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Abstract. The proliferation of P2P computing has recently been pro-
pelled by popular applications, most notably file sharing protocols such
as BitTorrent. These protocols provide remarkable efficiency and scala-
bility, as well as adaptivity to dynamic situations. However, none of them
is secure against attacks from rational users, i.e., users that misuse the
protocol if doing so increases their benefits (e.g., reduces download time
or amount of upload capacity).
We propose a rigorous model of rational file sharing for both seeders and
leechers, building upon the concept of rational cryptography. We design
a novel file sharing protocol called RatFish, and we formally prove that
no rational party has an incentive to deviate from RatFish; i.e., RatFish
constitutes a Nash equilibrium. Compared to existing file sharing pro-
tocols such as BitTorrent, the tracker in RatFish is assigned additional
tasks while the communication overhead of a RatFish client is kept to
a minimum. We demonstrate by means of a prototype implementation
that RatFish is practical and efficient.

1 Introduction

Recently, the peer-to-peer (P2P) paradigm has emerged as a decentral-
ized way to share data and services among a network of loosely connected
nodes. Characteristics such as failure resilience, scalability and adaptivity
to dynamic situations have popularized P2P networks in both academia
and industry. The proliferation of P2P computing has also been propelled
by popular applications, most notably file sharing protocols such as Bit-
Torrent [6].

A crucial assumption underlying the design of such file sharing pro-
tocols is that users follow the protocol as specified; i.e., they do not try
to bypass the design choices in order to achieve higher download rates,
or to avoid uploading to the system at all. However, not all users are
necessarily altruistic, and publicly available, modified BitTorrent clients
like BitThief [20] or BitTyrant [22] can be used to strategically exploit
BitTorrent’s design to achieve a higher download while contributing less
or nothing at all in return. While several minor protocol adaptations have



been suggested to mitigate the attacks underlying these clients [30], the
core weaknesses remain: In its current form, BitTorrent – and current
file sharing protocols in general – offer better service to cheating clients,
thereby creating incentives for users to deviate from the protocol; in turn,
it further decreases the performance of honest clients. The task is thus to
design a protocol that not only retains the remarkable characteristics of
current file sharing protocols, but that is rational in the sense that it offers
sufficient incentives for users to stick to the precise protocol specification.
In more technical terms, this file sharing protocol should constitute an
equilibrium state: Adhering to the protocol should optimize the bene-
fits received by each individual participant, and any deviation from the
protocol should result in a lower payoff for the cheating user.

1.1 Contributions

We contribute RatFish, a protocol for rational file sharing. RatFish is
built upon the concepts and design choices that underlie BitTorrent, but
it resolves the weaknesses that clients such as BitThief and BitTyrant
exploit. We achieve this mostly by ensuring rational exchange of pieces
between leechers and by having the tracker participate in the coordination
of the downloads. In this context, an exchange is called rational if the
participants have no incentive to deviate from it.

The distinctive feature of RatFish, however, is not that it discourages
the use of several selfish strategies, but that it comes with a formal proof
that deviating from RatFish is irrational for both seeders and leechers.
In order to do this, we first characterize rational behaviors of leechers
and seeders in file sharing protocols, building upon the concept of the
recently emerging field of rational cryptography, in which users are de-
fined as rational players in a game-theoretic sense. Intuitively, leechers are
primarily interested in minimizing their download time and the amount
of uploaded data, whereas seeders value the efficiency of the protocol in
using their upload capacity. We cast this intuition into a rigorous mathe-
matical model, and we formally prove that our protocol is secure against
deviations of rational parties, by showing that it constitutes a Nash equi-
librium. This holds even though RatFish allows users to dynamically leave
and (re-)join. We prove this Nash equilibrium using a new proof technique
that is of independent interest for rational cryptography: the step-by-step
substitution of a deviating strategy with hybrid, semi-rational strategies.

We have built a prototype implementation of RatFish that demon-
strates that RatFish is practical and efficient. We stress though that the
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purpose of RatFish is not to achieve performance improvements over ex-
isting protocols, but to establish a formal proof that under realistic con-
ditions, such as dynamically joining users, no rationally-behaving user
has an incentive to deviate from RatFish. The additional computational
overhead of RatFish compared to BitTorrent is small: basic cryptographic
primitives (symmetric encryptions and digital signatures schemes) are
used, and the tracker is assigned additional tasks such as the coordination
of downloads and the generation of user incentives. The communication
overhead of a RatFish client is kept to a minimum.

1.2 Related Work

The performance of BitTorrent has been thoroughly studied
[25,3,12,24,23]. All these works attest to the impressive performance of
BitTorrent in the presence of honest participants; however, it has been
noted [3] that the rate-based Tit-For-Tat policy of BitTorrent does not
prevent nodes from uploading less content than they should serve (in all
fairness), thereby creating an incentive for abuse of the protocol.

The behavior of BitTorrent in the presence of cheating peers was sub-
sequently investigated [19,22,20,27], revealing that cheating leads to a loss
in overall performance for honest peers.

Our rigorous model of rational file sharing is grounded in the recently
emerging field of rational cryptography, where users are assumed to only
deviate from a protocol if doing so offers them an advantage. Rational
cryptography is centered around (adapted) notions of game theory such as
computational equilibria [7]. A comprehensive line of work already exists
that develops novel protocols for important cryptographic primitives such
as rational secret sharing and rational secure multiparty computation
[8,11,10,1,15,9].

There has been already a variety of research aimed at making
BitTorrent more robust against deviations of rationally-behaving users
[30,16,23,21,28]. All these works provide stronger user incentives: they
choke problematic connections [30], grant additional bandwidth to gen-
erously uploading neighbors [16], reward leechers that continue seeding
after their download is completed [23], optimally distribute a seeder’s
bandwidth across swarms [21], and employ fair exchange protocols to
stop leechers from aborting the protocol [28] early. These modified pro-
tocols, however, are still prone to rational attacks; in particular, none of
these works reached a (Nash) equilibrium. There has been research [28]
on how to ensure that certain deviations from selfish leechers or attacks
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of malicious peers cannot succeed, e..g., no peer can assume another au-
thorized peer’s identity. However, so far there is no work which ensures
that deviating from the protocol cannot yield better results.

There is also previous work that strived to establish an equilibrium
in the context of file sharing [25]. However, this equilibrium was severely
restricted in that it was only guaranteed when rational parties were al-
lowed to only tweak the protocol parameters, but not when they could
deviate in larger ways.

More recent research such as BAR-B [2], Equicast [14], and FOX [26]
aimed at deploying incentives and punishments such that obeying the pro-
tocol is the best strategy for every rational player. The first two protocols
were shown to be strict Nash equilibria, i.e., a rational peer obtains no
benefit from unilaterally deviating from the assigned strategy. The draw-
back is that their strict equilibrium solutions limit the design: the BAR-B
system only permits a static set of users. Equicast requires the rate at
which leechers join to precisely match the rate of which they leave and
considers only restricted utility functions that do not take downloading
time into account; moreover, these protocols require nodes to waste net-
work bandwidth by sending garbage data to balance bandwidth consump-
tion. FOX [26] establishes a stable Nash equilibrium, but again it only
allows a static set of leechers; moreover, its rationality is not grounded on
incentives but on fear of retaliation such that a single Byzantine node can
cause the entire system to collapse. Somewhat orthogonal to our work are
the file streaming applications BAR-Gossip [18] and FlightPath [17]. Both
works show a Nash equilibrium (a strict one for BAR-GOSSIP, and an
approximate one for Flightpath), but rational players are only interested
in minimizing the amount of uploaded data and reducing jitter. While
such time-independent utility functions are reasonable for streaming ap-
plications, they do not apply to the more sophisticated setting of rational
file sharing, where minimizing the time to complete a download is usu-
ally the primary goal. Moreover, none of these five protocols considers
seeders as part of the rational model. We conclude by saying that like
our approach, none of these works offers resistance against Sybil attacks.
A Nash equilibrium ensures that no individual user has an incentive to
deviate. However, it conceptually does not take coalitions of users into ac-
count, rendering Sybil attacks possible in most works on rationally secure
protocols.
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1.3 Outline

Section 2 provides a bird’s eye view of the core ideas underlying how we
create incentives in file sharing. Section 3 summarizes the concepts we
use from rational cryptography and defines rational behaviors of seeders
and leechers. Section 4 presents the RatFish protocol in detail. Section 5
contains the proof of equilibrium for RatFish; i.e., it shows that users
cannot achieve a better payoff by deviating from the protocol. Section 6
discusses our experimental results. Section 7 concludes this work.

2 A Bird’s Eye View on How to Rationalize P2P

For the sake of exposition, we provide a high-level overview of the core
ideas underlying how we create incentives in file sharing. We briefly dis-
cuss which behaviors of seeders and leechers we consider rational, intu-
itively explain how to incentivize these behaviors, and finally discuss how
an equilibrium is obtained for a small example protocol. In this section,
we abstract away many important system’s details and impose several as-
sumptions to improve understanding. However, all these restrictions will
be removed in section 4 where we present our RatFish protocol in its full
generality.

In the following, we consider a single seeder S that intends to upload
a file f to leechers L1, . . . , LM . The file is split into pieces f1, . . . , fM2 .
In this exposition, we describe a simplistic protocol that proceeds in a
sequence of M + 1 monolithic rounds. We assume that the seeder can
upload exactly M pieces per round and that every leecher is able to
upload and to download at least M pieces of the file in each round.

On the Rationality of Seeding. A seeder is a player that uploads
without requesting reciprocation. Intuitively, it thus acts rationally if it
uses its upload time and upload speed as efficiently as possible; i.e., for
any fixed upload speed and time that the seeder spends within the system,
the average download time for all leechers should be as small as possible.
It is thus in the interest of the seeder to incentivize leechers to share
parts of the file amongst each other as this increases the throughput of
the whole system. As a consequence, the naive approach of uploading the
whole file to an arbitrary leecher at once cannot yield a rationally secure
protocol: This leecher may just complete the download and leave, causing
some pieces of the file to be effectively lost from the system. Moreover,
since there is only one seeder in this simplistic protocol and the number of
leechers is known and does not change, there is no need for a third party,
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i.e., a tracker. In the simplistic protocol, the seeder sends each leecher Li
in each round j the piece fj·M+i.

On the Rationality of Leechers. Leechers aim to download the file
as fast as possible while saving upload capacity. The protocol thus has
to enforce leecher participation as they will otherwise just download and
leave. We need to propose a suitable piece selection algorithm and a piece
exchange mechanism that prevents parties from cheating each other. In
our example, piece selection is easy: In each round j a leecher Li holds
a piece fj·M+i obtained from the seeder that no one else has. As the
leecher can upload M pieces per round, he can exchange with the rest
of the leechers their unique pieces. To ensure fair exchanges, leechers
first exchange the pieces in encrypted form and subsequently send the
corresponding decryption keys.

How an Equilibrium is Achieved. We conclude with some basic in-
tuition on why no rational user has an incentive to deviate from the
protocol. If all peers adhere to the protocol, the seeder will upload the
file exactly once and stay in the system for M rounds. Each of the leech-
ers will upload M2 −M pieces and complete its download after M + 1
rounds. It is easy to see that the average download time and hence the
seeder’s utility cannot be improved.

This outcome cannot be further improved for the leechers either: None
of the leechers can download the file in less than M + 1 rounds since
after round M each of them is missing at least M − 1 pieces. This holds
because the protocol treats the rounds integrally. Otherwise, we could
split a sufficiently big file intoMK pieces for someK and achieve a slightly
reduced, optimal download time of M + M2

MK using an analog algorithm.
Moreover, since the seeder only provides M pieces to each of its peers, no
leecher can obtain the full file without uploading at least M2−M pieces in
exchange for the pieces that it is missing from the seeder. This statement
holds as no leecher can cheat during the rational piece exchange protocol:
A leecher spends his upload capacity to receive an encrypted piece, hence
he has no incentive not to send the much smaller decryption key to its
partner. Thus, no party can improve its utility by deviating from the
protocol.

3 A Game-theoretic Model for File Sharing

In this section, we propose a game-theoretic model for rationally secure
file sharing. We start by reviewing central concepts from game theory and
rational cryptography.
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A Bayesian game Γ = ({Ti}ni=1, {Ai}ni=1,Pr , {ui}ni=1), also called a
game with incomplete information, consists of players 1, . . . , n. The in-
complete information is captured by the fact that the type for each player
i (i.e., its private information) is chosen externally, from a set Ti, prior to
the beginning of the game. Pr is a publicly known distribution over the
types. Each player has a set Ai of possible actions to play and individual
utility functions ui. Actions are played either simultaneously or sequen-
tially; afterwards, every player i receives a payoff that is determined by
applying its utility function ui to the vector of types received in the game,
i.e., profile types, and the actions played, i.e., action profile.

Recent work has extended the traditional notion of a game to the
requirements of cryptographic settings with their probabilistically gener-
ated actions and computationally-bounded running times. The resulting
definition – called computational game [13] – allows each player i to decide
on a probabilistic polynomial-time, in the security parameter, interactive
Turing machine Mi (short PPITM). The machine Mi is called the strategy
for player i. The output of Mi in the joint execution of these interactive
Turing machines denotes the actions played by participant i.

Definition 1 (Computational Game). Let k be the security parame-
ter and let Γ = ({Ti}ni=1, {Ai}ni=1,Pr , {ui}ni=1) be a Bayesian game. Then
Γ is a computational game if the played action Ai of each participant
i is computed by a PPITM Mi and if the utility ui of each player i is
polynomial-time computable.

Because of the probabilistic strategies, the utility functions ui now
correspond to the expected payoffs. Thus, when there is no possibility for
confusion, we overload the notation for ui. However, when the utility we
employ is not clear from the context, we denote by Ui the expected utility
for party i.

Rationally behaving players aim to maximize these payoffs. In par-
ticular, if a player knew which strategies the remaining players intend to
choose, he would hence pick the strategy that induces the most benefit
for him. As this simultaneously holds for every player, we are looking for
a so-called Nash equilibrium, i.e., a strategy vector where each player has
no incentive to deviate from, provided that the remaining strategies do
not change. Similar to the notion of a game, we consider a computational
variant of a Nash equilibrium.

Definition 2 (Computational Nash Equilibrium). Let Γ be a com-
putational game, where Γ = ({Ti}ni=1, {Ai}ni=1,Pr , {ui}ni=1) and let k be
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the security parameter. A strategy vector (or machine profile) consisting

of PPITMs
−→
M = (M1, . . . ,Mn) is a computational Nash equilibrium if for

all i and any PPITM M ′i there exists a negligible function ε such that

ui(k,M
′
i ,
−−→
M−i)− ui(k,

−→
M) ≤ ε(k)

holds.

Here ui(k,M
′
i ,
−−→
M−i) denotes the function ui applied to the setting

where every player j 6= i sticks to its designated strategy Mj and only
player i deviates by choosing the strategy M ′i . In the definition above, we

call Mi a computational best response to
−−→
M−i.

We finally define the outcome of a computational game as the tran-
script of all players’ inputs and the actions each has taken. In contrast
to strategy vectors, an outcome thus constitutes a finished game where
every player can determine its payoff directly. A utility function is thus
naturally defined on the outcome of a computational game: When applied
to a strategy vector with its probabilistic choices, it describes the vector’s
expected payoff; when applied to an outcome of the game, it describes
the exact payoff for this outcome.

3.1 A Game-theoretic Model for File Sharing Protocols

We now define the utility functions for seeders and leechers such that
these functions characterize rational behavior in a file sharing protocol.
We start by introducing common notation and some preliminaries.
Notation and Preliminaries. Following the BitTorrent convention, we
call a player in the file sharing game a peer. The peers are divided into
two groups: A seeder uploads to other peers a file f that it owns, whereas
a leecher downloads f . To mediate the communication among peers, we
thus implicitly require a trusted party called the tracker. The tracker
holds a signing key pair (pk , sk), and we assume that its IP address and
public key pk are known to all peers.

The file f consists of pieces f1, . . . , fN , each of length B bytes.
The participants in the file sharing protocol hold the values h1 =
h(f1), . . . , hN = h(fN ), where h is a publicly known hash function. When
deployed in practice, this publicly known information is distributed via a
metainfo file. The tracker is only responsible for coordinating peers that
are exchanging the same file. In order to stay close to a realistic setting, we
allow different peers to have different upload and download capacities. Ev-
ery seeder Si has its individual upload speed upsi (t, o) that depends on the
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time t and the outcome o. Note that a seeder does not download anything
except for metadata; hence we do not need to consider the download speed
of seeders. Similarly, every leecher Li has individual upload and download
speeds upli(t, o) and downli(t, o). We denote by Ti,fin(o) the total time that
leecher Li spends downloading the file. In terms of measurement units,
each of the upload and download capacities defined so far is considered
as bytes per second. Additionally, the time is measured in seconds. To
increase readability, we omit the outcome in all formulas whenever it is
clear from the context. We also introduce the sets L = {i | Li is a leecher}
and S = {i | Si is a seeder}.
Rationally-behaving Seeders. A seeder uploads parts of the file to
other peers without requesting reciprocation. Intuitively, a seeder is in-
terested in using as efficiently as possible its upload time and upload
speed. Thus for any fixed upload speed and time that the seeder spends
within the system, the average download time for all leechers should be
as small as possible. We express this preference by the following seeder’s
utility function.

Definition 3 (Seeder’s Utility Function). We say that usi is a utility
function for a seeder Si if for any two outcomes o, o′ of the game with
the same fixed upload speed upsi and fixed time T si spent by Si in the
system, it holds that ui(o) ≥ ui(o

′) if and only if 1
|L|
∑

i∈L Ti,fin(o) ≤
1
|L|
∑

i∈L Ti,fin(o′).

If Si is the first seeder in the system, we implicitly require that Si uploads
the whole file at least once. Otherwise, it is not rational to share the file
in the first place.

Rationally-behaving Leechers. Leechers aim at downloading the
shared file as fast as possible; moreover, they also try to use as little
upload capacity as possible. The relative weight of these two (typically
contradictory) goals is given by a parameter αi in the system measuring
time units per capacity units, e.g., sec2/bytes.

Definition 4 (Leecher’s Utility Function). Let αi ≥ 0 be a fixed
value. We say that uli is a utility function for leecher Li if the following
condition holds: For two outcomes o, o′, Li prefers outcome o to o′ if and
only if

αi ·
∫ Ti,fin(o)

0
upli(t, o) dt+ Ti,fin(o) ≤ αi ·

∫ Ti,fin(o′)

0
upli(t, o

′) dt+ Ti,fin(o′).
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The value αi corresponds to Li’s individual valuation for upload speed
and time; e.g., if αi = 0.5 sec2

bytes , the leecher values time twice as much as
the uploaded data.

In particular, this definition implies that a rationally-behaving leecher
prioritizes completing the download over everything else: If the leecher
does not download the file in outcome o, then Ti,fin(o) equals infinity. If
it downloads the file in some outcome o′, then Ti,fin(o′) is finite and thus
increases its payoff.

4 The RatFish Protocol

We now present the RatFish protocol. We start with the description of
the tracker and proceed with the seeders and leechers, respectively.

4.1 The Protocol of the Tracker

Similar to BitTorrent, our tracker manages all valid IP addresses in the
system and introduces new leechers to a set of neighbors. However, we
assign the tracker additional tasks: First, our tracker is responsible for
awarding each newcomer with seeding capacity equivalent to γ file pieces,
for a tunable parameter γ. In practice, γ is a small constant number just
big enough for the new leecher to participate in the system. As long as
the seeders can provide γ pieces to each newly joining leecher, this value
does not influence the existence of the Nash equilibrium.

Second, our tracker keeps track of which file pieces each peer owns
at any given moment. This bookkeeping will be crucial for incentivizing
peers to follow the RatFish protocol, for computing the deserved rewards
and for answering queries about the leechers’ availabilities. Third, the
tracker imposes a forced wait for every leecher upon connecting, thereby
preventing leechers from gaining advantages by frequently disconnecting
and rejoining the protocol. Finally, if a leecher wishes to disconnect, the
tracker provides a certificate on the most recent set of pieces the leecher
has to offer. This allows leechers to later reconnect to RatFish and use
their partially downloaded data, i.e., in order to cope with network dis-
ruptions. In the following, we describe the individual subprotocols of the
tracker in detail. A rigorous description is given in Fig. 1, Fig. 2, Fig. 3
and Fig. 4.

The Connect Protocol. The tracker assigns every new leecher Li a ran-
dom subset of size H of all leechers that are currently in the system. This
random subset corresponds to Li’s local neighborhood. The tracker sends
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this neighborhood information to Li after T seconds. Once the forced wait
is over, the leecher may start downloading γ free pieces from seeders. The
rationale behind this forced wait is that granting newly joined leechers
free pieces creates incentives for whitewashing, i.e., frequent disconnecting
and rejoining. Intuitively, the forced wait is a simple defense against such
a behavior. From a rational perspective, if a leecher joins the system only
once, the induced small delay will not be hurtful; however, whitewashing
by frequently rejoining will cause an accumulated delay that will result
in a smaller payoff. The forced wait is achieved by having the tracker sign
the leecher’s connecting time and IP address. Such signed timestamps
are exchanged between neighboors and are used to determine whether
leechers are allowed to start uploading to eachother. Neighbors use the
timestamps to determine whether they are allowed to start uploading to
each other. Thus as long as a user’s IP address does not change, it can
idle and become active again without being penalized by a forced wait,
since the user’s old signature on its IP address and time is still valid. This
is detailed in Fig. 1.

TrackerConnect(peer)
If peer is a seeder Si, receive the seeder’s upload speed upsi and store it. Else, do:

– • If a message PIECES(a1, . . . , aN , idr′′ , sig
′′
i ) is received from Li, verify that

sig ′′i is a valid signature on (a1, . . . , aN , idr′′) for verification key pk and
that p = (a1, . . . , aN , idr′′) was previously stored. Each correct am, with
m ∈ {1, . . . , N}, is the binary representation of availability of piece j. If
all above checks succeed, remove p from storage and set Am

i := am, for
all m ∈ {1, . . . , N} and select a random id r.

• Otherwise, if a message PIECES(0, . . . , 0) is received, select a random id r.
– As soon as the current time Tc is larger than T+T i

p, where T i
p is the connecting

time of the leecher, i.e., Tc is the time after the forced wait of T seconds, send
Li a random subset of size H of current leechers’ IP addresses, corresponding
to Li’s neighborhood. Moreover, compute Ssk(i, T i

p), yielding a signature sig i.
Send TIME(T i

p, id r, sig i) to Li.

Fig. 1. The protocol of the tracker with procedure Connect.

The RatFish tracker has a mechanism for proving piece availability
of rejoining leechers: it chooses a random rejoin ID id r and signs it to-
gether with the departing leecher’s piece availability. The tracker stores
the availability status for leecher Li and each piece m in the variable Aim.
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The algorithms of the trackers ensure that Aim = 1 if Li has m-th piece of
file f and Aim = 0 otherwise. The leecher uses id r to prove its piece avail-
ability to the tracker upon rejoining the system. The rejoining id r is then
deleted from the tracker’s memory preventing leechers from reconnecting
twice using the same reconnect id r. This is detailed in Fig. 1, Fig. 2 and
Fig. 3.

CheckExchange
Do the following steps unless one of their checks fails; abort in this case: (Below
it is given only the protocol between the tracker and Li. By symmetry, we can
obtain the protocol between the tracker and Lj , where Lj is the exchange partner
of Li for the exchange described below.)

– Upon receiving a message HAS(j, y) from a leecher Li, send back 1 if Ay
j = 1,

and 0 otherwise.
– Upon receiving a message EXCHANGED(j, y, x) from a leecher Li, indicat-

ing that pieces fx and fy have been exchanged with Lj , send the message
ACKNOWLEDGE(i, x, y) to Lj .

– Upon subsequently receiving the message OK(i, x, y) from Lj , set Xi := Xi+1
and Ay

i := 1, and send the message OK(j, y, x) to Li. Xi denotes the number
of acknowledged exchanges of leecher Li in the current round of T seconds.
Xi is reset to 0 and computed anew each round.

Fig. 2. The protocol of the tracker with procedure Check Exchange.

PeerLeave(i)

– Compute sig ′i := Ssk (A1
i , . . . , A

N
i , id r). Store (A1

i , . . . , A
N
i , id r).

– Send the message LEAVE(id r, sig
′
i) to Li and disconnect from Li.

Fig. 3. The protocol of the tracker with procedure PeerLeave.

The Reward Protocol. The reward system constitutes the crucial part
of RatFish. The underlying idea is to reward only leechers who are ex-
changing. We only allow one exception to this rule: The leechers that
have just connected to the tracker in the previous round are also entitled
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to a reward of γ pieces in the current round. Thus the seeders do not
automatically upload to their neighborhood as in BitTorrent; rather they
are told by the tracker whom to upload to.

To determine whether an exchange between Li and Lj has indeed
taken place, the tracker asks both Li and Lj to acknowledge the ex-
change. If the acknowledgements succeed, the tracker internally increases
the variables Xi and Xj , which corresponds to the number of file piece
exchanges of Li and Lj , respectively. The tracker moreover stores which
pieces of the file the leechers now additionally know. This is detailed in
Fig. 4. Details on the participation of the tracker in the exchange proto-
col are given in Sect. 4.3, where the rational exchange of pieces between
leechers is explained.

RewardLeechers (called every T seconds, i.e., at the start of a new round)

– Award γ pieces to every leecher that joined in the previous round. Let prev
be the number of these leechers.

– Compute for every leecher Li its deserved percentage of seeders’ upload speed:

ri := min

{
Xi∑

k∈LXk
,

1

2

}
– Let βi := ri ·

(∑
k∈S upsk·T

B
− γ · prev

)
. For every i, assign a set of seeders to

jointly offer βi pieces to Li such that the individual upload capacity of the
seeders is respected, see Sect. 4.1. Send to every seeder the corresponding set
of leechers and the number of pieces that these leechers should download from
them.

– Set Ay
i := 1 when a seeder informs the tracker that fy was downloaded by Li.

Reset Xi := 0 for all i.

Fig. 4. The protocol of the tracker with procedure RewardLeechers.

Every round, i.e., after T seconds, the actual rewards are given out.
The tracker distributes the seeders’ upstream proportional to the number
of exchanges every leecher made in the previous round. Hence, the more
exchanges a leecher completed in a certain round, the larger the reward
computed for him by the tracker, and hence the more download capacity
the leecher receives from the seeders. At the beginning of a round, once
the reward deserved by each leecher is computed, the old values Xi are
reset to 0 and computed anew, according to the exchanges performed in
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Seeders' Capacity

L1 L2 L3 L4

Number of
Exchanges

Deserved Reward

L1 L2 L3 L4

S1 S2 S3 S4

Fig. 5. Schematic distribution of the rewards

the current round. A graphical illustration of the reward protocol is given
in Fig. 5.

More precisely, Fig. 5 depicts a system with a tracker, four leechers and
four seeders. During the latest complete round of exchanges, leecher L1

has performed a number of 8 exchanges and leechers L2, L3 and L4 have
performed a number of 4,10 and 6 exchanges, respectively. In terms of
existing notation, this can simply be written as X1 = 8, X2 = 4, X3 = 10
and X4 = 6. This means that for example L1 has performed 28, 57% of
all exchanges during the latest complete round. Taking into account that
there are no new leechers currently connecting to the system, according to
Fig. 5, at the beginning of next round, L1 will receive for free 28, 57% of all
the seeding capacity currently available in the system. Given the existing
upload capacity of the seeders, this effectively implies that the tracker
informs seeders S1 and S2 that they should upload 2 and respectively 6
file pieces for free to L1. It is assumed that S1 and S2 have the complete
file, so L1 can choose which pieces he wants to download for free. The
same reward distribution algorithm applies for the rest of the leechers
and seeders.

4.2 The Protocol of the Seeder

Upon connecting, the seeder informs the tracker about the upload speed it
is going to offer. The tracker adds the seeder’s speed to the amount of free
available upload capacity. As the tracker performs all the computations
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Seedingj
Upon connecting, the seeder sends its upload speed upsj to the tracker. Addition-
ally, in each round:

– Receive from the tracker a set M of leechers and the corresponding number
of pieces ωi that every leecher Li ∈M should receive.

– Inform every leecher Li ∈ M how many pieces ωi they are allowed to down-
load.

– When a leecher Li ∈ M requests at most ωi pieces by Li (potentially incre-
mentally in this round, i.e., it may ask for a few pieces first), send these pieces
to Li and send a message to the tracker that these pieces have been uploaded
to Li. Requests by leechers Lj 6∈M are ignored.

Fig. 6. The protocol of the seeder Sj .

for determining the rewards, the seeder simply proceeds by uploading the
number of file pieces to the leechers as instructed by the tracker. To keep
the tracker’s information about individual leechers up-to-date, the seeder
informs the tracker whenever it uploads a piece to a leecher. A rigorous
description is given in Fig. 6.

4.3 The Protocol of the Leecher

From a rational perspective, the leecher protocol is the most difficult to
get right: while the tracker is honest and seeders partially altruistic, a
leecher tries to bypass the incentives for uploading wherever reasonable.
Intuitively, the exchange protocol looks like this: Leechers use the signed
messages from the tracker to verify each other’s join times. Also, when two
leechers exchange data, the tracker participates in this exchange: Before
two leechers start an exchange, they verify with the tracker that the other
party holds the desired piece. If this check succeeds, the encryptions of the
pieces agreed upon are exchanged. Before they also send the key to each
other to decrypt these messages, both leechers acknowledge the exchange
to each other so that they get a higher reward.

The Connect Protocol. When a leecher connects to the tracker for
the first time, it requests a local neighborhood. If the leecher rejoins,
it additionally proves to the tracker that it already owns some pieces
of the file by sending the signature received from the tracker at its last
disconnect. When connecting to a seeder, the leecher requests pieces until
its seeder’s reward is depleted.
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LeecherConnecti(party)
If party is the tracker, then:

1. If Li rejoins the protocol, send PIECES(a1, . . . , aN , id r, sig
′
i) to the tracker

where am = 1 if Li owns the m-th piece of the file, id r is the rejoin ID and
sig′i is the signature received when disconnecting from the system last time.
If Li is a new leecher, it sends PIECES(0, . . . , 0).

2. Receive TIME(T i
p, id r, sigi) from the tracker – indicating the signed connecting

time and ID, as well as a set of neighbors’ IP addresses. Connect to them.

If party is a leecher Lj , do (abort if a check fails):

– Send the message MYTIME(T i
p, sigi) to Lj .

– Receive the message MYTIME(T j
p , sigj) from Lj . Verify that sigj is a valid

signature on (j, T j
p ) for pk and that Tc > T j

p + T holds.
– Send AVAILABILITY(a1, . . . , aN ) to Lj where am = 1 if Li owns fm.
– Receive the message AVAILABILITY(a′1, . . . , a

′
N ) from Lj .

Fig. 7. The Connect protocol for leecher Li.

Upon contacting another leecher, it waits until both forced waits are
over. Afterwards, both leechers exchange information such that they know
which pieces they can request from each other. To keep track of the avail-
ability in its neighborhood, the leecher observes the messages that leechers
broadcast to their local neighborhood, indicating which pieces of the file
they have just downloaded. A detailed description is given in Fig. 7.

The Piece Exchange. The piece exchange protocol run between
two leechers uses encryptions to ensure that no leecher can get a piece
without completing the exchange phase. From a practical perspective,
it is important to note that the key sizes are small compared to a file
piece size. Thus the communication and storage overhead induced by the
keys and cryptographic operations is kept manageable. Leechers addition-
ally query the tracker to ensure that their exchange partners own a file
piece they need. Moreover, leechers want their exchanges to be counted
and rewarded. Thus, after the encryptions are exchanged, each leecher
prompts the tracker to ask the other leecher for an acknowledgement. In-
tuitively, there is no incentive to deviate in this step as they still lack the
key from the other party. Once the acknowledgement step is successfully
completed, both leechers exchange the keys. If a leecher deviates from
any of these steps, it is blacklisted by the other leecher. We stress that
blacklisting is not required for the security proof; it solely constitutes a
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LeecherAwarded
Whenever Li is informed by a seeder Sj that it can download ωi pieces, request
up to ωi pieces from Sj (potentially incrementally in this round, i.e., Li may ask
for a few pieces first), and download these pieces.

Exchangei(fx, j, y)
If any of the following checks fails, blacklist Lj and abort.

– Send the message HAS(j, y) to the tracker and wait for a positive answer
represented by a bit b = 1.

– Choose a random key kj,x and compute cj,x ← E(kj,x, fx).
– Send cj,x to Lj and wait for cy from Lj .
– Perform the following two steps in parallel and proceed once both steps are

completed:
• Send EXCHANGED(j, x, y) to the tracker and wait for OK(j, x, y) as re-

sponse
• If receiving ACKNOWLEDGE(j, y, x) from the tracker, reply with

OK(j, y, x).
– Send the key kj,x to Lj .
– Upon receiving ky from Lj , retrieve f ′y ← D(ky, cy) and verify hy = h(f ′y).
– Broadcast to the local neighborhood that you now own the piece y.

Fig. 8. The Award and Exchange protocols for leecher Li.
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common technique in this setting to deal with malicious parties. A de-
tailed description is given in Fig. 8. Fair exchange protocols have been
used in prior work to incentivize peers to fairly exchange information
[28]. A fair exchange intuitively means that either both parties obtain
what they want or none of them obtains something. In contrast to [28],
however, RatFish needs to neither periodically renew cryptographic keys,
nor implement a non-repudiable complaint mechanism to allow parties
to prove possible misbehaviors; instead it relies on short acknowledgment
messages for each recipient and on collecting these messages to monitor
the file completion for the participants. In fact, RatFish implements a
weaker version of fair exchange, which is called rational exchange [5,29].
Intuitively, an exchange protocol is rational if the self-interested partici-
pating parties do not have an incentive to deviate. A schematic overview
of the core part of the piece exchange protocol is provided in Fig. 9.

cy

k
fy ← D(k, cy)

Leecher Li

Acknowledge

OK

OK

Tracker

Lj

Exchanged y
for x with j

cx := E(kj,x, fx)kj,x ← Un

Ay
i := 1
Xi++

kj,x

Fig. 9. The core part of piece exchange protocol between two leechers

5 Equilibrium Proof

In this section we prove that RatFish yields a computational Nash equi-
librium; i.e., no leecher or seeder has an incentive to deviate from the
protocol.

5.1 Underlying Assumptions

Recall that RatFish proceeds in rounds of T seconds. For simplicity, we as-
sume that peers can join or leave only at the beginning or end of a round.
This assumption can be easily enforced by letting the tracker force joining
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peers to wait until the first round after at least T seconds pass. We also
assume that it is impossible to forge identities on the IP layer (e.g., by
using appropriate authentication mechanisms). Additionally, at least one
seeder is present in the beginning to bootstrap the system and that the
overall seeding capacity does not exceed twice the overall upload capacity
of the leechers; this bound on the seeding capacity prevents the leechers
from free riding, which is easy given enough seeding power. We moreover
assume that each leecher’s dedicated upload speed upli is fully exhausted
by other peers. This is equivalent to saying that there are enough leechers
in the system such that each of them has enough neighbors for completely
exhausting his upload capacity. These assumptions seem reasonable as the
average seeders/leechers ratio is often close to 1:1 [4], and optimized cen-
tralized coordinators are capable of distributing upload capacities among
different swarms [21]. Moreover, we assume that there exists a value δ
such that for every leecher Li the download speed downli is at most δ
times larger than upli. This assumption is not restrictive in the sense that
we do not need to make any assumption regarding the magnitude of δ.
Additionally, we assume keys do not contribute to the uploaded amount,
since in practice, the size of the short keys is dominated by the size of
the encrypted file piece. Moreover, we assume that each peer is only able
to maintain one identity in the system. This in particular excludes Sybil
attacks, in which multiple distinct identities are created by the same peer
to subvert the reputation system of a P2P network. This assumption does
not come as a surprise, since the Nash equilibrium conceptually does not
defend against coalitions, rendering Sybil attacks possible in most works
on rationally secure protocols. Regarding the cryptographic primitives, we
assume that the signature scheme used by the tracker is secure against
existential forgery under chosen-message attack and that the encryption
scheme is semantically secure under chosen-plaintext attack. Finally, we
assume that the encryption scheme is length preserving.

5.2 Proving the Nash Equilibrium

We finally show that RatFish constitutes a Nash equilibrium.
We first prove that a leecher deviating from the protocol cannot in-

crease its utility by more than at most a negligible value, provided that
no other party deviates. To show this, we determine two sets of possi-
ble cheating actions for leechers, which we call independent actions and
correlated actions. Intuitively, the independent cheating actions can be
individually replaced by honest actions without decreasing the utility, in-
dependent of the remaining parts of the deviating strategy. Correlated
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cheating actions are sensitive to the details of the deviating strategy: we
can only replace a correlated cheating action by a corresponding honest
action without decreasing the utility if all deviating actions that jointly
influence the leecher’s utility are simultaneously replaced in one round.
We show that the only correlated cheating action is the refusal of ac-
knowledgement for an exchange.

Our proof technique starts with an arbitrary deviating strategy M ′i
and provides a proof in two steps: In the first step, we replace all indepen-
dent cheating actions step-by-step; here, a step within a strategy denotes
the computation performed within the strategy between two consecutive
outputs. Slightly more formally, let Mi be the honest strategy for leecher
Li, M

′
i a deviating strategy, and {H∗ack ,j}j the set of all strategies that

in every step are either honest or do not acknowledge an exchange. Then
our technique takes as input M ′i and yields a so-called semi-honest strat-
egy M∗i ∈ {H∗ack ,j}j that for every input and random tape outputs in
every step the same action as M ′i whenever possible, and plays honest
otherwise. We then show that the semi-honest strategy M∗i cannot yield
a worse payoff than M ′i . The proof is based on the novel concept of hybrid
concatenation of strategies.

We start by proving the following:

Lemma 1 (No Independent Cheating Actions of Leechers). Let
γ be the number of uploaded pieces a newly joined leecher is awarded. Let
M ′i be a deviating strategy of Li and let M∗i be the semi-rational strategy
as defined above. Then for αi ∈ [0, T

δ·γ·B ], we have

ui(k,M
′
i ,M−i)− ui(k,M∗i ,M−i) ≤ ε(k),

for some negligible function ε.

Proof. We consider two main cases, depending on the number of steps of
M ′i . If M ′i does not terminate in a finite number of steps, then the time
Ti,fin(o) the leecher Li has to spend in the system is infinite. Thus any
strategy, including M∗i , cannot give a worse payoff. If M ′i runs in N ∈ N
steps, then we construct N hybrid concatenations and prove that for all
n = 0, . . . , N − 1, there exist a negligible function εni such that it holds

ui(k,M
′
i‖snM∗i ,M−i) ≤ ui(k,M ′i‖sn+1M

∗
i ,M−i) + εni (k), (1)

where by M ′i‖snM∗i we denote the strategy M ′i with the last n steps
replaced by last n steps of the rational strategy M∗i .
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In order to show this, we use induction on the steps of strategy M ′i .
As there is no difference between the base case and the inductive step,
we present below only the later. We examine all possible independent
cheating actions which could have been performed by M ′i at step n + 1.
Intuitively, such independent cheating actions can be grouped into two
main categories: related to the messages sent or related to the messages
received. When a message is sent, there are three possible scenarios: send-
ing no message, sending the correct message or sending a malformed mes-
sage. When a message is received, there are also three possible scenarios:
receiving no message, receiving the message and using it correctly for nec-
essary computations or receiving the message and using it in a different
way than described by the protocol.

In the following, we will concentrate on the case of messages which are
sent. For the messages received, the proof follows a very similar approach.

It is clear that if at step n + 1 the action performed is the action
prescribed by M∗i , then we have:

ui(k,M
′
i‖snM∗i ,M−i) = ui(k,M

′
i‖sn+1M

∗
i ,M−i). (2)

Below we give a detailed case distinction for the situation when the
action is either to send no message or to send a malformed message.

Case 1: M ′i does not announce the correct timestamp that it received
from the tracker.

Because Li is required to provide a valid signature from the tracker
on the timestamp, this deviation will be undetected only with a negligible
probability, corresponding to the probability of constructing a selective
forgery against the signature scheme. If Li is caught cheating, then the
other peers do not let Li connect to them. Therefore, we obtain that (1)
holds.

Case 2: M ′i does not announce any timestamp that it received from
the tracker.

As the other leechers follow the protocol as prescribed, they will not
connect to a neighbor which did not announce his timestamp received
from the tracker. Thus, in this case, leecher Li cannot complete the file
download and (1) trivially holds.

Case 3: M ′i connects to leechers before the penalty wait of T seconds
is over.

Other leechers will not reply to Li unless it provides a valid signature
on a timestamp T ip < Tc − T . Since an invalid signature can be produced
only with negligible probability, we have that (1) holds.
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Case 4: M ′i connects to leechers after the penalty wait of T seconds
is over.

The more time leecher Li waits to connect to others after his penalty
wait is over, the more his utility decreases as compared to the case when
he follows the prescribed strategy. So (1) is true.

Case 5: M ′i does not connect to leechers even after the penalty wait
of T seconds is over.

If Li does not connect to other leechers in his neighborhood or Li does
not reply to their connect requests, then Li will not be able to download
the file at all or his upload capacity will not be fully utilized as it is
the case when he follows the protocol. In both situations, his benefit by
performing this deviation decreases compared to the prescribed run of
the protocol. More formally, (1) holds.

Case 6: M ′i accepts connections from leechers whose penalty wait is
not over.

Because those leechers will not connect to Li, this does not change
the outcome of the game. Therefore, (1) trivially holds.

Case 7: M ′i does not accept connections from at least one leecher in
its own neighborhood, even though leecher’s penalty wait is over.

Such a deviation would slow down Li as his upload capacity would
not be fully exhausted. Thus, we have (1).

Case 8: M ′i announces to hold more pieces than it actually does.

There are two possible cases. Either Li tries to convince the tracker
upon connecting that it holds more pieces, or it has sent wrong “HAVE x”
messages. In the first case, Li has to provide a valid signature from the
tracker on wrong data, which is possible only with negligible probability.
In the second case, this will not affect anything until some other leecher
requests a piece fx from Li that it does not own yet. Then, in the exchange
step, the tracker will send the other leecher the message that Li does not
have fx. The exchange will be canceled and this will not allow Li to
increase his utility, thus fulfilling (1).

Case 9: M ′i announces to hold fewer pieces than it actually does.

This does not increase its utility, because the amount of pieces is used
by other leechers to determine whether they can exchange with Li. Fewer
parties are willing to exchange with Li if it claims to have fewer pieces.
This case also fulfills (1).

Case 10: M ′i does not make any announcement on the pieces it has.
Such a deviation from Li would only slow it down as the other leechers
would not connect to Li for performing new exchanges: Li would poten-
tially have no interesting pieces to offer. Hence, (1) holds.
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Case 11: When receiving an encrypted piece from a neighbor, M ′i does
not send anything as a reply to the corresponding leecher.

In this case, the utility of Li would increase only if the leecher is able
to guess the file piece from the encrypted message. Since the encryption
scheme is semantically secure against chosen plaintext attack, the de-
viating leecher would succeed only with negligible probability so (1) is
fulfilled.

Case 12: In the exchange phase, M ′i sends a wrong encryption upon
being requested to exchange piece fx.

Assume Li does not hold piece fx. Because other leechers only request
what it announced with “HAVE x”, this means it wrongly announced that
it has too many pieces. This case is already discussed above. Therefore,
Li has the piece the other party requested and the other party expects a
message of the length |Ek(fx)|. But then, Li can also send the encryption
of the requested piece, because sending a wrong encryption still requires
it to upload exactly as much as uploading the right encryption. Thus, this
deviation leaves Li with (1).

Case 13: M ′i requests an invalid reward from the tracker.

By assumption, M ′i cannot send a message under the identity of an-
other player (we assumed authentic channels). However, its request will
not be acknowledged by any other party, as they are sticking to the pro-
tocol. Therefore, this does not increase its utility and (1) holds.

Case 14: M ′i makes no request for reward, even though he is entitled
to such a reward. By performing this deviation, the overall download time
for Li will increase, thus trivially (1) holds.

Case 15: In the exchange phase, M ′i does not send the key in the end.

If the exchange reached the keys sending phase, since Li’s partner fol-
lows the protocol, it means that the two parties have the right piece for
one another and they have already exchanged encryptions. By assump-
tion, the key size does not increase the uploaded amount so if Li sends
the key it will not reduce his utility and (1) still holds.

Case 16: M ′i reconnects after r rounds.

Let o′ be the outcome when Li follows the reconnecting strategy
M ′i‖snM∗i and let o be the outcome when Li follows M ′i‖sn+1M

∗
i . Since

the strategies of all other parties do not change and a leecher can recon-
nect only at the beginning of a new round, we have the following relation:
Ti,fin(o′) = Ti,fin(o)+τ . The value τ is the additional time Li spends in the
system since for at least one round, Li did not interact with any leecher.
In a similar way, if Ui is the overall amount of uploaded data for outcome
o, then the amount of uploaded data in o′ is at most Ui − γ · B, where

23



γ ·B is the number of free awarded bytes for a (re-)joining leecher. As a
reminder, B represents the bytes size of a file piece.

We observe that in outcome o′, after the rejoin, the leecher is missing
at least T · upli bytes compared to o. By assumption we know that the
leecher never has a download speed larger than δ · upli. Hence, the time τ
the leecher needs to additionally stay in the system is given by how fast
he can download the missing data. This is at least:

τ ≥ T · upli
δ · upli

=
T

δ
.

Proving (1) is equivalent to proving

Ti,fin(o) + αi · Ui ≤ Ti,fin(o) + τ + αi · (Ui − γB).

This holds true if αi ≤ τ
γ·B . The last inequality holds since by assumption

αi ∈ [0, T
δ·γ·B ] and τ ≥ T

δ .

Case 17: M ′i sends incompliant messages.

Because such messages are ignored by other parties, this does not
affect the utility, and (1) is fulfilled.

To summarize, we obtain that (1) holds for all n ∈ {0, . . . , N −1}. By
summating al these equations and taking into account that N is polyno-
mial in k and also that the sum of polynomially many negligible functions
is still negligible, we infer that there exists a negligible function ε′ such
that:

ui(k,M
′
i ,M−i) = ui(k,M

′
i‖s0M∗i ,M−i)

≤ ui(k,M ′i‖sNM∗i ,M−i) + ε′(k)

= ui(k,M
∗
i ,M−i) + ε′(k).

This concludes our proof.

Thus far, we have transformed a deviating strategy M ′i into a semi-
rational strategy M∗i that uses only correlated cheating actions and does
not decrease the payoff. In the second step, we replace all correlated cheat-
ing actions round-by-round until we reach the honest strategy Mi. We
use a hybrid argument based on the hybrid concatenation of strategies to
show that the honest strategy outperforms the semi-rational strategy for
leechers.
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Lemma 2 (No Correlated Cheating Actions of Leechers). Let Mi

be the honest strategy for Li, i.e., following the RatFish protocol and let
M∗i be the semi-rational strategy as defined above. Then

ui(k,M
∗
i ,M−i)− ui(k,Mi,M−i) ≤ ε(k),

holds for some negligible function ε.

Proof. We again use the hybrid concatenation of strategies. However,
now we need to replace correlated deviations with honest actions; hence
the hybrids are constructed over rounds, and the notation A‖rnB denotes
that the last n rounds of strategy A are replaced by the last n rounds
of strategy B. The proof starts with the last round and replaces the
deviating strategy with the RatFish protocol round-by-round. We show
by induction that each such replacement will not decrease the utility, i.e.,
for every n ∈ {1, . . . , R}, where R is the number of rounds for strategy
M∗i , there exists a negligible function εni such that:

ui(k,M
∗
i ‖rn−1Mi,M−i) ≤ ui(k,M∗i ‖rnMi,M−i) + εni (k). (3)

As a consequence, the payoff for the honest Mi cannot be exceeded.
For the base step, we examine the initial hybrid where no devia-

tion has been removed. Clearly, it holds that ui(k,M
∗
i ‖r0Mi,M−i) =

ui(k,M
∗
i ,M−i). For the inductive step, we have the induction hypothesis

ui(k,M
∗
i ‖rn−1Mi,M−i) ≤ ui(k,M∗i ‖rnMi,M−i) + εni (k),

for some negligible function εni .
Now we consider the n-th hybrid: the last n rounds are all played

according to Mi and all previous rounds are played according to M∗i .
If we compare this hybrid with the n + 1st hybrid, the only difference
is that the possibly deviating n + 1-st round is replaced by an honest
one. By definition, in round n + 1, the strategy M∗i says that Li does
not acknowledge Z ≥ 0 correct exchanges, but his exchange partners
acknowledge all exchanges made so far. If Z = 0, then M∗i played in
round n the honest strategy Mi, thus:

ui(k,M
∗
i ‖rnMi,M−i) = ui(k,M

∗
i ‖rn+1Mi,M−i).

For the case where Z > 0, we investigate the properties of the util-
ity function. To reach the phase of acknowledging the other’s exchange,
Li first needs to upload the encrypted data. Therefore, the amount of
uploaded data stays the same both in the deviating strategy and in the
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honest strategy. The only possibility to increase the utility is then to
download more data in the same time span. In the following, we show
this is not possible.

With Mi, the leecher’s amount of downloaded data corresponding to
one round of T seconds equals

B ·Xi + T · (
∑
k∈S

upsk) ·min

{
Xi∑
k∈LXk

,
1

2

}
.

Note that in the second summand, we have the reward gained in
the next round, because the tracker rewards exchanges always one round
later. Furthermore, the tracker caps the reward to at most one half of
the total seeders’ upload, according to the protocol in Fig. 2. However,
for a non-deviating player, it is impossible to obtain more than half of

the overall exchanges, thus we have min
{

Xi∑
k∈LXk

, 1
2

}
= Xi∑

k∈LXk
. Using

M∗i in round n + 1, the leecher gains Z · B bytes less from the cheated
exchanges, but he may obtain higher reward from the seeders.

This sums up to at most

B · (Xi − Z) + T · (
∑
k∈S

upsk) ·min

{
Xi

(
∑

k∈LXk)− Z
,
1

2

}
.

Indeed, the intuition for the first summand is that when leecher Li
does not acknowledge Z exchanges in a round, there is only a negligi-
ble probability that Li will obtain the corresponding decryption keys for
these exchanges. This holds as Li has only honest exchange partners and
they respond to a non-acknowledge of a correct exchange by blacklist-
ing the deviating Li and also by interrupting communication with Li.
The second summand gives the amount of upload reward that Li receives
from the seeders in a round of T seconds when he does not acknowledge
Z exchanges. The value Xi

(
∑

k∈LXk)−Z gives the ratio of acknowledged ex-

changes for Li to the total number of acknowledged exchanges. Therefore,
his utility will not increase if

Z ·B + T · (
∑
k

upsk)
Xi∑
kXk

≥ T · (
∑
k

upsk) ·min

{
Xi

(
∑

kXk)− Z
,
1

2

}
.

(4)

To simplify the inequality more, we can express the number of ex-
changes Xk as the ratio of capacity used for uploading in one correct
round divided by the size of a file piece. Formally, we have

Xk =
T

B
· uplk, (5)
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for all k ∈ L.
Indeed, due to our assumption, for each leecher Lk there are enough

neighbors in the system that can exhaust Lk’s upload capacity. Due to
the fact that values Xk, with k ∈ {1, . . . , n}, are defined for the case when
everybody is honest, and following the protocol implies exchanging with
the neighbors until the full upload capacity is exhausted, we have that
(5) holds.

We are now ready to distinguish two cases for the current proof. In
the first case, the deviating leecher increases the benefit from the seeders,
but stays below 1

2 of the overall seeding capacity. In the second case, the
reward is capped by the tracker at exactly half of this capacity. Note that
those computations below rely on the assumption that seeding power is
at most twice as large as leeching power.

Case 1: min{ Xi
(
∑

kXk)−Z ,
1
2} = Xi

(
∑

kXk)−Z . Then (4) evaluates to

Z ·B · (∑kXk) · ((
∑

kXk)− Z)

T · (∑k up
s
k)

≥ Z ·Xi

⇔ (
∑

k up
l
k)

(
∑

k up
s
k)︸ ︷︷ ︸

≥ 1
2

((
∑
k

Xk)− Z) ≥ Xi.

The last inequality holds as we are in case 1.
Case 2: min{ Xi

(
∑

kXk)−Z ,
1
2} = 1

2 , then (4) evaluates to

Z ·B + T · (
∑
k

upsk)
Xi∑
kXk

≥ T

2
(
∑
k

upsk)

⇔
∑

k up
l
k∑

k up
s
k︸ ︷︷ ︸

≥ 1
2

Z ≥ 1

2
(
∑
k

Xk)−Xi.

The above inequality is fulfilled as we are in case 2. It follows that

ui(k,M
∗
i ‖rnMi,M−i) ≤ ui(k,M∗i ‖rn+1Mi,M−i) + εn+1

i (k)

and this also concludes our induction proof. By summing up all the in-
equalities described by (3), where n ∈ {1, . . . , R} and taking into account
that R is the number of rounds of a polynomially bounded strategy, we
obtain there exists a negligible function ε′ such that

ui(k,M
∗
i ,M−i) = ui(k,M

∗
i ‖r0Mi,M−i)

≤ ui(k,M∗i ‖rRM∗i ,M−i) + ε′(k)

= ui(k,M ) + ε′(k).

27



This concludes our proof.

Showing that seeders have no incentive to deviate from the protocol is
considerably easier than the corresponding statement for leechers, since
seeders are considered partially altruistic. We show that as long as all
leechers follow the protocol, a seeder cannot run a deviating strategy to
improve its payoff.

Lemma 3 (No Seeder Deviation). There is no deviating strategy for
any seeder that increases its payoff if all other parties follow the RatFish
protocol.

Proof. We prove that no matter how a seeder distributes its upload speed
over the leechers, their average time to completion does not decrease. In
particular, it implies the seeder’s utility does not increase if its upload
speed initially announced to the tracker decreases.

The statement holds as all other participants stick to their strategy: a
seeder may deviate only by assigning leechers different weights than those
received from the tracker. Let r be the last round in which the seeder Sj
deviates and let upsi be its full upload speed. Let ω1, . . . , ωn be the weights
on the upload speed to all leechers given by the tracker and let φ1, . . . , φn
be some other arbitrary weights. It holds that

∑n
k=1 φk ≤

∑n
k=1 ωk = 1

and that we have ωk, φk ≥ 0 for all k. We obtain the following bound for
the average download speed of all leechers in round r:

1

|L|
∑
k∈L

(downlk + ωk · upsi ) =
1

|L|

(∑
k∈L

(downlk) + upsi

)

≤ 1

|L|
∑
k∈L

(downlk + φk · upsi ).

Thus, if a seeder deviates from RatFish, it causes a decrease in the average
download speed in round r for the leechers. Consequently, the average
completion time for a leecher does increase when the seeder deviates, i.e.,
the seeder has no incentive to deviate from RatFish.

We finally combine the results that neither leechers nor seeders have an
incentive to deviate (the tracker is honest by assumption) to establish our
main result.

Theorem 1 (Computational Nash Equilibrium). The RatFish pro-
tocol constitutes a computational Nash equilibrium if αi ∈ [0, T

δ·γ·B ] for all
i ∈ L.
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Proof. We show that for every participant in the protocol, a deviation
increases the utility by at most a negligible value. Assume leecher Li
deviates from the strategy Mi described by the protocol using M ′i . Then,
by Lemma 1, we have that there exists a sem-rational strategy M∗i ∈
{H∗ack ,j}j such that for some negligible function ε1 it holds

ui(k,M
′
i ,M−i)− ui(k,M∗i ,M−i) ≤ ε1(k).

However, by Lemma 2, we have that for all M∗i and for some negligible
function ε2,

ui(k,M
∗
i ,M−i)− ui(k,M ) ≤ ε2(k).

Therefore, we obtain that for all deviating strategies M ′i there exists a
negligible function ε such that

ui(k,M
′
i ,M−i)− ui(k,M ) ≤ ε(k).

Lemma 3 gives us an analogous result for seeders. Therefore, RatFish
gives a computational Nash equilibrium.

After we have shown how to derive by hand the rather long and in-
tricate proof that RatFish represents a Nash equilibrium, an important
observation is due. First, it is not clear at first glance that our case anal-
ysis technique is exhaustive. Unfortunately, since the protocol is rather
complex in terms of number of different messages which are sent and re-
ceived and also in terms of the side effects that they may incur, it is not
clear how to perform an exhaustive case analysis by hand. Second, using
a tool or a method off-the-shelf that performs an automatic verification
of the game theoretic property, namely computational Nash equilibrium,
for a protocol that involves cryptographic primitives and assumptions,
has not been, to the best of our knowledge, attempted yet. Thus, in the
current work we perform an analysis using only known or adapted proofs
techniques and we leave the automated analysis for future work.

6 Implementation and Performance Evaluation

In this section, we describe the implementation of RatFish and we ex-
perimentally evaluate its performance. We focus on the implementation
and performance evaluation of the tracker, since the tracker took on sev-
eral additional responsibilities and is now involved in every exchange. In
contrast to the tracker, seeders and leechers are largely unchanged when
compared to BitTorrent: the exchange of encrypted pieces constitutes a
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small computational overhead, but leaves the network complexity that
usually constitutes the performance bottleneck of P2P protocols essen-
tially unchanged.

6.1 Implementation

The RatFish tracker was implemented using about 5000 lines of code in
Java, thus ensuring compatibility with common operating systems. The
implementation is designed to work with both UDP and TCP.

The messages sent in the protocol start with the protocol version
number and message ID (which determines the length of the message),
followed by the torrent ID, and additional information that depends on
the type of message.

Afterwards, a task is created that processes the received message.
This task is given to the threadpool executor – the main part of the
RatFish tracker that also ensures parallelization. The threadpool sustains
eight parallel threads and assigns new tasks to the next free thread. For
instance, when the tracker receives a notification that a leecher joined the
protocol, the task extracts the leecher’s IP from this message and triggers
the forced wait. After T = 300 seconds it replies with a digital signature
for the leecher using an RSA-based signature scheme that signs SHA-1
hashes.

6.2 Experimental Setup

For the evaluation, we ran the RatFish tracker on a server with a 2-
cores Intel Xeon CPU, 2GB of RAM, a 100MBit Internet connection
and an Ubuntu SMP operating system with kernel version 2.6.28-18. We
simulated a swarm with up to 50,000 peers, divided into neighborhoods
of size 4. The simulated leechers send the same messages as a real leecher
would, thus yielding an accurate workload measure for the tracker. Every
leecher was configured to complete one exchange per second, and we chose
the size of a piece to be 256 kB according to BitTorrent standards. Hence
every leecher has a virtual upload speed of 256 kB/s. The size of the shared
file is 50 MB, and the seeders upload one forth of the file per second
in a round-robin fashion to their neighborhoods. The simulated clients
are running on a separate machine. This allows us to measure network
throughput. In our simulation, we need to pretend to the tracker that
clients connect from different IPs. We thus used UDP in our experiments.
Deploying RatFish in reality would presumably be based on TCP, which
would slightly increase the network complexity.
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6.3 Performance Evaluations

Fig. 10 depicts the results for our experiments. The main observation,
shown in the left part of Fig. 10, is that even though we engage the tracker
in every exchange in the swarm, the protocol scales well (a resource usage
of 65% for 50,000 leechers). One can also observe that the computation
complexity becomes a limiting factor, but we expect this to change for
more cores given our highly parallelized implementation. Memory was not
a bottleneck in any experiment.

The right part of Fig. 10 considers the case where many leechers join
at once, but no exchanges are happening. This study is important since
the tracker’s most expensive task is to sign the join time of leechers. In
our experiments, the tracker was able to serve about 400 new leechers
per second. Since the server has T seconds for signing in practical de-
ployments, the signature computation would be scheduled in free CPU
time and hence not delay ongoing exchanges. We also observed that the
two measurements depicted in Fig. 10 on CPU usage are additive, e.g., a
system with 30,000 leechers and 200 joining leechers per second uses 90%
of the CPU.
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Fig. 10. Left: Resource usage for a static number of leechers engaging in exchanges.
Right: Resource usage for dynamically joining leechers.

7 Conclusions and Future Work

We have proposed a file sharing protocol called RatFish that we have
proven secure against deviations of rational users. We first characterized
rational behaviors of leechers and seeders in file sharing protocols. Sub-
sequently, we formally showed that no rational party has an incentive to
deviate from RatFish; i.e., RatFish constitutes a Nash equilibrium. While
the tracker in RatFish is assigned additional tasks compared to existing
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file sharing protocols such as BitTorrent, the communication overhead of
a RatFish client compared to a BitTorrent client is minimal. We have
demonstrated by means of a prototype implementation that RatFish is
practical and efficient.

A central question for future work on rational file sharing – and for
rational cryptography in general – is whether the Nash equilibrium is a
strong enough notion for real-world applications and threat models. Ro-
bustness against user coalitions would be more desirable. (See the discus-
sion in [8] and [1].) RatFish already provides suitable hooks for potential
mitigation techniques against coalitions, e.g., by ensuring that players
entering small coalitions can only increase their utilities by a negligi-
ble amount; hence entering a coalition would be irrational in the first
place. Moreover, RatFish currently considers file sharing for independent
swarms only, i.e., seeders in one swarm cannot be leechers in another
swarm. Extending RatFish to cope with such more a general setting re-
quires to generalize the seeders’ utility functions and to adapt the relevant
parts of RatFish in order to maintain the Nash equilibrium property.
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