many of the other chapters that follow. As would be expected, the
more traditional portions of the subject are treated in the first two parts,
while the latter three parts deal with more specialized aspects. The authors
envision that an introductory one-semester course in SS communications
taught at a graduate level in a university might cover all or parts of Chapters
1, 3, 4, 5 of Part 1, Chapters 1 and 2 of Part 2, and Chapters 1 and 2 of Part 4.

In composing the technical material presented in Spread Spectrum
Communications, the authors have intentionally avoided referring by name
to specific modern SS systems that employ techniques such as those dis-
cussed in many of the chapters. Such a choice was motivated by the desire
to offer a unified approach to the subject that stresses fundamental princi-
ples rather than specific applications. Nevertheless, the reader should feel
confident that the broad experience of the four authors ensures that the
material is practical as well as academically inspiring.

In writing a book of this magnitude, we acknowledge many whose efforts
should not go unnoticed. Credit is due to Paul Green for originally suggesting
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the research that uncovered the material in Chapter 2, Part 1, and to Bob
Price for the tireless sleuthing which led to much of the remarkable infor-
mation presented there. Chapter 5, Part 1 benefited significantly from the
comments of Lloyd Welch, whose innovative research is responsible for some
of the elegant sequence designs presented there. Per Kullstam helped clar-
ify the material on DS/BPSK analysis in Chapter 1, Part 2. Paul Crepeau con-
tributed substantially to the work on list detectors. Last but by no means
least, the authors would like to thank James Springett, Gaylord Huth, and
Richard Iwasaki for their contributions to much of the material presented
in Chapter 4, Part 5.

Several colleagues of the authors have aided in the production of a use-
ful book by virtue of critical reading and/or proofing. In this regard, the
efforts of Paul Crepeau, Larry Hatch,Vijay Kumar, Sang Moon,Wei-Chung
Peng, and Reginaldo Polazzo, Jr. are greatly appreciated.

It is often said that a book cannot be judged by its cover. The authors of
Spread Spectrum Communications are proud to take exception to this com-
monly quoted cliche. For the permission to use the historically significant
noise-wheel cover design (see Chapter 2, Part 1, Section 2.2.5), we gratefully
acknowledge the International Telephone and Telegraph Corp.

Marvin K. Simon
Jim K. Omura
Robert A. Scholtz
Barry K. Levitt
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