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Abstract
Recent developments in molecular biology have led to the massive discovery of new marker candidates for the
prediction of patient survival. To evaluate the predictive value of these markers, statistical tools for measuring the
performance of survival models are needed.We consider estimators of discrimination measures, which are a popular
approach to evaluate survival predictions in biomarker studies. Estimators of discrimination measures are usually
based on regularity assumptions such as the proportional hazards assumption. Based on two sets of molecular
data and a simulation study, we show that violations of the regularity assumptions may lead to over-optimistic
estimates of prediction accuracy and may therefore result in biased conclusions regarding the clinical utility of new
biomarkers. In particular, we demonstrate that biased medical decision making is possible even if statistical checks
indicate that all regularity assumptions are satisfied.
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INTRODUCTION
A key interest in biomedical research is the analysis of

patient survival based on molecular data [1–3]. In

cancer research, for example, gene expression signa-

tures are used to predict the time to occurrence of

metastases [4, 5], time to progression [6] and overall

survival [7, 8]. To assess the prognostic performance

of new biomarkers, statistical measures for evaluating

the prediction accuracy of time-to-event models are

needed.

Measuring the performance of time-to-event

models is particularly important in situations where

the predictive value of a newly discovered biomarker

has to be compared with existing prediction rules

based on clinical patient data [9, 10]. Because of

the high-dimensional nature of gene expression

data (p� n), combinations of genes that are ‘signifi-

cantly’ associated with the outcome are often

detected even if the true predictive power of the

genes is small [11]. It is therefore questionable

whether predictions based on molecular markers

are more precise than those based on (readily avail-

able) clinical predictors. Consequently, the ‘added

predictive value’ of gene signatures needs to be

assessed [12].

Here, we consider discrimination measures for

time-to-event data, which have become a widely

used approach to measure the performance of bio-

markers in survival studies [1, 7, 13]. The idea behind

discrimination measures is to evaluate the discrimina-

tive ability of a marker, i.e. to use the marker to

distinguish between (i) patients having an event at

or before a particular time point and (ii) patients

having the event afterwards. Consequently, time-de-

pendent misclassification rates and receiver operating

characteristic (ROC) curves can be derived for each

threshold of a marker. Calculating the areas under

the time-dependent ROC curves results in the time-

dependent AUC curve, which is a measure of the

discriminative ability of a marker at each time point

under consideration [14]. By considering the area

under the AUC curve, it is further possible to
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calculate a time-independent summary measure of

prediction accuracy (see the ‘Methods’ section).

Summary measures can, for example, be computed

for both a prediction model containing clinical data

only and for a prediction model containing clinical

data plus a newly discovered biomarker. By compar-

ing the two summary measures, it is possible to in-

vestigate the added predictive value of the biomarker

(cf. [15]).

Because time-dependent ROC and AUC curves

are difficult to compute in the presence of censoring,

a variety of estimators for discrimination measures

has been developed ([14, 16, 17], see also the

‘Methods’ section for details and further references).

Although these estimators are widely applied in bio-

marker studies, their use is not unproblematic. This is

because many of the estimators rely on specific re-

gularity assumptions (such as the Cox proportional

hazards assumption) that have to be satisfied for the

estimators to be valid. Consequently, if the working

model assumed for the estimation of discrimination

measures is not specified correctly, estimates of pre-

diction accuracy may be biased and may therefore

lead to wrong conclusions about the usefulness of

new markers. This problem is often overseen in

practice. Even worse, it may happen that regularity

assumptions are impossible to hold in both the ‘full’

model (containing clinical predictors and bio-

markers) and the ‘reduced’ model (containing the

clinical predictors only) at the same time. For

example, if a biomarker has a non-zero effect in a

correctly specified Cox model, the proportional

hazards assumption is unlikely to hold in the reduced

model as well.

The main aim of the article is to compare the

properties of some commonly used estimators of dis-

crimination measures in situations where the added

predictive value of a new marker needs to be eval-

uated. Specifically, we show that violations of regu-

larity assumptions may result in over-optimistic

estimates of prediction accuracy and may therefore

lead to biased conclusions regarding the prognostic

effect of new biomarkers. As will be demonstrated,

this may even happen if biostatisticians carefully

check all regularity assumptions.

The first part of our analysis (‘Simulation Study’

section) is based on a simulation study that evaluates

biomarker combinations using Cox proportional

hazards regression. Considering a proportional haz-

ards working model is convenient not only because

Cox regression is the predominant model in survival

analysis [18, 19] but also because some of the afore-

mentioned estimators explicitly rely on this model.

The second part of the analysis (‘Breast Cancer Data’

section) is based on two biomarker studies that use

molecular data for predicting the time to distant

metastases in breast cancer patients. The first data

set was collected by van de Vijver et al. [4] to validate

a 70-gene expression signature reported by van’t

Veer et al. [20]. The second data set was collected

by Desmedt etal. [5] to validate a 76-gene prognostic

signature identified by Wang et al. [21]. Using these

data, we investigate whether estimators of discrimin-

ation measures are able to capture the predictive

value of the gene expression measurements in add-

ition to traditional predictions based on clinical

predictor variables only.

METHODS
Discrimination measures for
time-to-event data
Let T 2 Rþ be a survival time and X 2 Rp a vector

of predictor variables. For example, Xcould be com-

posed of a subvector representing clinical predictors

(such as patient characteristics) and another subvector

representing a set of molecular markers. Denote the

conditional survival function of T given X by

S(tjX)¼ P(T> tjX¼ x). Let f(t) and S(t) be the

unconditional probability density and survival func-

tions of T, respectively. Let C 2 Rþ be a random

censoring time and denote the observed survival

time by ~T :¼ minðT,CÞ. The random variable

� :¼ IðT � CÞ indicates whether ~T is right-cen-

sored (� ¼ 0) or not (� ¼ 1). Throughout this

article, we use the Cox proportional hazards model

SðtjXÞ ¼ exp ��0ðtÞ � expðXTbÞ
� �

ð1Þ

to estimate SðtjxÞ, where �0ðtÞ is the cumulative

baseline hazard function and b is a vector of

coefficients relating the predictor variables to condi-

tional survival. By definition, small values of the risk

score Z :¼ XTb imply large expected survival times

and vice versa. We further assume that b is

estimated from an i.i.d. learning sample

fð ~TL
i ,�

L
i ,X

L
i Þ, i ¼ 1, . . . , ng using the (possibly reg-

ularized) maximization of the partial log-likelihood.

Denote the resulting estimate of SðtjxÞ by

ŜL
n ðtjXÞ ¼ exp ��̂L

0 ðtÞ � expðXT b̂LÞ
� �

, where ��̂L
0

and b̂L are the Breslow and maximum partial log-

likelihood estimates of �0 and b, respectively.
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Throughout the article, we will use Z as a marker for

predicting patient survival. Prediction accuracy of

ŜL
n ðtjXÞ (and thus of the marker XT b̂L) will be

evaluated by using an independent i.i.d. test sample

fð ~Tj,�j,XjÞ, j ¼ 1, . . . ,Ng that follows the same

distribution as the learning data. Prediction of

survival is based on the estimated marker values

Ẑj :¼ XT
j b̂

L, j¼ 1, . . .,N.

The discrimination measures considered in this

article make use of the fact that T can be considered

as a time-dependent binary variable with values

‘event’ and ‘no event’. Consequently, at each time

point t> 0, ROC analysis for the evaluation of

binary outcomes can be used to distinguish between

patients having an event (‘cases’) and those having no

event (‘controls’, see Heagerty & Zheng [14]). Time-

dependent ‘cumulative and incident true positive

rates’ are defined as

TPRCðc, tÞ :¼ PðZ > cjT � tÞ; ð2Þ

TPRIðc, tÞ :¼ PðZ > cjT ¼ tÞ; ð3Þ

respectively, where c is a threshold of interest. The

two TPRs defined earlier in the text have a slightly

different interpretation: When considering TPRC,

the aim is to distinguish between ‘observations

having an event at or before t’ and ‘observations

having an event after t’. Thus, for fixed t, observa-

tions with Tj � t, j¼ 1, . . .,N are considered as cases,

whereas observations with Tj > t are considered as

controls. Similarly, when considering TPRI , the aim

is to distinguish between ‘observations having an

event at t’ and ‘observations having an event after

t’. In this case, observations with Tj ¼ t are con-

sidered as cases, whereas observations with Tj > t
are considered as controls. Although TPRI has

been adopted by most methodologists [1], we will

analyze estimators of both versions of TPR.

The time-dependent ‘dynamic false positive rate’

is defined as

FPRI ðc, tÞ :¼ PðZ > cjT > tÞ, ð4Þ

see [14]. It is called ‘dynamic’ because FPRD de-

pends on the time point t under consideration,

whereas the ‘static false positive rate’ (which is not

considered in this article) uses a single ‘static’ time

point tstat as reference point. Summarizing TPRC,

TPRI and FPRD results in ‘cumulative/dynamic’

and ‘incident/dynamic ROC curves’ defined as

ROCC=Dðc, tÞ :¼ FPRDðc, tÞ,TPRCðc, tÞ
� �

; ð5Þ

ROCI=Dðc, tÞ :¼ FPRDðc, tÞ,TPRIðc, tÞ
� �

; ð6Þ

respectively. Calculating the area under the cumula-

tive/dynamic and incident/dynamic ROC curves

results in time-dependent ‘cumulative/dynamic’

and ‘incident/dynamic AUC curves’ (denoted by

AUCC=DðtÞ and AUCI=DðtÞ, respectively). By defin-

ition, time-dependent AUC curves quantify the dis-

criminative ability of a marker at each time point

under consideration.

When comparing different survival models, it can

be helpful to use a summary index that evaluates the

‘overall’ accuracy of a prediction rule. In this respect,

the above-defined measures have the disadvantage

that they are time-dependent and therefore need to

be evaluated at each individual time point. To obtain

a time-independent discrimination index, the area

under the time-dependent AUC curve can be

computed. For incident/dynamic AUC, Heagerty

& Zheng [14] suggested to use the index

C� :¼

Z
t

AUCI=DðtÞ � wðtÞdt ð7Þ

with weights wðtÞ :¼ 2f ðtÞSðtÞ. The authors showed

that C� equals the probability PðZj1 >
Zj2jTj1 < Tj2Þ, which is a concordance index mea-

suring the probability that observations with large

values of Z have shorter survival times than observa-

tions with small values of Z. (Here, Zj1, Zj2, Tj1 and

Tj2 denote the markers and survival times of two

randomly chosen observations in the test sample.)

The concordance index C� equals 0.5 in case a

non-informative marker (independent of T) is

used. Markers predicting better than chance should

therefore result in values of C� lying in the interval

(0.5, 1], provided that there is a monotonic relation-

ship between Z and T.

In contrast to C�, which is based on incident/

dynamic AUC, no measures summarizing the cumu-

lative/dynamic AUC have been derived yet [14].

We therefore propose to use the expected value

C�cum :¼ ETðAUCC=DðTÞÞ ¼
Z
t

AUCC=DðtÞ � f ðtÞdt ð8Þ

as a summary measure of AUCC=D.

Estimators of discrimination measures
In the literature, various approaches to estimate

cumulative/dynamic discrimination measures have

been proposed (e.g. [14, 16, 17]). Some of these

On the validity of time-dependent AUC estimators 155
 at E

rlangen N
uernberg U

niversity on A
ugust 5, 2016

http://bib.oxfordjournals.org/
D

ow
nloaded from

 

paper
paper 
``
''
``
''
``
''
``
''
above 
,
(
)
``
''
paper
``
''
``
''
In order 
]
2.2 
,
http://bib.oxfordjournals.org/


approaches rely on estimators of time-dependent

true and false-positive rates (which can subsequently

be used to calculate estimates of AUC, C� and

C�cum), whereas other approaches rely on estimating

C� and C�cum directly. Because not all of the

approaches provide formulae for the estimation of

TPR/FPR, we focus on the time-independent dis-

crimination indices C� and C�cum. The following

estimators will be considered in our numerical

studies:

Estimators based on incident/dynamic AUC
(i) Estimation approach by Heagerty & Zheng

[14]. Heagerty & Zheng proposed two approaches

to estimate FPRDðc, tÞ,TPRIðc, tÞ
� �

. The first esti-

mator, which is based on the assumptions of a Cox

proportional hazards model, is given by

dTPRI
HZCox
ðc, tÞ :¼

XN
j¼1

IðẐj > cÞIð ~Tj � tÞ expðẐjÞ

WðtÞ
; ð9Þ

dFPRD
HZCox
ðc, tÞ :¼

XN
j¼1

IðẐj > cÞIð ~Tj > tÞPN
k¼1 Ið ~Tk > tÞ

ð10Þ

with WðtÞ :¼
P

k Ið ~Tk � tÞ expðẐkÞ. Estimates of

AUCI=D and C� are based on numerical integration

of Equations (9) and (10) using the empirical prob-

ability density and survival functions of T estimated

from the learning data to calculate the weights w(t) in

Equation (7).

In cases where the proportional hazards

assumption is critical, Heagerty & Zheng [14] sug-

gested to use an alternative estimator of

FPRDðc, tÞ,TPRIðc, tÞ
� �

that is based on a varying-

coefficient Cox model (see Section 3.2 of [14]).

Both estimators suggested by Heagerty & Zheng

are consistent for FPRDðc, tÞ,TPRIðc, tÞ
� �

in case

the assumptions of the respective working models

are satisfied.

(ii) Estimation approach by Song & Zhou [16].

Similar to Heagerty & Zheng [14], Song & Zhou

based their approach on the assumptions of a Cox

proportional hazards model. The authors suggested

to estimate TPRI and FPRD by

dTPRI
SZðc, tÞ :¼

XN
j¼1

expðẐjÞŜ
L
n ðtjXjÞIðẐj > cÞPN

k¼1 expðẐkÞŜL
n ðtjXkÞ

; ð11Þ

dFPRD
SZðc, tÞ :¼

XN
j¼1

ŜL
n ðtjXjÞIðẐj > cÞPN

k¼1 Ŝ
L
n ðtjXkÞ

: ð12Þ

The estimators given in Equations (11) and (12)

are consistent in case the assumptions of the Cox

model are met. In contrast to the estimators sug-

gested by Heagerty & Zheng [14], Song & Zhou’s

approach remains valid even if the censoring times

depend on X [1]. Analogously to the approach of

Heagerty & Zheng [14], estimates of AUCI=D and

C� are obtained using numerical integration of

Equations (11) and (12).

(iii) Concordance probability estimator by Gönen

& Heller [22]. Gönen & Heller’s approach is directly

based on the assumptions of a Cox proportional haz-

ards model. Let Ẑij :¼ ðXi � XjÞ
T b̂L. Gönen &

Heller [22] showed that the concordance index C�

is consistently estimated by

C�GH :¼
2

NðN � 1Þ

X
i<j

IðẐij < 0Þ

1þ expðẐijÞ
þ

IðẐji < 0Þ

1þ expðẐjiÞ

ð13Þ

in case the assumptions of the Cox model are met. In

this case, C�GH remains a valid estimator of C� even if

the censoring times depend on X.

(iv) Censoring-adjusted C-statistic by Uno et al.
[17]. Uno et al. [17] suggested to estimate C� by

C�UnoC :¼

P
j,k

ŜL
C,nð

~TjÞ

� ��2

Ið ~Tj< ~TkÞIðẐj> ẐkÞ�j

P
j,k

ŜL
C,nð

~TjÞ
� ��2

Ið ~Tj< ~TkÞ�j

ð14Þ

where ŜL
C,nðtÞ denotes the Kaplan–Meier estimator of

the unconditional survival function of C (estimated

from the learning data). In contrast to the estimators

in (i) to (iii), the estimator in Equation (14) does not

rely on the assumptions of a Cox model. It is assumed,

however, that C is independent of X (‘random cen-

soring assumption’). Under this assumption, C�UnoC is

a consistent estimator of C�. Consistency of C�UnoC is

ensured by using the weights �j=ðŜL
C,nð

~TjÞÞ
2, which

account for the inverse probability that an observa-

tion in the test data is censored [‘inverse probability of

censoring weighted’ (IPCW) estimation [23]].

Estimators based on cumulative/dynamic AUC
(i) Estimation approach by Song & Zhou [16]. In

addition to the estimator of incident TPR given in

Equation (11), Song & Zhou [16] proposed an estima-

tor of the cumulative TPR. This estimator is defined as

dTPRC
SZðc, tÞ :¼

PN
j¼1 ð1� ŜL

n ðtjXjÞÞIðẐj � cÞPN
j¼1 ð1� ŜL

n ðtjXjÞÞ
: ð15Þ
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The estimator in Equation (15) is consistent if the

assumptions of the Cox model hold. Estimates of

C�cum are based on numerical integration of

Equations (11) and (15) using the empirical probabil-

ity density function of T estimated from the learning

data to calculate f(t) in Equation (8).

(ii) Estimation approach by Uno et al. [10]. Uno

et al. [10] proposed to estimate TPRC and FPRD by

dTPRC
Unoðc, tÞ :¼

P
j

�jIðẐj > c \ ~Tj � tÞ=ŜL
C, nð

~TjÞP
j

�jIð ~Tj � tÞ=ŜL
C, nð

~TjÞ
;

ð16Þ

dFPRD
Unoðc, tÞ :¼ 1�

P
j

�jIðẐj � c \ ~Tj > tÞ

P
j

Ið ~Tj > tÞ
: ð17Þ

Unlike the estimators proposed by Song & Zhou,

Equations (16) and (17) do not rely on the assumptions

of a Cox model. If the censoring times are independent

of X, Equations (16) and (17) are consistent estimators

of TPRC and FPRD, respectively. Analogously to the

censoring-adjusted C-statistic proposed by Uno et al.
[17], consistency of Equation (16) is ensured by using

the IPC weights �j=ŜL
C, nð

~TjÞ. Estimates of AUCC=D

and C�cum are obtained by using numerical integration

of Equations (16) and (17).

Remark#1: Another popular estimator of the con-

cordance probability C� is ‘Harrell’s C for survival

data’ [24, 25]. Because Harrell’s C is usually upward

biased in the presence of censoring [26, 27], we will

not consider this estimator in our numerical studies.

Remark#2:Apart from the estimators presented in the

‘Estimators of Discrimination Measures’ section, several

other approaches for the estimation of discrimination

measures exist (e.g. [28, 29]). Because the aim of this

article is to demonstrate that violations of regularity as-

sumptions may lead to biased medical decision making,

we only focus on a selection of these estimators here.

SIMULATION STUDY
Data-generating model
The aim of the simulation study was to analyze the

behavior of the estimators presented in the ‘Estimators

of Discrimination Measures’ section in situations

where the underlying regularity assumptions were

violated. Here, we focus on the situation where

the added predictive value of a newly discovered

biomarker needs to be evaluated. We consider

violations of both the proportional hazards assump-

tion and the random censoring assumption, which

are the key assumptions for guaranteeing the validity

of the estimators presented in the ‘Estimators of

Discrimination Measures’ section.

For the simulation study, we considered two

standard normally distributed variables Xð1Þ (repre-

senting a new biomarker) and Xð2Þ (representing a

combination of classical predictor variables). For the

sake of simplicity, we assumed Xð1Þ and Xð2Þ to be

independent. Survival times were generated by using

the log normal regression model

logðTÞ ¼ U � Xð1Þg1 þ Xð2Þg2

� �
þ s � Z, ð18Þ

where g1 ¼ 0:1 and g2 ¼ 0:5 were the regression

coefficients of Xð1Þ and Xð2Þ, respectively, and s
was the standard deviation of the noise that was

added to the predictor g :¼ U � ðXð1Þg1 þ Xð2Þg2Þ.

The noise variable Z was assumed to follow a

normal distribution with zero mean and standard de-

viation s ¼ 0:6. The random variable U was a

binary variable taking the values �1 and 1 with

probability 0.5 each. Hence, U served as a grouping

variable that resulted in different signs of the linear

predictor Xð1Þg1 þ Xð2Þg2. By definition, TjX fol-

lowed a log normal distribution in each of the two

subgroups defined by U.

In the remainder of this section, we will assume

that the existence of the grouping variable U is un-

known to the biostatistician analyzing the data.

Regarding biomedical practice, this is a realistic as-

sumption because unobserved heterogeneity is a

common issue in biomarker studies. With U being

ignored, however, it is straightforward to show that

any linear combination of the predictors Xð1Þ and

Xð2Þ in model (18) results in markers with no dis-

criminative ability at all. Specifically, any linear pre-

dictor Ẑ obtained from Cox regression results in a

non-informative marker with C� ¼ C�cum ¼ 0:5,

regardless of whether the full model containing

both Xð1Þ and Xð2Þ or the reduced model containing

Xð2Þ only is used. Also, the proportional hazards

assumption is violated, regardless of whether U is

included in the Cox model.

To analyze whether the estimators of C� and C�cum

were able to reflect this situation, we applied Cox

regression to 500 learning samples fð ~TL
i ,�

L
i

,XL
i Þ, i ¼ 1, . . . , ng of size n¼ 100 each. Both the

full model and the reduced model were fitted to

each of the learning samples. Discrimination meas-

ures for the marker Ẑ (being a linear combination of
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Xð1Þ and Xð2Þ) were estimated from 500 independ-

ently generated test samples fð ~Tj,�j,XjÞ,
j ¼ 1, . . . ,Ng. In the first step, we considered inde-

pendent censoring times that were generated from an

exponential distribution with rate 0.66. This strategy

resulted in a moderately high censoring rate of

�50%.

All simulations were carried out with the R

System for Statistical Computing (version 3.0.0,

[30]) using the add-on packages risksetROC [31]

and survAUC [32].

Results of the simulation study
Figure 1 shows the results obtained for the estimators

of C� proposed by Uno et al. (denoted by C�UnoC),

Heagerty & Zheng (denoted C�HZCox
and C�HZ), Song

& Zhou (denoted by C�SZ) and Gönen & Heller

(denoted by C�GH). In case of the estimators proposed

by Heagerty & Zheng, C�HZCox
refers to the Cox-

based estimator, whereas C�HZ refers to the estimator

based on a varying-coefficient Cox model.

As seen from Figure 1, the finite sample bias of the

IPCW-based estimator C�UnoC is close to zero.

Moreover, no systematic difference in estimated pre-

diction accuracy between the full (shown in gray)

and reduced Cox models (shown in white) is observ-

able (see also Figure 2 for an additional illustration).

This result, which reflects the true discriminatory

power of the full and reduced models, is due to

the fact that censoring times were generated inde-

pendently of T, and that C�UnoC is consistent for C�

as long as the random censoring assumption holds.

A similar result was obtained for the IPCW-based

estimator of C�cum proposed by Uno et al. [10]

(denoted by C�Unocum
, see Figure 1).

In contrast to the IPCW-based estimators C�UnoC

and C�Unocum
, the Cox-based estimators in Figure 1 all

show an upward bias. Although the bias is not large

in absolute value, it is problematic because the Cox-

based estimators indicate a positive effect of the non-

informative marker Ẑ on prediction accuracy.

Hence, by relying on the Cox-based estimators, we

would wrongly conclude that Ẑ increases the dis-

criminatory power of the prediction model. This

result was not only observed for the Cox-based

estimators of C� but also for the Cox-based estimator

of C�cum proposed by Song & Zhou [16] (denoted by

C�SZcum
).

On the other hand, the estimators C�HZCox
and C�HZ

are ‘valid’ in the sense that they do not indicate an

additional effect of the biomarker Xð1Þ on prediction

accuracy. The values of C�HZCox
and C�HZ obtained

from the full and reduced models are almost identi-

cal. In contrast, the Cox-based estimators C�SZ, C�GH

and C�SZcum
uniformly indicate superiority of the full

model. Relying on the latter three estimators would

therefore lead to the wrong conclusion that adding

the biomarker Xð1Þ to the prediction model increases

discriminatory power (Figure 2).

The model selection bias of the Cox-based esti-

mators can be attributed to the fact that these esti-

mators explicitly rely on the proportional hazards

assumption. Because this assumption is violated in

the true data-generating model, Cox-based estima-

tion of C� and C�cum is no longer valid. Hence, the

estimated baseline hazard and the coefficient esti-

mates obtained from Cox regression are biased.

This bias is implicitly incorporated in the Cox-

based estimators of C� and C�cum presented in

Figures 1 and 2. The results presented in this subsec-

tion are largely insensitive to the choice of the

residual standard deviation s (see Appendix).

Checks of the proportional hazards
assumption
As demonstrated in the previous subsection, gener-

ating simulated data from model (18) implies the

Figure 1: Results of the simulation study. Boxplots
correspond to estimates of C� and C�cum using themeth-
ods described in the ‘Estimators of Discrimination
Measures’ section. Predictions were obtained by fitting
Cox regression models to 500 learning samples (of size
n ¼ 100 each) generated from Equation (18) and by
applying the resulting prediction rules to 500 independ-
ent test samples (of size N ¼ 100 each). Censoring
times were independent of T, and the censoring rate
was approximately equal to 50%. White boxplots cor-
respond to the reduced model (using Xð2Þ only),
whereas gray boxplots correspond to the full model
(using both Xð1Þ and Xð2Þ). The dashed horizontal line
corresponds to the true value of C* and C�cum.
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violation of the proportional hazards assumption and

therefore a bias in the Cox-based estimators of C�

and C�cum. Consequently, it has to be investigated

whether departures from the proportional hazards

assumption could have been detected by analyzing

the 500 sets of learning data.

To this purpose, we checked the proportional

hazards assumption by applying T(G)-tests [33] to

each of the 500 pairs of full and reduced Cox

models. The tests are based on scaled Schoenfeld

residuals and examine the hypothesis of non-propor-

tionality for each of the covariates included in a Cox

regression model. An additional ‘global’ T(G)-test

allows for checking the proportional hazards assump-

tion in cases where the Cox model contains more

than one predictor variable.

The P-values obtained from the tests are presented

in Figure 3. Obviously, the tests failed to detect

significant departures from the proportional hazards

assumption in 85.8% of the full and reduced model

Figure 2: Results of the simulation study. The upper left panel shows the estimated values of the IPCW-based
estimator C�UnoC for both the full and reduced models [as obtained from the 500 learning and test samples gener-
ated from Equation (18)]. The upper right panel shows the values of the Cox-based estimator C�SZ that were ob-
tained from the same samples and models. Obviously, C�UnoC does not systematically prefer any of the two models,
thereby indicating that the biomarker Xð1Þ has no additional effect on prediction accuracy. In contrast, C�SZ wrongly
indicates that Xð1Þ increases the discriminatory power of the model. The relatively large variance of C�UnoC (seen in
the upper two panels) is of minor interest when the focus is on the ‘ranking’ of the two models: In 88.2% of the sam-
ples, C�SZ wrongly indicates a positive effect of Xð1Þ (despite its relatively small variance), whereas C�UnoC indicates
this effect in only 48.8% of the samples (see the boxplots of the differences between full and reduced models pre-
sented in the lower two panels).
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fits (at significance level a ¼ 0:05). Consequently, in

429 of the 500 samples, we would have wrongly

concluded that the proportional hazards assumption

was satisfied—and hence would have trusted the

results of the Cox-based estimators. Again, this

result is largely insensitive to the choice of the stand-

ard deviation s in Equation (18) (see Appendix).

In conclusion, Figure 3 demonstrates that biased

medical decision making is possible even if a biostat-

istician carefully checks all underlying regularity

assumptions.

Effects of sample size and censoring rate
The results of the simulation study presented in the

‘Results of the Simulation Study’ section are based

on samples of size n¼N¼ 100 and a censoring rate

of �50%. Although these numbers are typical for

many biomarker studies, one might speculate that

the results presented in Figures 1 and 2 are affected

by sample size and censoring rate. To analyze these

effects, we repeated the simulation study, this time

using a larger sample size (n¼N¼ 1000) and zero

percent censoring.

The results are presented in Figure 4. Here, the

upward bias of the Cox-based estimators is much

smaller than the corresponding bias in Figure 1.

However, the estimators C�SZ, C�GH and C�SZcum
still

show a tendency to prefer the full model over the

null model. In contrast, the IPCW-based estimators

C�UnoC and C�Unocum
remain unbiased and do not

indicate a positive effect of the non-informative bio-

marker Xð2Þ on prediction accuracy. In summary, the

results presented in Figure 4 suggest that biased med-

ical decision making is possible even in favorable

settings where the sample size is large and where

the rate of censored observations is small.

Violations of the random censoring
assumption
The IPCW-based estimators C�UnoC and C�Unocum

,

which outperformed the Cox-based estimators of

C� and C�cum in the previous subsections, rely on

Figure 3: Checks of the proportional hazards assumption. The four panels show the distribution of P-values that
were obtained by applying T(G)-tests to the Cox regression models discussed in the ‘Results of the Simulation Study’
section.The gray bars correspond to the fraction of tests with a P-value smaller than 0.05 (indicating significant depart-
ures from the proportional hazards assumption). In 71 of the 500 samples, at least one of the four tests resulted in
P< 0.05.Consequently, the proportional hazards assumption was wrongly adopted in 85.8% of the samples.
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the assumption that the censoring time C is inde-

pendent of T. To analyze whether C�UnoC and

C�Unocum
retain their favorable behavior in the pres-

ence of non-random censoring, we repeated the

simulation study, this time generating censoring

times from an exponential distribution with rate

lcens:viol :¼ lI � expð �TÞ= expðTÞ; ð19Þ

where �T was the mean of T in the learning sample,

and lI ¼ 0:5695 was an additional parameter that re-

sulted in �50% censored observations. By choosing

lI ¼ 0:5695, the correlation between T and C�HZ

was approximately equal to 0.45. Consequently, the

random censoring assumption was violated, and obser-

vations with large survival times tended to have a small

probability of being censored at early time points.

The results of the additional simulation study are

presented in Figure 5. There is only little difference

to the results presented in Figure 1. Specifically, the

IPCW-based estimators C�UnoC and C�Unocum
are

almost unaffected by the violation of the random

censoring assumption (although they show a slight

increase in variance).

BREASTCANCERDATA
Breast cancer data by van deVijver et al.
We first analyzed a data set of 144 lymph node posi-

tive breast cancer patients that was collected by the

Netherlands Cancer Institute [4]. The data set, which

is publicly available as part of the R add-on package

penalized [34], was used by van de Vijver et al. [4]

to validate a 70-gene signature for metastasis-free

survival after surgery [20]. In addition to the expres-

sion levels of the 70 genes, the data set contains five

clinical predictor variables [tumor diameter, number

of affected lymph nodes, estrogen receptor (ER)

status, grade of the tumor and patient age].

Observed metastasis-free survival times ranged from

0.06 months to 17.66 months, with 67% of the sur-

vival times being censored.

The main aim of our analysis was to investigate

whether the estimators presented in the ‘Estimators

of Discrimination Measures’ section were able to dis-

criminate between the full model (containing clinical

predictorsþ 70 genes) and the reduced model (con-

taining clinical predictors only). Using Cox regres-

sion, we first built a predictor for the full model. To

avoid overfitting the data, a ridge penalty was

imposed on the effects of the 70 genes (see [35]).

Using a ridge penalty shrinks coefficient estimates

toward zero, thereby reducing the variance of the

coefficient estimates and avoiding multicollinearity

problems. Ridge-penalized regression is also applic-

able in high-dimensional settings with several hun-

dreds (or even thousands) or genes. In contrast to the

gene expression measurements, no penalty was

imposed on the clinical predictor variables. This

Figure 4: Results of the simulation study.Boxplots cor-
respond to estimates of C� and C�cum using the methods
described in the ‘Estimators of Discrimination Measures’
section. Predictions were obtained from fitting Cox re-
gressionmodels to 500 learning samples generated from
Equation (18), this time using a larger sample size
(n¼N¼1000) and 100% uncensored observations.
Censoring times were independent of T.White boxplots
correspondto thereducedmodel,whereasgrayboxplots
correspond to the full model.The dashed horizontal line
corresponds to the truevalue ofC� andC�cum.

Figure 5: Results of the simulation study. Boxplots
correspond to estimates of C� and C�cum using themeth-
ods described in the ‘Estimators of Discrimination
Measures’ section. Predictions were obtained from fit-
ting Cox regression models to 500 learning samples
generated from Equation (18). Censoring times were
generated from Equation (19), which implied that cen-
soring was no longer independent of T.White boxplots
correspond to the reduced model, whereas gray box-
plots correspond to the full model.The dashed horizon-
tal line corresponds to the true value of C� and C�cum.
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strategy ensured that established predictors (such as

the clinical variables) were favored over molecular

predictors whose added predictive value had yet to

be investigated [12]. The use of the ridge penalty

automatically resulted in misspecified Cox models

(because effect estimates were shrunken towards

zero). In case of the reduced model, T(G)-tests indi-

cated significant departures from the proportional

hazards assumption (P¼ 0.009 for the global test).

To ensure that the combined predictor did not

only work on the data it was derived from but also

on ‘external’ validation data, we split the breast

cancer data randomly into a learning sample contain-

ing two-thirds of the observations (n¼ 96) and a test

sample containing one-third of the observations

(N¼ 48). Cox regression was applied to the learning

data using the R package penalized. Internal 5-fold

cross-validation on the learning sample was used to

determine the optimal tuning parameter of the

ridge penalty. The resulting combined predictor

was used as a marker to predict survival of the ob-

servations in the test data. To evaluate the perform-

ance of the combined predictor/marker, we used

the estimators of C� and C�cum presented in the

‘Estimators of Discrimination Measures’ section.

The learning and validation procedure was repeated

100 times using different random splits of the data.

In addition to fitting the full models, we used the

same 100 sets of learning and test data and fitted

reduced Cox models based on the five clinical vari-

ables only.

Figure 6 shows the estimates of C� and C�cum, as

obtained from the estimators presented in the

‘Estimators of Discrimination Measures’ section. It

can be observed that all estimators took larger

values on average when the 70 genes were added

to the clinical predictor variables. The magnitude

of the added predictive value was generally small,

with the differences in the estimates of C� and

C�cum being smaller than 0.05 throughout. Such re-

sults are frequently observed in biomarker studies and

do not seem to depend on the performance measure

used for model evaluation (see, e.g. Steyerberg et al.
[3]). On the other hand, Wilcoxon signed-rank tests

on the differences between full and reduced models

suggested that the 70 genes significantly improved

prediction accuracy (Bonferroni–Holm-adjusted

P< 0.001 for all methods). Consequently, although

being different in magnitude, all estimators indicated

a small benefit of adding the 70 genes to the clinical

predictor variables. This result is confirmed by the

cumulative/dynamic AUC curves presented in

Figure 7.

Interestingly, the results presented in Figure 6 are

similar to the results of the simulation study pre-

sented in Figure 1. For example, the IPCW-based

estimates are smaller on average than their

Figure 7: Breast cancer data by van deVijver et al. [4].
Cumulative/dynamicAUCcurveswereobtainedbyapply-
ing the estimators proposedbyUno etal. [10] and Song&
Zhou [16] to100 test samples of sizeN¼ 44.The solid and
dashed lines correspond to the average cumulative/dy-
namicAUCcurves.Itis seenthatbothestimatorsindicate
improved prediction accuracy if the 70 genes are added
to the clinicalpredictors.Interestingly, thedifferencesbe-
tween the two estimators (which are also seen in Figure
6) are largest at late timepoints. Similar resultswere ob-
tained when applying estimators of incident/dynamic
AUC to the100 test samples.

Figure 6: Breast cancer data by van deVijver et al. [4].
Boxplots correspond to estimates of C� and C�cum, as
obtained from 100 random splits of the data (n¼ 96,
N¼ 48). White boxplots correspond to the reduced
Cox regression model (using the clinical predictors
only), whereas gray boxplots correspond to the full
model (ridge-penalized Cox regression based on the
clinical predictors and the 70-gene signature by van’t
Veer et al. [20]).
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Cox-based counterparts. Also, the differences be-

tween the full and reduced models are larger for

the Cox-based estimators C�SZ, C�GH, C�SZcum
than

for the IPCW-based estimators C�UnoC, C�Unocum
and

for the estimators C�HZCox
, C�HZ proposed by

Heagerty & Zheng. Based on the results of the simu-

lation study, we may therefore speculate that the

Cox-based estimators show a slight upward bias,

and that the differences between the full and reduced

models are slightly overestimated by the Cox-based

estimators C�SZ, C�GH and C�SZcum
.

In a final step, we assessed the specificity of the

estimators by fitting non-informative null models to

the breast cancer data. To this purpose, we repeated

the analysis described earlier in the text, this time

applying a random permutation to the observed sur-

vival times (and also to the values of the event indi-

cator �). Consequently, the association between the

predictor variables and the survival outcome was des-

troyed, and the ‘true’ prediction accuracy of both the

full and the reduced model was equal to

C� ¼ C�cum ¼ 0:5. Figure 8 shows that none of the

estimators indicated a notable difference between the

full and the reduced model in this case. This result is

plausible because of the random permutation of the

survival times and also because there was no violation

of the Cox proportional hazards assumption in the

non-informative null model. On the other hand, the

average values of C�HZCox
, C�HZ, C�SZ, C�GH and

C�SZcum
were distinctly larger than 0.5, implying that

the Cox-based estimators overestimated the true pre-

diction accuracy of the models. This result suggests

that all Cox-based estimators have a non-ignorable

small-sample bias (whereas the IPCW-based estima-

tors seem to have a relatively large small-sample vari-

ance). It is consequently not advisable to use the

value 0.5 as a benchmark when Cox-based estima-

tors are applied to evaluate the discriminatory power

of a prediction model. Instead, we suggest that

estimates of C� and C�cum should additionally be

compared with the estimates obtained from a null

model that is based on a random permutation of

the observed survival times.

Breast cancer data by Desmedt et al.
Desmedt et al. [5] collected a data set of 196 node-

negative breast cancer patients to validate a 76-gene

expression signature developed by Wang et al. [21].

The signature, which is based on Affymetrix micro-

arrays, was developed separately for ER-positive pa-

tients (60 genes) and ER-negative patients

(16 genes). In addition to the expression levels of

the 76 genes, four clinical predictor variables were

considered (tumor size, ER status, grade of the

tumor and patient age). The data are publicly avail-

able on GEO (http://www.ncbi.nlm.nih.gov/geo,

accession number GSE 7390).

Similar to Wang et al. [21], we used the time from

diagnosis to distant metastases as primary outcome

and investigated whether adding the 76 genes to

the clinical variables increased prediction accuracy.

Observed metastasis-free survival ranged from 125

days to 3652 days, with 79.08% of the survival

times being censored.

To analyze the added predictive value of the 76

genes, we compared the clinical model with the

combined model incorporating the clinical variables

and the 76 genes. Analogous to the previous subsec-

tion, we used Cox regression to build the combined

predictor and imposed a ridge penalty on the effects

of the 76 genes. Cross-validation was performed as

before by splitting the data randomly (100 samples,

n¼ 131, N¼ 65). To account for the fact that the

76-gene signature was developed separately for ER-

positive and ER-negative patients, we further

included interaction terms between ER status and

the 76 genes in the model equation. Additionally,

we included a five-level factor variable that repre-

sented the hospitals in which the data were collected.

Figure 8: Breast cancer data by van deVijver et al. [4].
Boxplots correspond to estimates of C� and C�cum, as
obtained from 100 random splits of the data (n¼ 96,
N¼ 48). In contrast to the results shown in Figure 6,
all estimates are based on random permutations of the
observed survival times. Consequently, the true value
of both C� and C�cum was equal to 0.5. White boxplots
correspond to the reduced Cox regression model
(using the clinical predictors only), whereas gray box-
plots correspond to the full model (ridge-penalized
Cox regression based on the clinical predictors and
the 70-gene signature by van’t Veer et al. [20]).
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In case of the reduced model using the clinical vari-

ables only, T(G) tests for age and ER status indicated

significant departures from the proportional hazards

assumption (p¼ 0.007 and p¼ 0.041, respectively).

Figure 9 shows the estimates of C� and C�cum, as

obtained from the estimators presented in the

‘Estimators of Discrimination Measures’ section.

Similar to the breast cancer data by van de Vijver

et al. [4], all estimators took larger values on average

when the 76 genes were added to the clinical pre-

dictor variables. Wilcoxon signed-rank tests on the

differences between combined and clinical estimates

suggested that the 76 genes significantly improved

prediction accuracy (Bonferroni–Holm-adjusted

P< 0.001 for all methods). Again, the boxplots pre-

sented in Figure 9 are similar to those presented in

Figures 1 and 6. Specifically, the IPCW-based esti-

mates are smaller on average than their Cox-based

counterparts. This result is confirmed by the cumu-

lative/dynamic AUC curves presented in Figure 10.

In the same way as in the ‘Breast cancer data by

van de Vijver et al.’ section, we additionally assessed

the specificity of the estimators of C� and C�cum by

fitting non-informative null models to the breast

cancer data. Again, this was accomplished by apply-

ing random permutations to the observed survival

times and to the values of the event indicator �.

Similar to the breast cancer data by van de Vijver

et al. [4], none of the estimators indicated a notable

difference between the full and the reduced models

in this case (Figure 11). Also, the average values of

C�HZCox
, C�HZ, C�SZ, C�GH and C�SZcum

were again larger

than 0.5, implying that the Cox-based

estimators overestimated the prediction accuracy of

the models.

Summarizing the results obtained from the two

breast cancer data sets, all estimators of discrimination

measures indicated a small increase in prediction ac-

curacy when the gene signatures were added to the

clinical models. This result suggests that effects of a

gene signature on prediction accuracy are likely to be

detected by all estimators, even if the underlying

regularity assumptions are violated to a certain

degree.

DISCUSSION
Deriving unbiased estimates of prediction accuracy is

essential for the evaluation of molecular markers and

gene signatures. In this respect, several authors have

pointed out that the calculation of P-values is not

sufficient for measuring the prognostic effect of new

markers [36, 37]. This is not only because statistical

hypothesis tests may be biased due to small sample

sizes or the violation of regularity assumptions but

also because effect sizes of significant biomarkers are

often small and may therefore not lead to relevant

improvements in the prediction of patient survival.

Figure 10: Breast cancer data by Desmedt et al. [5].
Cumulative/dynamic AUC curves were obtained by
applying the estimators proposed by Uno et al. [10] and
Song & Zhou [16] to 100 test samples of size N¼ 65.
The solid and dashed lines correspond to the average
cumulative/dynamic AUC curves. It is seen that both es-
timators indicate improved prediction accuracy if the
76 genes are added to the clinical predictors. Similar re-
sults were obtained by applying estimators of incident/
dynamic AUC to the 100 test samples.

Figure 9: Breast cancer data by Desmedt et al. [5].
Boxplots correspond to estimates of C� and C�cum, as
obtained from 100 random splits of the data (n¼131,
N¼ 65). White boxplots correspond to the reduced
Cox regression model (using the clinical predictors
only), whereas gray boxplots correspond to the full
model (ridge-penalized Cox regression based on the
clinical predictors and the 76-gene signature by Wang
et al. [21]).
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The time-dependent AUC curves and summary

indices considered in this article are measures of the

discriminative ability of biomarkers and hence con-

stitute an easy-to-interpret approach for the quanti-

fication of the accuracy of survival predictions.

During the past years, time-dependent ROC analysis

has therefore become a popular tool for marker com-

parisons in biomedical studies [1, 7, 15]. Most im-

portant, AUC-based discrimination measures for

survival analysis share the same characteristics as trad-

itional AUC-based measures in classification tasks

[14, 38].

Because discrimination measures cannot be calcu-

lated directly in the presence of censoring, estimators

of time-dependent ROC and AUC curves have to

be applied. In a previous study [27], we showed that

the finite-sample behavior of these estimators is

strongly affected by confounding factors (such as

censoring rate, model misspecification and the

degree of information contained in the predictor

variables). In this article, we went one step further

and focused directly on the effect of model misspe-

cification on medical decision making. In other

words, we did not analyze the magnitude of the

finite-sample bias induced by the confounders but

focused on the ranking of competing prediction

models. By using the summary indices C� and

C�cum as ranking criteria (as previously proposed by

Yu et al. [15] and Ma & Song [39]), we analyzed

whether the violation of regularity assumptions

affected the analysis of the ‘added predictive value’

of newly discovered biomarkers. Our simulation

study showed that estimates of C� and C�cum may

lead to wrong conclusions about the utility of new

biomarkers if they are based on misspecified Cox

regression models.

Statistical practitioners might argue that the prob-

lems discussed in this article can easily be avoided by

carrying out routine checks of the proportional haz-

ards assumption. As demonstrated in the ‘Simulation

Study’ section, however, this supposition is not true

at all: our simulation study shows that departures

from the proportional hazards assumption may be

hard to detect even if the true data-generating

model is simple and even if sample sizes are

moderately large (n¼ 100). Consequently, biased

medical decision making is possible even if biostatis-

ticians carefully check all regularity assumptions.

Based on the results presented in this article, we

recommend to use of the IPCW-based estimators

C�UnoC and C�Unocum
to evaluate the discriminatory

power of survival models. Although the validity of

these estimators depends on the assumption that sur-

vival and censoring times are independent (at least

conditional on X), simulation results have suggested

that C�UnoC and C�Unocum
are barely affected by viola-

tions of the random censoring assumption (‘Violations

of the Random Censoring Assumption’ section, see

also [27]). Alternatively, we propose to apply the

varying-coefficient estimator C�HZ by Heagerty &

Zheng [14]. Although this estimator showed a slight

upward bias in our simulation study, it did not result

in biased rankings of competing prediction models–

and hence did not lead to wrong conclusions about

the utility of new biomarkers.

Key Points

	 Recent developments in molecular biology have led to the mas-
sive discovery of new biomarkers for the prediction of survival
outcomes.

	 The estimation of AUC-based discrimination measures is a
popular approach to evaluate the accuracy of these predictions.

	 Estimators of discrimination measures depend on regularity as-
sumptions that have to be satisfied to guarantee the validity of
the estimators.

	 Violations of the regularity assumptionsmay lead to a non-ignor-
able bias in estimators of discriminationmeasures and therefore
to biasedmedical decisionmaking.

	 Our results suggest that inverse-probability-of-censoring-
weighted estimators of discriminationmeasures are a robust ap-
proach to address the problem of biased medical decision
making.

Figure 11: Breast cancer data by Desmedt et al. [5].
Boxplots correspond to estimates of C� and C�cum, as
obtained from 100 random splits of the data (n¼131,
N¼ 65). In contrast to the results shown in Figure 9,
all estimates are based on random permutations of the
observed survival times. Consequently, the true value
of both C� and C�cum was equal to 0.5. White boxplots
correspond to the reduced Cox regression model
(using the clinical predictors only), whereas gray box-
plots correspond to the full model (ridge-penalized
Cox regression based on the clinical predictors and
the 76-gene signature by Wang et al. [21]).
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APPENDIX 1

EFFECTOF THE STANDARD
DEVIATION sONTHERESULTSOF
THE SIMULATION STUDY
To investigate whether changes in the value of the

standard deviation s in Equation (18) affect the

results of the simulation study, we repeated the ana-

lysis of the ‘Results of the Simulation Study’ section

using different values of s. Figure 12 visualizes the

estimated differences between the full and reduced

models that were obtained from the estimators of C�

and C�cum. Obviously, different values of s resulted

in the same patterns as those presented in Figure 1:

Although the mean differences between the full and

reduced models were close to zero for the IPCW-

based estimators estimators C�UnoC and C�Unocum
and

for the estimators C�HZCox
and C�HZ by Heagerty &

Zheng [14], the Cox-based estimators C�SZ, C�GH

and C�SZcum
resulted in mean differences that were

distinctly larger than zero. Consequently, the latter

estimators wrongly indicated an additional effect of

the biomarker Xð1Þ on prediction accuracy, regardless

of the value of s.

Similarly, there were no qualitative changes

regarding the results of the T(G)-tests to check the

proportional hazards assumption. For example, esti-

mates of the probabilities, that at least one of the four

tests resulted in a P-value smaller than 0.05, are

shown in Table 1. Because the predictors in the

two subgroups of Equation (18) become less infor-

mative as s becomes larger, there was a decrease in

the fraction of P-values smaller than 0.05 when the

value of s was increased. However, even for very

small values of s, only �20% of the T(G)-tests

detected departures from the Cox proportional

hazards assumption.

Figure 12: Results of the additional simulation studypresentedin theAppendix.Theboxplotsvisualize thedifferences
between the full and reduced models when estimating C� and C�cum by the methods described in the ‘Estimators of
DiscriminationMeasures’ section. Each boxplot corresponds to a specific value of the standard deviation sin Equation
(18).Predictionswere obtainedby fittingCox regressionmodels to 500 learning samples generated fromEquation (18).
Thehorizontal line corresponds to the truemeandifferencebetween the full andreducedmodels.
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Table 1: Results of the additional simulation study presented in the Appendix

s 0.01 0.03 0.05 0.10 0.50 1.00 3.00 5.00

Fraction of P< 0.05 (%) 20.4 20.0 20.2 20.4 15.6 8.0 10.4 10.4

The table contains the estimated probabilities that at least one of the four T(G)-tests discussed in the ‘Checks of the Proportional Hazards
Assumption’ section resulted in a P-value smaller than 0.05. All estimates are based on 500 learning samples generated from Equation (18).
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