
Cost Models and Efficient Algorithms on Existentially Uncertain Spatial Data

Elias Frentzos, Nikos Pelekis, Yannis Theodoridis
University of Piraeus, Department of Informatics

{efrentzo, npelekis, ytheod}@unipi.gr

Abstract

The domain of existentially uncertain spatial data

refers to objects that are modelled using an existential
probability accompanying spatial data values. An
interesting and challenging query type over
existentially uncertain data is the search of the Nearest
Neighbor (NN), since the probability of a potential
dataset object to be the NN of the query object depends
on the locations and probabilities of other points in the
same dataset. In this paper, following a statistical
approach, we estimate the average number of the NNs
required to answer probabilistic thresholding NN
(PTNN) queries as function of the threshold t, allowing
us to utilize existing approaches and propose a cost
model for such queries. Based on the same statistical
approach, we propose an efficient algorithm for PTNN
queries over arbitrarily structured existentially
uncertain spatial data. Our experimental study
demonstrates the accuracy and efficiency of the
proposed techniques.

1. Introduction

A major challenge posed by real-world applications
involving spatial information deals with the
uncertainty inherent in the data. In the literature, two
types of uncertainty have gained the interest of the
research community, namely the locational and the
existential uncertainty. Locationally uncertain are the
objects that do exist but their location is uncertain; as
such, this kind of uncertainty is described by a
probability density function. On the other hand,
existentially uncertain objects are those that their
uncertainty emanates from their existence, and this is
expressed by a probability Ex accompanying the spatial
value of object x reflecting the confidence of x’s
existence. As a motivating example, consider the case
where an image processing tool extracts some
interesting formations of pixels that may or may not
correspond to a predefined type of objects due to low
image resolution; existential uncertainty is also natural
in the case of fuzzy classification [2], while it can be

used to represented a confidence factor of the presence
of historical events in the past [3].

The single related work on existentially uncertain
data [2] focuses on two probabilistic versions of spatial
queries. A thresholding query returns the objects that
satisfy some spatial condition with probability more
than a given threshold t, while a ranking query returns
the objects that satisfy a spatial condition in order of
their confidence, applying the number of objects
requested as threshold. Dai et al. [2] proposed search
algorithms for the above two types of spatial range and
nearest neighbor (NN) queries, given that the
underlying data are indexed by 2-dimensional R-trees
[6] or appropriate augmented variants of them.

In this paper, we focus on the probabilistic
thresholding nearest neighbor (PTNN) query on
existentially uncertain data. The motivation is that, this
type of query presents a quite involved search
complexity, as the probability of an object to be the
NN depends not only on the location, but also on the
existential probability of other objects. Outlining the
major contributions of this paper, we first present a
statistical-based analysis for the determination of the
discrete distribution probability density function (dpdf)
that PTNN query terminates after having retrieved
exactly n objects; then we present a cost model which
forecasts the number of disk accesses needed to
process PTNN queries, when the dataset is indexed by
R-trees [6]. Finally, we present an optimal algorithm
for the execution of PTNN queries over arbitrarily
structured data. To the best of our knowledge, our
work is the first on these topics.

The rest of the paper is structured as follows:
Section 2 overviews background work. Section 3
describes the statistical analysis of PTNN queries,
while Sections 4 and 5 present the cost model and an
efficient algorithm, respectively, for PTNN queries
over arbitrary structured datasets. Section 6 presents
our experimental study, while Section 7 concludes the
paper and provides directions for future work.

2. Background

Formally, a PTNN query takes as input a query
object q and a threshold probability t, while the data
are represented as tuples of the form (x, Ex). The
PTNN2D algorithm [2], illustrated in Figure 1,
iteratively retrieves spatially nearest objects in a Best-
First (BF) mode [5], and terminates only after the
value of Pfist becomes smaller than the given threshold
t. The PTNN2D algorithm iteratively calculates the
value of Pfirst, which is a variable that captures the
probability that no object retrieved before the current
object x is the actual NN, according to [2]:

()1

1
1nfirst

x ii
P E−

=
= −∏ , (1)

where n-1 are the objects being closer to the query
object than the current object x, i.e., the number of
objects retrieved from the BF algorithm before object
x, and Ex their existential uncertainty. Then, the
probability that an object x is the actual NN, is [2]:

first
x x xP E P= ⋅ (2)

The intuition behind the PTNN2D algorithm is that
once Pfist < t, we are sure that the subsequent nearest
objects, even if they exist with 100% probability, they
cannot be the NN of q, so the algorithm can safely
terminate. Moreover the PTNN2D algorithm can be
employed by any other access method supporting
incremental NN search.
 1.
 2.
 3.
 4.
 5.
 6.
 7.

Algorithm PTNN2D(q, 2D R-tree on S, t)
 Pfirst=1; /*Prob. no object before x*/
 While Pfirst t and more objects in S do
 x:=next NN of q in S (use BF [3]);
 Px:= P

first Ex;
 If Px t then output (x, Px);
 Pfirst= Pfirst (1-Ex);

Figure 1: The PTNN algorithm

However, the number of iterations of the PTNN2D
algorithm may be arbitrarily large; the expected cost of
this particular type of query is not discussed in [2]. The
lack of an analytical methodology for estimating the
cost of PTNN queries over existential uncertain
datasets has motivated us to use statistical methods and
estimate the average number of NNs that one needs to
retrieve in order to be able to resolve PTNN queries.
Based on our analysis, we exploit well-known work on
cost models of NN queries over regular multi-
dimensional datasets [7], and define a cost model
appropriate for PTNN queries over existential
uncertain data indexed by R-trees [6].

More specifically, Tao et al. [7] present an efficient
cost model for the optimization of NN queries in low-
and medium-dimensional spaces. They provide a
closed formula for the estimation of (a) the average
nearest distance Dk from the query point q to its k-th
NN and (b) the number of tree nodes whose MBRs
intersect the vicinity circle Θ(q, Dk) with center q and

radius Dk, which is equal with the average number of
node accesses NA(k) required by an R-tree to retrieve
the k-th NN. Specifically, according to the analysis of
[7], the average nearest distance Dk is estimated as
function of the dimensionality d and the cardinality N:

()12 1 1 d
k VD k N C⎡ ⎤≈ − −⎢ ⎥⎣ ⎦

 (3)

and CV is calculated by:

() 1
/ 2 1

d
VC dπ= Γ +⎡ ⎤⎣ ⎦ (4)

In our approach, we appropriately employ these
techniques so as to estimate the average number of
iterations n required by the PTNN algorithm in order
to terminate in the case of uniformly distributed data.

Furthermore, we utilize the above mentioned
statistical model in order to estimate the number f of
NNs that are to be retrieved from the database so as to
be at least CI % confident – CI is a user-defined
confidence (e.g. 99%) – that the PTNN search will end
without the need to retrieve n > f NNs. The motivation
behind this approach is to provide efficient search
algorithms, with predetermined cost, and with custom
defined certainty (as high as required) of resolution.
The applicability of such a technique is extended in
many different scenarios, and mainly in the case where
existentially uncertain data are not indexed by any
spatial index, or when the index does not support the
incremental retrieval of the spatial NNs to the query
point, as required by the PTNN2D algorithm [2].

3. Statistical Analysis of PTNN Queries

To start with, we provide a lemma from which the
cost model and efficient query processing techniques
introduced in this paper are straightforwardly devised.
More specifically, the first step towards a cost model
for the PTNN2D algorithm [2], is to determine the
dpdf that the algorithm terminates after exactly n
iterations, i.e., the distribution of the number of objects
retrieved before Pfirst becomes less than the given
threshold t. Towards this goal, we employ the
uncertainty uniformity assumption, that is, the value of
existential uncertainty Ex for all objects in the dataset S
is uniformly distributed inside the unit interval [0, 1].
Formally, we provide the following lemma, with a
proof sketch; its complete proof can be found in [4]:
Lemma 1: The dpdf that the PTNN2D algorithm
terminates after exactly n iterations, under the
uncertainty uniformity assumption, is given by:

() () () ()1 11 ln 1 !n n
exactP n t t n− −= − − (5)

where t is the algorithm threshold.
Proof Sketch: Our goal is to determine the discrete
distribution probability density function Pexact(n), such

that, the algorithm terminates after having retrieved
exactly n objects. The case of n = 1 is simple enough
and omitted due to space constraints.
In all other cases, i.e., n > 1, the algorithm terminates
iff 1

first
nP + , which is calculated at the end of the nth

iteration (i.e., line 7 in Figure 1), becomes less than t
after exactly n iterations. In other words, we must first
determine the conditional probability that Pfirst
becomes less than t after n iterations, given also that it
must not terminate before reaching n iterations:

() () ()()1

1 1
1 | 1n n

cond i ii i
P n P E t E t−

= =
= − ≤ − >∏ ∏ (6)

Then, the probability that the algorithm terminates
after having retrieved exactly n objects can be obtained
multiplying Pcond with the probability the algorithm has
not terminated until reaching n iterations. It can be
proved [4] that the following should hold:

() () ()()1

1
1n

exact cond ii
P n P n P E t−

=
= ⋅ − >∏ (7)

Since the values of Ex follow the uniform distribution,
the same also stands for 1-Ex; as such the product of
the n-1 uniformly distributed values of 1-Ex should
follow the uniform product distribution with pdf given
by [8]:

() () () ()2 2
1 1 ln 2 !n n

nP u u n− −
− = − − (8)

and u= ()1

1
1n

ii
E−

=
−∏ . The amount Vn of objects X ∈ S,

such that () ()1
1 1n

i ni
E E u t

=
− = − ≤∏ is:

nV t u= . (9)
Now, the probability Pcond(n) is calculated by
providing the mean value of Vn weighted by the value
of the distribution of u.

() () ()1 1

1 1cond n nt t
P n P u t u du P u du− −= ∫ ∫ (10)

The total probability that the algorithm has not been
terminated until reaching n iterations can be calculated,
from the pdf of the product of n-1 uniformly
distributed variables:

()() 11
11

1 ()n
i ni t

P E t P u du−
−=

− > =∏ ∫ (11
)

Finally, by substituting (10) and (11) into (7) and
performing the necessary calculations1, we have
proved Lemma 1 in the case where n > 1

Lemma 1 provides us with the dpdf that the
algorithm terminates after exactly n iterations. The
dpdf expressed by (5) is a closed formula, since it
involves only the logarithm of the threshold t and the
factorial of n. Obviously, the density of the probability
obtained from (5) for several values of n, is dominated
by the factorial of n-1; as such, it is expected that as

1 All advanced calculations were performed using Mathematica
software [9].

the number of iterations grows, the respective
probability density will tend to zero very fast. In the
sequel we employ Lemma 1 in order to produce a cost
model and efficient algorithms over arbitrarily
structured (e.g., non-indexed) data for PTNN queries
over existentially uncertain data.

4. A Cost Model for PTNN Queries

In this section we present a corollary directly
derived from the previously presented Lemma 1,
which will help us determining the cost model for
PTNN queries over existentially uncertain data.
Corollary 1: The average number of iterations in each
execution of the PTNN2D algorithm is:

()1 lnn t= − (12)
Proof: The average number of iterations needed from
the PTNN2D algorithm in order to terminate can be
calculated by averaging the dpdf Pcond(n) over all
possible values of n:

() () ()1 1

1
1 ln 1 !i i

i
n i t t i∞ − −

=
⎡ ⎤= ⋅ − −⎣ ⎦∑ (13)

Equation (13) cannot be straightforwardly evaluated
since it involves infinity; however, we may use its
limit; after the necessary calculations we conclude to:

() () () ()1 1

1
lim 1 ln 1 ! 1 lnn i i

in
i t t i t− −

=→∞
⎡ ⎤⋅ − − = −⎣ ⎦∑ (14)

which proves corollary 1
Obviously, the average number of iterations n

needed from the PTNN2D in order to terminate, is
equal with the number of NNs needed to be retrieved
from an existentially uncertain spatial database queried
with a query point and a given threshold t. Thus, we
may employ the analysis presented in [7] and estimate
the average radius Dk on which the n -th NN is
expected to be found. Apparently, this model can be
applied in our case where the d=2 and Γ(2/2+1)=1;
then, by substituting the average number of n produced
by (12) into the number of k NNs requested, (3) can be
rewritten as follows:

()()2 1 1 1 lnkD t N π⎡ ⎤≈ − − −⎢ ⎥⎣ ⎦
 (15)

From this point on, the analysis of [7] that estimates
the number of node accesses NA(k) remains
unaffected; the single modification to be made is to
calculate Dk using (15) instead of (3); the interested
reader is cited to [7] for details. Concluding, the cost
model for PTNN queries over existentially uncertain
data is based on (15), which estimates the distance
from the query point that has to be browsed from the
database so as to answer such a query; then, the
required node accesses NA(k) can be straightforwardly

estimated by replacing the Dk into the analysis of [7].

5. Efficient Algorithms for PTNN Queries

The algorithms for PTNN queries presented in [2]
assume the presence of a spatial index with the ability
to incrementally retrieve the NNs of a query point q
(i.e., line 4 in Figure 1). However, this is not the single
case, since the actual data may be available in a variety
of underlying data structures (e.g., non-indexed data)
which are unable to incrementally retrieve the k-th NN
as PTNN2D does. Under such circumstances, a non-
incremental NN algorithm performs redundant
operations, since the retrieval of the k-th NN requires
also retrieving all the NNs being before it.

 1.
 2.
 3.
 4.
 5.
 6.
 7.
 8.
 9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Algorithm GPTNN(q, dataset S, t, k)
 Initialize PQ(k)
 While there are more objects in S do
 x:=next object in S;
 PQ.Add x, Ex, Distance(x, q);
 Loop;
 Pfirst=1;
 While Pfirst t and more objects in PQ do
 x:=next object in PQ;
 Px:= P

first Ex;
 If Px t then OutList.Add(x, Px);
 Pfirst= Pfirst (1-Ex);
 Loop;
 If Pfirst t then
 GPTNN(q, S, t, 2*k);
 Else
 Output Outlist;
 End If;

Figure 2: The GPTNN algorithm

The only way to overpass this obstacle and
efficiently process a PTNN query over existentially
uncertain spatial data, is to exhaustively scan the
database and maintain a priority queue with the k NNs
w.r.t. the query point; then, a post-processing step
similar with the PTNN2D algorithm [2] would be used
in order to determine the actual NNs with probability
greater or equal than the given threshold t. Figure 2
illustrates the pseudo-code of this algorithm (named
GPTNN), which takes as input a query point q, an
existentially uncertain dataset S, the threshold t and an
initial, arbitrary large number of k. It exhaustively
scans the entire dataset (lines 3-7), maintaining a
priority queue PQ (line 2) that is used to store the k
NNs of q in the entire S. Then, it performs a post-
processing step (lines 8-13) similar to the PTNN2D
algorithm [2], which is used to determine the actual
probability of each object in PQ to be the NN to q.
Finally, given that there exists no guaranty that Pfirst is
less than t after having retrieved k nearest objects, the
algorithm may be recursively repeated doubling the
number of k NNs until Pfirst becomes less than t (lines
14-18). It is clear that the main difference between the
proposed GPTNN and PTNN2D is that the latter uses

the BF strategy of [5] over an existing R-tree index,
while our proposal utilizes for the same purpose a
priority queue which is populated after an exhaustive
scan; as such, GPTNN can be applied over any kind of
structured or unstructured existentially uncertain data.

The efficiency of the GPTNN algorithm is merely
based on a suitable choice of k. Choosing small values
of k may lead to the repeating of the exhaustive scan in
cases where Pfirst ≥ t (line 15 in Figure 2); on the other
hand, choosing large values of k may lead to decreased
performance, due to the length of the priority queue
employed (PQ in Figure 2). Following, based on our
probabilistic analysis, we provide an effective
technique to determine the number of k required to
efficiently process the GPTNN algorithm. Specifically,
employing the discrete probability density function
obtained by Lemma 1, we can determine the required
number of k NNs, that have to be retrieved from the
database, so as to be sure with a confidence interval CI
(typically, CI ≥ 90%), that the algorithm will
terminate, something that happens when Pfirst ≤ t.
Formally, we aim to determine k w.r.t. the following
assumption:

()1

k
exacti

P i CI
=

≥∑ (16)
and Pexact(i) taken from (5). While an analytic solution
for this problem is hard to be found, we may easily
provide an algorithm which calculates an approximate
integer solution. Specifically, the proposed CNREQ
algorithm (Figure 3), iteratively calculates sumP =

()exactP i∑ using (5) for Pexact(i), increasing i until its
value becomes greater than the requested confidence
interval CI; then, it returns the value of i to be the k
NNs required as input of the GPTNN algorithm.

 1.
 2.
 3.
 4.
 5.
 6.
 7.

Algorithm CNREQ(t, CI)
 While Psum<CI do
 i = i + 1;
 Calculate Pexact; /*use Eq.(5) */
 Psum:=Psum+Pexact;
 Loop;
 Return i
Figure 3: The CNREQ algorithm

Concluding, our proposal regarding PTNN queries
consists of the GPTNN algorithm taking as k the value
determined by the CNREQ algorithm, given the query
threshold t and a large value of CI (e.g., 99%). Under
such circumstances, the GPTNN algorithm is expected,
with 99% probability, to perform a single sequential
scan, demonstrating thus optimal behavior.

6. Experimental Study

The accuracy of the proposed model, was tested
using a synthetic random dataset of existentially

uncertain point data, where each point was associated
with an existential uncertainty randomly distributed in
the interval [0,1]. We executed 1000 randomly
distributed PTNN queries, under various threshold
values, and counted the algorithm’s actual number of
iterations; we also compared the values gathered from
the experiment with the one calculated using our
model (i.e., Eq.(12)). The corresponding results are
illustrated in Figure 4(a). It is clear that the values
displayed in both bars (model and actual iterations) are
almost identical, meaning that the estimation gathered
by our model is very accurate, with an error that never
exceeds 2%, regarding the average number of
iterations for all 1000 queries. Moreover, the mean
deviation (i.e., the average unsigned error of the
estimation in each individual query), illustrated by the
error bars, is between 20% and 40% in all
experimental settings.

0

0.5

1
1.5

2

2.5

3

3.5
4

4.5

5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Threshold

av

er
ag

e
 It

er
at

io
ns

Model Iterations

Actual Iterations

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1
threshold

E
xe

cu
tio

n
tim

e
(m

se
c)

PTNN

GPTNN (CNREQ)

GPTNN (100)

(a) (b)
Figure 4: (a) Number of iterations and (b)

execution time scaling the threshold

We also used the same dataset in order to
demonstrate the efficiency of the proposed solution, by
performing 1000 randomly distributed PTNN queries
following three different strategies: the first (illustrated
as PTNN in Figure 4(b)) utilizes the PTNN2D
algorithm over an unstructured (i.e., stored in an array)
dataset, while the retrieval of the next NN in line 4 of
Figure 1 is performed by an exhaustive scan over the
entire dataset. The second strategy, called
GPTNN(CNREQ), uses the GPTNN algorithm, after
having calculated the optimal k using the CNREQ
algorithm; finally, the so-called GPTNN(100) uses the
GPTNN algorithm, with an arbitrary selected initial
k=100. It is clear that the proposed methodology
outperforms both its competitors in all cases, while it
turns to be practically independent from the value of
the threshold; the later is actually an expected result,
since the value of k produced by CNREQ for CI = 99%
does not vary significantly (it varies between 2 and 7).

7. Conclusions and Future Work

In this paper, we have worked with the problem of

performing probabilistic thresholding nearest
neighbor queries over existentially uncertain spatial
point datasets [2]. Following a statistical approach, we
estimate the average number of the nearest neighbors
required for processing PTNN queries as a function of
the threshold t, and then, we propose a cost model for
such queries. We further propose an optimal – with a
user-defined confidence – algorithm for PTNN queries
over arbitrary structured existentially uncertain data.
Our experimental study proves the efficiency of the
proposed techniques. As future work we plan to extend
the model in order to support arbitrarily distributed
data and existential uncertainties with the usage of
spatial histograms [1]. Then, we intend to extend our
model in order to support probabilistic ranking nearest
neighbor (PRNN) queries [2]. Finally, our last
intention is to implement all the proposed methodology
on top of a commercial SDBMS and provide
commercial users with the entirety of the described
functionality.

Acknowledgements
Research supported by the Diachoron project, funded
by the Greek Ministry of Development, General Secr.
for Research and Technology, co-funded by EU.

8. References

[1] S. Acharya, V. Poosala, S. Ramaswamy, “Selectivity

Estimation in Spatial Databases”, Proc. ACM
SIGMOD, pp.13-24, 1999.

[2] X. Dai, M.L. Yiu, N., Mamoulis, Y., Tao, M., Vaitis,
“Probabilistic Spatial Queries on Existentially Uncertain
Data”, Proc. SSTD, pp.254-272, 2005.

[3] Diachoron project [http://www.diachoron.gr]
[4] Frentzos, E., Pelekis, N., and Theodoridis, Y., Cost

Models and Efficient Query Processing over
Existentially Uncertain Spatial Data, UNIPI-ISL-TR-
2008-01, Technical Report Series, University of
Piraeus, 2008. Available at:
http://isl.cs.unipi.gr/db/index.html.

[5] Hjaltason, G., and Samet, H., Distance Browsing in
Spatial Databases, ACM Transactions in Database
Systems, vol. 24(2), pp. 265-318, 1999.

[6] Y. Manolopoulos, A. Nanopoulos, A.N. Papadopoulos,
Y. Theodoridis, Rtrees: Theory and Applications,
Springer 2005.

[7] Y. Tao, J. Zhang, D. Papadias, N. Mamoulis, “An
Efficient Cost Model for Optimization of Nearest
Neighbor Search in Low and Medium Dimensional
Spaces”, IEEE TKDE, 16(10), 1169-1184, 2004.

[8] Weisstein, Eric W. "Uniform Product Distribution."
From MathWorld, A Wolfram Web Resource.

[9] Wolfram Research (2005). Mathematica Version 5.2.
[http://www.wolfram.com/]

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

