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ABSTRACT
Recently, new protocols were proposed which allow two par-
ties to reconcile their ordered input sets in a fair and privacy-
preserving manner. In this paper we present the design and
implementation of these protocols on different platforms and
extensively study their performance.

In particular, we present the design of a library for
privacy-preserving reconciliation protocols and provide de-
tails on an efficient C++ implementation of this design.
Furthermore, we present details on the implementation of
a privacy-preserving iPhone application built on top of this
library. The performance of both the library and the iPhone
application are comprehensively analyzed. Our performance
tests show that it is possible to efficiently implement pri-
vate set intersection as a generic component on a desktop
computer. Furthermore, the tests confirm the theoretically
determined quadratic worst-case behavior of the privacy-
preserving reconciliation protocols on the desktop as well
as the iPhone platform. The main result of the perfor-
mance analysis is that the protocols show linear runtime
performance for average-case inputs. This is a significant
improvement over the worst-case and is key for making these
protocols highly viable for a wider range of applications in
practice.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]:
General—Security and protection; C.2.2 [Computer-
Communication Networks]: Network Protocols—
Applications; C.2.4 [Computer-Communication Net-
works]: Distributed Systems—Distributed Applications

General Terms
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1. INTRODUCTION
Secure multi-party protocols allow two or more parties

to jointly compute a function of the inputs of each of the
parties without requiring any of the parties to reveal their
private input to anyone. Examples for such functions are
computing the average of the inputs or determining the in-
tersection of the input sets. In this context, Meyer et al.
recently proposed protocols that allow two parties to recon-
cile their ordered input sets in a fair and privacy-preserving
manner [24, 25]. In these protocols, the order of the private
input set of a party is associated with the private prefer-
ences of that party with respect to the elements of its input
sets. Fair reconciliation then means that the new proto-
cols acknowledge the preferences of the parties in that they
output only those common elements of the ordered input
sets that maximize a common preference order. Applica-
tions of these protocols range from reconciling policies in
Future Internet Architectures [29, 32] to determining com-
mon candidate time-slots while scheduling a meeting with-
out involvement of a trusted server. In this paper we focus
on the implementation and performance evaluation of these
protocols. In particular, we describe the design and C++
implementation of a library for privacy-preserving reconcil-
iation protocols on ordered sets. The library includes effi-
cient implementations of the Paillier cryptosystem and the
privacy-preserving set intersection protocol by Freedman et
al. In addition, we describe the implementation of a proof-
of-concept iPhone application appoint that is built on top of

Figure 1: Illustration of appoint
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the C++ library. appoint allows two parties to schedule a
meeting, i.e., agree on a meeting time and date in a privacy-
preserving manner. Each party has its own schedule which
has a number of open time-slots available for potentially
accommodating this meeting (see Figure 1). In addition, ei-
ther party will typically prefer some time-slots over others.
Using preference-maximizing reconciliation protocols for or-
dered sets, the two parties can agree on a time-slot which
is open in both schedules and maximizes the parties’ com-
mon preferences. In this context, it is in the interest of both
parties to keep their individual schedules private while still
being able to agree on a common meeting time. If one party
published its entire schedule, it would allow the other party
to possibly deduce sensitive information. Examples include
work habits (e.g., the person never starts working before
10 am) or work load (evidenced by many open time-slots).

We provide a comprehensive performance evaluation of
our protocols on a desktop computer as well as the iTouch1.
The experiments on the desktop show that it is possible
to efficiently implement private set intersection as a generic
component. Furthermore, the tests confirm the theoretically
determined quadratic worst-case behavior of the privacy-
preserving reconciliation protocols [24]. The main result of
the performance analysis on the desktop is that the proto-
cols show linear runtime performance for average-case in-
puts. This is a significant improvement over the worst-case
and is key for making these protocols highly viable for a wide
range of applications in practice. The experiments on the
iTouch further underline our protocols’ practical relevance
and show that smaller privacy-preserving applications are
already viable on today’s smartphones.

The remainder of this paper is organized as follows: Sec-
tion 2 provides a brief overview on related work. In Sec-
tion 3, the privacy-preserving tools and protocols are briefly
reviewed. Section 4 presents the design and implementation
of the library while Section 5.2 describes the implementa-
tion of application appoint. Finally, Section 6 focuses on the
extensive performance evaluations. We close the paper with
some remarks on future work.

2. RELATED WORK
Since Yao’s seminal paper [35] on secure multi-party com-

putation (SMPC), the field evolved from purely theoretical
to practical. For example, recently, Pinkas et al. described
the implementation of a two-party protocol using Yao’s gar-
bled circuits [30]. Other efforts of implementing general pur-
pose SMPC protocols include [7–9,22,23].

Apart from general purpose SMPC, specialized protocols
have been introduced to solve the multi-party computation
problem for specific operations. One of these operations is
private set intersection (PSI) which forms the foundation
of the reconciliation protocols implemented and analyzed
in this paper. Many PSI protocols have been suggested,
e.g., [12–15, 19, 20]. For the performance analysis described
in this paper we implemented the protocol suggested by
Freedman et al. in [15], which is based on oblivious polyno-
mial evaluation. Nevertheless, our overall implementation is
designed to allow for a simple integration of any other PSI
protocol in the future.

1The 3rd generation iPod touch (iTouch) is used for devel-
opment and testing. It is based on the same hardware as
the iPhone 3GS.

Voris et al. [34] previously performed an initial perfor-
mance evaluation of the privacy-preserving reconciliation
protocols introduced by Meyer et al. [24]. However, their
work has shortcomings in that the analysis left open a num-
ber of crucial questions. In particular, the work in [34] does
not provide explanations on the characteristics of the ex-
perimental results, e.g., why the experimental runtime is
approaching a limit for larger set sizes. This especially is a
problem since the experimental results are in disagreement
with theoretical predictions. In addition, the experiments
in [34] were not performed in a well-controlled test environ-
ment. That is, both, the length of the set elements as well
as the number of elements in a set were changed at the same
time. Furthermore, sets were generated at random (up to
1 million entries) but only 10 identical runs were averaged
for each data point. Yet, the large number of possible set
configurations would require significant averaging over dif-
ferent randomized sets in order to obtain a representative
result. Overall, the experimental analysis done to date does
not allow for any conclusions on the true practical behavior
of the protocols introduced in [24].

The focus of this work is on analyzing the behavior of
the recently revised protocols [25] in the worst and average
case—with a particular focus on answering the open ques-
tions of [34] and presenting solid experimental evidence for
the performance of the protocols. Furthermore, this work
strives to provide a better understanding for the practical
performance of the private reconciliation protocols and thus
shows their suitability for a wide range of applications in
practice. In particular, our proof-of-concept iPhone appli-
cation underlines the protocols’ practical relevance.

Today, SSL and PKI functions are part of any smartphone
API (e.g., [2, 5]). Furthermore, the increased performance
of mobile devices gives rise to more involved security- and
privacy-related applications (e.g., [10, 16]). To the best of
our knowledge, however, to date the field of secure multi-
party computation on mobile devices is mostly unexplored.
Our proof-of concept iPhone application is a first step to
investigate whether or not privacy-preserving applications
are already viable on smartphones.

3. PRELIMINARIES

3.1 Homomorphic Encryption
The privacy-preserving tools, which are at the core of the

privacy-preserving reconciliation protocols by Meyer et al.,
require an additively homomorphic and semantically secure
public key cryptosystem [15].

Definition 1 (Homomorphic Encryption). An en-
cryption scheme is said to be homomorphic if for given en-
cryptions Ek(m1), Ek(m2) it holds for all encryption keys k
that Ek(m1 ⊕m2) = Ek(m1) ⊗ Ek(m2) for some operators
⊕ in the plaintext space and ⊗ in the ciphertext space.

It is important to note that the operation ⊗ can be per-
formed without prior decryption.

Definition 2 (Semantic Security). In a semanti-
cally secure setting an adversary does not learn anything
about the plaintext (besides its length) from given cipher-
texts [18].2

2Semantic security is often referred to as indistinguishability
of encryptions.
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In the following, we will use the Paillier cryptosystem [28].
It is a semantically secure public key cryptosystem based on
the composite residuosity assumption preserving the group
homomorphism of addition. That is, given two ciphertexts
E(m1), E(m2) one can efficiently compute E(m1 + m2).
Similarly, E(m1 · c) can be obtained given only E(m1) and
a constant c.

3.2 Adversary Model
Following the work in [25], this paper focuses on a pas-

sive adversary who is honest but curious and is generally
referred to as semi-honest. This can informally be described
as a person, algorithm, or program which follows the proto-
col and performs all required computations. Yet, it might
store intermediate results and do additional polynomial time
computations with the goal of learning as much as possible.
A formal definition is given in [17]. A protocol is said to
be privacy-preserving in the semi-honest model if no party
learns anything but what can be derived from the output
of the protocol and its own private input. In general, semi-
honest adversaries are contrasted by a malicious adversary
who can show arbitrary behavior.

3.3 Oblivious Polynomial Evaluation
Freedman et al. (FNP) developed a set of tools to fa-

cilitate privacy-preserving set intersections. Their scheme
requires a semantically secure homomorphic cryptosystem
such as Paillier’s [15]. FNP’s construction assumes a chooser
C and a sender S and allows these two parties to compute
the intersections XC ∩XS of their private sets XC and XS
(chosen from the same domain). At the end of the protocol,
C only learns which elements C and S have in common and
S learns nothing. The technique used by FNP is oblivious
polynomial evaluation. Oblivious means that S only sees
encrypted coefficients and evaluates the polynomial without
having access to its actual coefficients.

The protocol works as follows: First, party C generates a
polynomial containing all her set elements ci as roots:

pC(x) = (x− c1) · (x− c2) . . . (x− cn) =

n∑
i=0

αi · xi (1)

Then, C encrypts all αi using her public key and sends them
to S. S chooses a random ri for each si in his set and
obliviously computes psiC := EC (ri · pC(si) + si). Party S
then sends all psiC back to C. C uses her private key to
decrypt the result. Note that psiC decrypts to si ∈ XC if si
is in XC and to a random number otherwise. Thus, C can
tell which elements of S are also in her set. In order for S
to be able to also determine the intersection, the protocol is
executed in the opposite direction. The protocol is privacy-
preserving in the semi-honest model.

3.4 Privacy-Preserving Reconciliation
In the following we assume that party A’s (B’s) private

input is a set SA (SB) of size n with elements ai (bi) for
1 ≤ i ≤ n.

The 3PRC protocols [24] introduce fairness into the rec-
onciliation process. Each set element is associated with a
preference, i.e., its position within the set—also referred to
as rank of an element. The respective set is referred to as
ordered set. Given such an ordered set, the 3PRC protocols
allow two parties A and B to reconcile their ordered sets
(assumed to be from the same domain and of equal length)

such that the result maximizes a combined preference order
≤AB under a preference order composition scheme C.

The 3PRC protocols by Meyer et al. do not inherently
enforce a specific preference order composition scheme. In-
stead, a preference order composition scheme C may be cho-
sen based on a particular application. In [24], two prefer-
ence order composition schemes were introduced which im-
plement common notions of fairness: Sum of Ranks and
Minimum of Ranks:

Definition 3 (Sum of Ranks).

∀x, y ∈ SA ∩ SB : x ≤AB y :⇔
rankA(x) + rankB(x) ≤ rankA(y) + rankB(y)

(2)

where rankA(x) and rankA(y) (rankB(x) and rankB(y))
correspond to the preference of x and y in set SA (SB).

Definition 4 (Minimum of Ranks).

∀x, y ∈ SA ∩ SB : x ≤AB y :⇔
min (rankA(x), rankB(x)) ≤ min (rankA(y), rankB(y))

(3)

where rankA(x) and rankA(y) (rankB(x) and rankB(y))
correspond to the preference of x and y in set SA (SB).

The 3PRC protocols [25] encompass multiple rounds. In
each round, pairs of set elements are compared according
to the respective combined preference order ≤AB . For the
sum of ranks composition scheme, the protocol includes up
to 2n − 1 rounds. In round 1 ≤ i ≤ 2n − 1, all pairs
of elements are compared where the sum of the ranks of
these elements equals 2n + 1 − i. For the minimum of
ranks, the protocol includes at most n rounds. In round
1 ≤ i ≤ n, the elements with rank i are compared with
all elements having rank greater or equal to i. The com-
parisons in the 3PRC protocols which were first introduced
in [24] are based on the oblivious polynomial evaluation by
Freedman et al. Specifically, comparing the two set ele-
ments ai and bj works as follows: Party A creates a poly-
nomial pA(x) = (x − ai) =

∑1
i=0 αi · x

i, encrypts the coef-
ficients αi with her public key and sends them to B. Party
B obliviously evaluates the polynomial using bj , i.e., com-

putes p
bj
A := EA (rj · pA(bj) + bj) and sends the result to

A. Party A now decrypts the result and checks whether it
matches the corresponding ai. If a match was found, she
notifies B (through specific match confirmation operations),
otherwise the protocol continues with a pair of set elements
having an equal or lower combined preference. Note that
this is a simplified description of the actual protocols [24].
In the following, we will refer to these protocols as 3PRC-
FNP-implicit as the oblivious polynomial evaluation of the
Freedman protocol is implicitly used in these protocols.

As described in [25], it is possible to generalize the original
3PRC protocols in that the comparison may be carried out
using an arbitrary PSI protocol. More specifically, it is pos-
sible to modularize the original protocols such that any PSI
protocol may be explicitly used as a building block for the
3PRC protocols. In the following, we distinguish between
two variants of the modular protocols—3PRC-PSI-explicit-
cached and 3PRC-PSI-explicit-non-cached. These two pro-
tocols differ in that 3PRC-PSI-explicit-cached implements
a caching mechanisms which allows the reusing of data. In
particular, any set element may be part of comparisons at
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Figure 2: Building blocks of the PROS library.

various rounds. Instead of having to resend the correspond-
ing data in each one of these rounds, the caching mechanism
implemented in 3PRC-PSI-explicit-cached allows the elimi-
nating of these additional data exchanges.

All the 3PRC protocols (i.e., 3PRC-FNP-implicit, 3PRC-
PSI-explicit-non-cached, and 3PRC-PSI-explicit-cached)
were shown to be privacy-preserving in the semi-honest
model [25], i.e., upon termination of the protocols, parties A
and B have learned nothing but the set element that maxi-
mizes the combined preference order.

4. DESIGN AND IMPLEMENTATION OF
THE PROS LIBRARY

The first main contribution of this paper is our new de-
sign of a modular library for Privacy-Preserving Reconcil-
iation of Ordered Sets (PROS) which can be used to ef-
ficiently build privacy-preserving applications. Figure 2
illustrates the design of our PROS library. Each main
component is coded in a different color and all interact-
ing components use well-defined interfaces. Therefore, spe-
cific implementations for each component can be exchanged
with other implementations–assuming they provide the same
functionality—without requiring changes to any of the other
components. The PROS protocols (blue) take ordered sets
as inputs (yellow). An ordered set is a set combined with
the ranks of its elements. Furthermore, the PROS protocols
use PSI protocols (red). Currently, only Freedman’s PSI,
which operates on a polynomial representation of the data
and uses a homomorphic cryptosystem, is implemented. The
network layer (green) enables the communication between
the different parties. All computations possibly involve long
integers. This, in particular, applies to operations involving
set elements, polynomials as well as cryptographic keys. The
library builds on the well-known and efficient GNU Multi-
Precision Arithmetic Library (GMP) [4]. In the following,
we describe the different components in greater detail.

4.1 Ordered Sets
To allow for the flexibility of accommodating a multitude

of sets containing different types of elements in the future,
operations involving sets in our new library were imple-
mented on an interface-defining virtual ordered set class.
Internally, ordered sets are represented as a vector of inte-
gers and the position within the vector implicitly specifies
the element’s rank. The ordered set of integers is an imple-
mentation of the virtual ordered set class and provides all
the necessary functions. New set element types, which are
different from plain integers, can easily be integrated into

our library. In Section 5.2 this will be demonstrated for our
iTouch application appoint which enables the scheduling of
a meeting in a privacy-preserving manner.

4.2 Homomorphic Cryptosystem
The efficiency of the implementation of the homomorphic

cryptosystem has great influence on the overall performance
of privacy-preserving protocols. Each round of these proto-
cols typically involves several encryption/decryption opera-
tions as well as homomorphic operations (e.g., homomorphic
addition or homomorphic multiplication by a constant). It
is therefore crucial to develop efficient implementations of
these operations. The cryptosystem is implemented as an
individual class and it provides algorithms for key manage-
ment and exchange, encryption/decryption, as well as ho-
momorphic operations.

In particular, the Paillier cryptosystem was implemented
following the original description in [28]. It provides ho-
momorphic operations for addition and multiplication by
a constant. To determine primes p and q for the Pail-
lier cryptosystem, the key generation uses the Mersenne-
Twister pseudo random generator (PRG) provided by the
GMP library to first generate a random number of desired
length. The actual primes are determined as the next prime
greater than the random number generated by the PRG.
The UNIX /dev/random device provides the seed for the
PRG. GMP provides basic functions to perform modular
arithmetic. More involved constructions, as required by the
cryptosystem, were implemented from scratch.

Whenever possible, performance enhancements were in-
troduced in our implementation of the Paillier cryptosystem.
For example, all constants used during encryption and de-
cryption are precomputed at the time of key generation and
stored for later use. Furthermore, the decryption process in-
volves exponentiation modulo n2 which can be significantly
accelerated by first performing the calculations modulo the
square of the two primes and then combining the result us-
ing the Chinese Remainder Theorem (CRT) modulo n2 af-
terward [28].

The addition of other homomorphic cryptosystems to the
PROS library is part of future work.

4.3 Polynomial Representation
Polynomials and operations on them are defined by a vir-

tual polynomial class, which, in particular, provides func-
tions to efficiently multiply polynomials (e.g., as required by
Equation 1 in Freedman’s PSI).

Two classes implementing the polynomial interface were
developed: vectorpolynomial and flintpolynomial. The
latter is based on FLINT: Fast Library for Number The-
ory [3] and was introduced to leverage the efficient algo-
rithms provided by this library. Each class handles the rep-
resentation of as well as all operations on the polynomials.
In vectorpolynomial, polynomials are represented as vec-
tor of their coefficients. Since the coefficients represent large
integers, they are stored as mpz_class objects, the native
data type of GMP. flintpolynomial stores polynomials in
the native data types of FLINT, which are based on GMP
as well.

4.4 Network
In order to enable the execution of the reconciliation pro-

tocol, a communication interface between the (two) parties
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must be established. In our library, this was implemented
through UNIX Sockets using the Transmission Control Pro-
tocol (TCP). Consequently, our protocols can be executed
over basically any network used today.

A basic network interface was developed which allows
sending and receiving integers as well as arbitrary byte-
arrays over the network. This basic network class was ex-
tended to include a 32-bit header for all messages. This
method allows for an efficient transmission of messages of
arbitrary size.

In addition, the extended class provides functions to di-
rectly send mpz_class objects. GMP’s export function is
used to split long integers into blocks of 32 bits. These can
be transmitted at once and re-imported into an mpz_class

object, thus avoiding expensive string conversions.
When using FNP’s PSI protocol, the individual amount

of data transmitted in each round of the PROS protocols is
small (bounded by n2). To avoid transmission delays, the
TCP_NOWAIT option is used when creating the TCP socket.
This option disables Nagle’s algorithm, a performance en-
hancement for TCP [21, pp. 815-816], and enables immedi-
ate transmission after each send system call.

4.5 Private Set Intersection
Freedman’s PSI protocol (FNP-PSI) [15] forms the basis

for the PROS protocols. Its main component is the oblivious
evaluation of polynomials whose degree is equal to the size of
the involved sets. A polynomial of degree n can be evaluated
in Θ(n) using the Horner Scheme [11, p. 824]. Note that the
evaluation has to be performed obliviously using the homo-
morphic operations of the Paillier cryptosystem. Using the
homomorphic addition and multiplications by a constant,
Horner’s rule translates to E (p(x0)) = E

(∑n
i=0 ai · x

i
0

)
=

E(a0) · (E(a1) · . . . · (E(an−1) · E(an)x0)x0 . . .)x0

While Horner’s scheme traditionally reduces the number
of multiplications, the speed-up for the homomorphic op-
erations is even greater since multiplications on plaintexts
translate to (more expensive) exponentiations on cipher-
texts.

In the implementation of the FNP protocol, the proto-
col obtains the basic polynomial root for each set element
provided by the set class. Alice (in Freedman’s protocol
referred to as chooser C) multiplies all roots together us-
ing the functionality of the polynomial class such that they
form the polynomial of Equation 1.

The coefficients of this polynomial are encrypted using
Alice’s public key. Then, they are sent from Alice to Bob
(in Freedman’s protocol referred to as server S) who uses
Horner’s rule to efficiently evaluate the polynomial in an
oblivious fashion. The evaluation is repeated for all of Bob’s
set elements and the results are sent back to Alice. After
decryption, Alice uses the set class to determine which of
Bob’s set elements are members of her own set.

Our PSI implementation is based on two new interface-
defining virtual classes: PSI and Private Matching (PM).
Concrete implementations of PSI provide two functional-
ities: one to initialize a set intersection and to learn
the result and a second one to respond to a set intersec-
tion request. Each function takes the party’s set as input.
Our library uses Standard Template Library (STL) sets of
mpz_class objects. PM was introduced into the library to
handle degenerate sets of cardinality one. PM classes imple-

PrivateMatching PrivateSetIntersection

FreedmanPSIFreedmanPM

Figure 3: Class Hierarchy of the PSI and PM classes.

ment the same functions as PSI classes but take a single set
element (mpz_class) as input.

Freedman’s PSI was implemented based on this design
along with the corresponding PM implementation which
transforms the integer inputs into sets of cardinality one
and executes Freedman’s PSI on those. Figure 3 illustrates
the (simplified) class hierarchy. The PROS library will be
extended by other PSI protocols in the future.

4.6 Privacy-Preserving Reconciliation of Or-
dered Sets

We have developed implementations for all three
protocols, 3PRC-FNP-implicit and 3PRC-PSI-explicit
cached/non-cached (see Section 3.4). All protocols are im-
plemented as separate C++ classes, which makes the man-
agement of the network connection, the key management as
well as the generation of the sets independent of the proto-
cols themselves. Each protocol class provides member func-
tions which execute the protocol as either Alice or Bob. A
basic key exchange protocol was developed which enables
the exchange of the public keys of the two parties (executing
the PROS protocol) as well as populating each crypto class
with the appropriate keys. The performance of all variants
will later be analyzed in Section 6.

4.6.1 The 3PRC-FNP-implicit Implementation
3PRC and the preference order composition schemes were

analyzed in detail and the parts which are independent of
the composition scheme C were isolated and placed in a base
class from which all 3PRC protocols are derived. This setup
allows for easy addition of new preference order composition
schemes. The current implementation contains both com-
position schemes which were introduced in Section 3.4. The
concrete protocol classes for Sum of Ranks and Minimum
of Ranks provide the order in which the set elements are to
be compared. The structure of implementing a preference
order composition scheme consists of several loops which
construct and evaluate polynomials of the correct set ele-
ments according to the specifics of the respective preference
order composition scheme.3

4.6.2 The 3PRC-PSI-explicit Implementation
In order to facilitate that an underlying PSI protocol can

be substituted without having to modify the generic code
defining the order in which the PSIs are carried out, 3PRC-
PSI-explicit was implemented based on the PM interface in-
troduced in Section 4.5. Note, that only PM functionality
is required to implement 3PRC-PSI-explicit.

This approach of directly executing one PM per com-
parison adds additional overhead compared to 3PRC-FNP-
implicit. This is because each comparison causes the initi-

3It shall be noted that 3PRC-FNP-implicit does not directly
call the Freedman protocol which is implemented as part of
the PSI layer of the PROS library. Instead, it accesses the
polynomial representation and the homomorphic cryptosys-
tem directly.
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ating party to send some data (i.e., a polynomial in the case
of FNP’s PSI) corresponding to its set element to the other
party. In particular, this may result in the repeated send-
ing of data for the same element of the ordered set. In order
to remedy this shortcoming, a caching mechanism was intro-
duced into the PSI and PM class designs. The implementation
of the caching mechanism depends on the used PSI, since dif-
ferent data need to be stored for different PSI schemes. In
the case of Freedman’s PSI, this cache keeps track of which
polynomials have been sent to or received from the other
party. Received polynomials are stored locally thus avoiding
repeated transmission. Generally, an identifier id uniquely
identifies each cache entry. Initialize and respond func-
tions take the id as an additional parameter. Before the
actual set intersection is executed, initialize checks its
cache. If the id is in the cache then the data is not sent
again. Instead the function only receives the evaluation re-
sults from the other party, decrypts them, and returns the
result. If the id is not in the cache, the data is created,
encrypted, and sent as usual. Also, the new id is added to
the cache. Similarly, the respond function checks if certain
data was received in the past. If this is the case, the cached
data is processed and the results are sent to the other party.
If the id is not in the cache, the data is received as usual,
added to the cache (with its id), and then processed.

The party calling initialize passes as id parameter the
rank of its set element used in the current step. For the re-

spond function, the caller passes the rank of the other party’s
element which is to be compared against in this step as id.
This is necessary to determine if the other party’s data cor-
responding to the element of current rank was received be-
fore. Since the preference order composition schemes clearly
define which two elements in the respective sets are to be
compared in each step of the reconciliation process, the in-
formation on id is readily available to both parties and the
explicit use does not violate any privacy guarantees.

Whenever a concrete PSI, such as FNP, was used, we will
substitute the PSI portion of the name (e.g., 3PRC-FNP-
explicit).

5. appoint - A PROS APPLICATION
We have developed a proof-of-concept application ap-

point on top of the PROS library which allows the privacy-
preserving negotiation of a meeting time while taking user
preferences into account. In particular, the 3PRC-FNP-
implicit protocol is being used to facilitate the negotiation.
Since more and more people are using their mobile devices
to handle their calendars, our application was implemented
on Apple’s iTouch platform.

Since the iTouch API is exclusively provided for
Objective-C, applications for the iTouch are usually writ-
ten in Objective-C as well. Our existing library, however,
is C++ based. To combine these languages, the applica-
tion as a whole was compiled as Objective-C++, which is a
proper superset of C++, thus enabling the use of C++ code.
Combining C++ and Objective-C introduces the additional
challenge of interfacing two different class concepts.

In developing the app we have compiled the GMP library
for the iTouch platform. Due to the modular design of our
PROS library it was possible to leverage most of the code.
The network component was identified as the only compo-
nent that was platform dependent and required modifica-
tion. Further, an iTouch GUI was added as part of the

thread-safe queue

C++ class interface
PROS protocols

Objective-C / GamkitAPI
receive handler

Figure 4: Flow of a received packet on the iTouch.

application to enable that a user user can transparently in-
teract with the PROS library through a calendar-like inter-
face. Since no modification to the rest of the library were
required, the iTouch app can benefit directly from future
improvements to the library. The existing C++ library in-
terfaces with the new Objective-C code at two points: the
network and the GUI. Both points will be discussed below.
It is important to note, that our application runs on the
genuine, i.e., non-jail-breaked, iOS.

5.1 Bluetooth Network
One major design decision was the choice of the network

technology. The iTouch provides Internet connectivity via
802.11b/g and GSM/UMTS as well as peer-to-peer connec-
tivity over Bluetooth 2.1. When accessing the Internet via
wireless LANs, a device usually is behind some network ad-
dress translation (NAT) device and cannot be contacted di-
rectly by another party [21, Ch. 28]. A similar situation
holds for the Internet access via GSM/UMTS. To enable
communication of two mobile devices under these circum-
stances requires some form of relay server. The use of such
a semi-trusted third party, which relays data while ensuring
its integrity, would weaken the privacy guarantee of appoint.
Furthermore, the use case of appoint suggests that both par-
ties are in the same physical location (conferences, meetings,
business dinners etc.). Therefore, the network component
was implemented using peer-to-peer networking via Blue-
tooth.

The Bluetooth networking on the iTouch is abstracted
through the GameKit API, which was originally built to
support multiplayer games and therefore follows an event-
driven programming paradigm. When using the GameKit
API, incoming data packets are dispatched to a receive han-
dler for processing. This asynchronous form of communi-
cation provides a challenge when executing a protocol with
a well-defined order of execution, based on static send and
receive calls. Our solution is built on a thread-safe queue
which serves as a global data structure (cf. Figure 4). Data
is pushed into the queue by the event-based receive handler
and read-access is provided by a C++ class which corre-
sponds to the network component of Figure 2.

5.2 Time-Slot Representation
In order to apply the PROS protocols to the appoint set-

ting, it was necessary to represent the time-slots and the
preferences associated with them as an ordered set. We
encode each time-slot as a 32-bit integer Z = S||D (set el-
ement) which is the concatenation of two integers S (s bits
long) and D (d bits long) where 32 = s + d. We choose
s = 16 bits to uniquely specify the start time of the time-
slot as the number of minutes since midnight of the day on
which the reconciliation is performed. With this setup we
can plan up to 45 days ahead. D is 16 bits long and encodes
the duration of the event in hours. This allows the encoding
of a duration from 1 up to 65,535 hours. The ordered set,
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which will be used by the PROS protocols, consists of these
integers ordered by their preferences.

5.3 GUI Development
Interaction with smartphones using modern multi-touch

displays is fundamentally different from that with desktop
applications (e.g., [6, 26, 27]). In addition, the time an ap-
plication remains open is very short. The user therefore
expects a user interface (UI) which can be used quickly and
intuitively.

We meet this challenge by not introducing new UI ele-
ments but instead using the ones provided natively through
the iOS SDK. Furthermore, the look and feel of our ap-
plication is built in the style of the native iTouch calendar
application, thus simplifying the usage for iTouch users (see
Appendix A for screenshots). For this, we leverage code
provided by an open source project [1]. In addition, appoint
uses the Event Kit framework, which was recently intro-
duced in iOS 4, to access the local calendar on the iTouch
and synchronize events with it.

When a user sets up his time-slots using the GUI, data is
not directly passed to the protocols. Only once the negoti-
ation is initiated, all time-slots are converted into integers
with associated preferences as described in Section 5.2. The
resulting ordered set is then passed to the PROS protocols.
At the completion of the protocol, the one time-slot which
maximizes the joint preference order is returned to the GUI.
This value is then decoded and displayed to the user for ac-
ceptance and permanent storage in the calendar database.

6. PERFORMANCE EVALUATION
In the following, we provide a detailed analysis of our ex-

tensive performance tests. The tests were geared to gain
a better understanding for the behavior of the protocols in
practice and to explore their suitability for real-world ap-
plications. For this, we not only tested our Linux-based
implementation of the PROS protocols and the FNP-PSI
protocol, but also our proof-of-concept application appoint.

All Linux-based tests were performed on three dedicated
machines having an identical configuration: AMD Athlon
64 Processor 3000+ at 1.8 GHz, 2 GB main memory, 64-bit
Linux 2.6.32 (Ubuntu). For all experiments involving two
parties the code for both parties was executed on the same
host. While this does not represent the final setting in which
the protocols might be utilized, it removes network latencies
and simplifies the analysis and understanding of the data
and the protocols. It is important to note that after one

party has finished its computations and has sent off its data
to the other party, it only waits to receive back results but
does not perform any additional computation. Thus, the
two processes do not compete for the CPU or cause timing
conflicts.

appoint was tested using two iTouch devices. The
iTouches have an ARM Cortex-A8 at 600MHz CPU, 256 MB
of DRAM and are running iPhone OS 3.1.3. During the
tests, each party was run on a separate iTouch device. The
purpose of this section was not to compare the iTouch plat-
form with the Linux platform but rather to show the general
performance of the PROS protocols using Linux and the vi-
ability of mobile applications based on these protocols using
a resource-limited platform such as the iTouch.

We start by presenting the results of testing the crypto-
graphic operations and the network operations. Then, we
present the performance results of the PROS protocols.

6.1 Cryptographic Performance
The performance of a cryptosystem is mainly influenced

by two parameters: the key size and the length of the plain-
text. The behavior of our implementation of the Paillier
cryptosystem with respect to both was analyzed experimen-
tally by measuring the CPU time. The time for each pair
of parameters was averaged over 10,000 randomly generated
inputs by measuring the time required to first encrypt all
10,000 plaintexts and then the time to decrypt all these ci-
phertexts. For the tests on the Linux platform, the crypto-
graphic keys were varied between 32 bits and 2,048 bits in
steps of 32 bits. In addition, for each key size, the plain-
text length was varied from 8 bits to 256 bits in steps of
8 bits. On the iTouch platform, plaintexts of size 32 bits
were investigated for keys ranging from 32 bits to 1,024 bits
in steps of 4 bits. In the following, we present two cuts
through the parameter space: varying the plaintext length
for a fixed key size and vice versa. We directly compare the
timings for the iTouch with those for the Linux platform to
demonstrate the difference in computational power and to
allow the reader to better relate the results presented below.
Figure 5 shows how the timings for one encryption (decryp-
tion) changes with the key size for a fixed plaintext of 32 bits.
Fitting both data sets for the Linux and iTouch platforms
yields a cubic upper bound on the runtime. The time for
one decryption is significantly smaller than the time for an
encryption. This is due to the highly optimized implemen-
tation of the decryption algorithm using pre-computations
and CRT. In addition, the operations performed during a

115



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  500  1000  1500  2000

R
u
n
ti
m

e
 /
 [
s
]

# Elements in Set

Classical Multiplication
Schoenhage-Strassen

Karatsuba
Quadratic Fit

Cubic Fit
Cubic Fit

Figure 8: Wall time for the sym-
metric FNP-PSI protocol using
256-bit keys and 32-bit set ele-
ments.

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200

R
u
n
ti
m

e
 /
 [
s
]

# Elements in Set

Wall Time
CPU Time

Quadratic Fit of Wall Time
Quadratic Fit of CPU Time

(a) 3PRC-FNP-implicit 3PRC

implementation. Wall and CPU
time are shown.

 0

 5

 10

 15

 20

 25

 30

 0  50  100  150  200

R
u
n
ti
m

e
 /
 [
s
]

# Elements in Set

Wall Time (non-cached)
Wall Time (cached)

CPU Time (non-cached)
CPU Time (cached)

(b) 3PRC-PSI-explicit imple-
mentation. Wall and CPU time
for the (non-) cached version are
shown.

Figure 9: SOR worst-case runtime using 32-bit elements and 256-bit keys.

Paillier encryption are computationally more expensive than
the operations as part of the decryption process. Due to a
limit in space, the test results for varied plaintext sizes are
presented in Appendix B.1.

6.2 Network Performance
To create a baseline for the network component used by

the PROS and PSI protocols, the network implementation
was tested for various sizes of the transmitted data. For the
Linux platform, both the sender and the receiver were exe-
cuted on the same machine. The data was transmitted inter-
nally using the loopback interface which almost completely
eliminates network latency and thus allows an estimation of
the overhead caused by the send and receive system calls.

Figure 6 shows the results for a series of tests. Each result
was determined by first measuring the duration of 100,000
round-trip transmissions and then dividing the overall time
by 100,000. This technique was necessary since the item
for a single transmission is too short to be measured reli-
ably. Each payload was randomly chosen and its size varied
in steps of 8 bits between 8 bits and 2,048 bits. Since the
data sent in each step of the protocol is bounded by the
square of the modulus, the chosen range for the tests corre-
sponds to reasonable key sizes. For each data size, the test
was repeated 50 times and the average was plotted. The
error bars show the standard deviation. The timing was
performed using the wall time, i.e., the actual time which
has passed—in contrast to CPU time, i.e., the time the pro-
cess was actually allocated to the CPU. The broad scattering
of the individual data can be explained by the process be-
ing preempted by the CPU during the measurement. The
average behavior, however, is clearly linear. This was ex-
pected since—assuming constant overhead for executing the
system call itself—doubling the data size results in double
the transmission time.

Similar tests were performed for the Bluetooth network
component for the iTouches. Figure 7 shows the results
when varying the size of the data between 32 and 16,000
bytes in steps of 512 bytes averaging 100 round-trips. The
inset shows an average of 32 ms per round-trip for data sizes
which are commonly encountered during an execution of ap-
point.4

4To illustrate the general performance of the iTouch’s Blue-

6.3 PROS and PSI Protocol Performance

6.3.1 Set Generation
In order to allow for the testing of all 3PRC protocols

as well as the FNP-PSI protocol such that the parameters
can be adjusted precisely, the sets must be prepared in a
controlled manner. A C++ program was written to pre-
generate suitable sets. Pre-generating sets also has the ben-
efit that different protocols can be tested with the exact
same input.

Note that for both preference order composition schemes
the worst-case behavior of the respective reconciliation pro-
tocols is caused by a pair of sets containing a single matching
element located at the end of each set [25]. The generating
algorithm for the worst-case scenario ensures that the re-
maining elements in both sets are unique and do not match.
Thus, the protocols find the single match only in the last
step, resulting in the worst-case runtime of the protocols.
Since FNP-PSI works in a single round which includes the
comparison of all set elements, the number of matching ele-
ments is not expected to have an impact on the runtime of
FNP-PSI.

To create a pair of sets for the average case, one has to
make assumptions on what the average input for the pro-
tocols is. In order to perform tests which are as general
as possible, but can also be translated to real-world inputs,
the number of matching elements was specified as a frac-
tion of the total number of elements in each set. For the
performance evaluation it is assumed that all matching set
elements are distributed equally at random across all pos-
sible preferences. This is achieved by adding all common
elements to both sets, padding them using non-matching el-
ements until the total number of elements is reached, and
then randomly ordering both sets.

6.3.2 Symmetric FNP-PSI Protocol
In this paper we focused on symmetric settings in which

both parties learn the result of the computation. We there-
fore analyzed the performance of executing FNP-PSI twice:
once initiated by each party respectively. Recall that FNP-
PSI creates a polynomial which contains all of Alice’s set
elements as roots. Bob evaluates this polynomial at all his

tooth performance, the range of tested data sizes was chosen
wider deliberately.
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set elements and sends the results back. Since FNP-PSI
computes the intersection of both sets and does not abort
when a match is found, all steps need to be performed each
time and the execution time is expected to be independent
of the number and positions of the matching set elements.

The degree d of the polynomial introduced in Equation 1
grows linearly with the number of set elements resulting
in a final degree of O(n) [24]. Using classical multiplica-
tion (for polynomials), inserting an additional root requires
O(d) ring operations. Karatsuba’s algorithm (3dlog2 3 opera-
tions) [33] and Schönhage and Strassen’s FFT-based method
(O (d log (d) log log (d)) operations) [31,33] are two common
and more efficient algorithms for multiplying polynomials.
The runtime of FNP-PSI (as a function of the number of el-
ements n) was analyzed using each multiplication algorithm.
The tests were performed using the implementation provided
by the FLINT library [3] for both advanced algorithms. For
the tests, n was varied in steps of 100 between 50 elements
and 2,000 elements averaging over 10 runs of the protocol.
The key size was fixed at 256 bits and each set element had
a length of 32 bits. Figure 8 shows the measured CPU time
for one execution. While there is no significant difference
in the runtime for small set sizes, the advantage of the ad-
vanced algorithms quickly becomes apparent for increasing
n. For example for n = 200, using the advanced algorithms
reduces the runtime by one third and for n = 1, 850 the time
required by Karatsuba’s algorithm is only 5% of the classical
implementation. In general, the complexity is reduced from
O(n3) to O(n2).

6.3.3 Preference-Maximizing Protocols

Worst-Case.
In [24], the worst-case performance of the 3PRC proto-

col for both preference order composition schemes sum of
ranks (SOR) and minimum of ranks (MOR) was theoret-
ically determined as O(n2) given sets of size O(n) as in-
put. Figure 9 shows the experimental results for 3PRC-
FNP-implicit and both 3PRC-FNP-explicit protocols using
the SOR preference order composition scheme on the Linux
platform. The graphs were obtained by varying the number
of set elements, using the worst-case setting described above,
in steps of 5 between 5 and 200 averaging over 20 executions
of the protocol. The key size was fixed at 256 bits and each
set element was 32 bits in length. For each run, both wall
time and CPU time were considered. Note that the CPU
time is consistently 50% of the wall time which indicates

that the protocol is balanced amongst the parties. While
one party is computing, the other one is waiting for the
results. It is possible to fit the data points using a polyno-
mial of degree two, which is in agreement with the quadratic
behavior derived in [24]. Figure 9(a) shows the data for
3PRC-FNP-implicit and Figure 9(b) shows the 3PRC-FNP-
explicit data. The positive effect of the caching mechanism is
clearly visible. Both, wall time and CPU time are almost cut
in half. The cached-variant of 3PRC-FNP-explicit is even
more efficient than 3PRC-FNP-implicit. This is due to the
fact that 3PRC-FNP-implicit uses the vectorpolynomial

representation while 3PRC-FNP-explicit uses flintpoly-

nomial. These results show, that the optimizations intro-
duced by Meyer et al. are increasing the performance and
that a näıve implementation as in 3PRC-FNP-implicit-non-
cached suffers a significant performance loss. Using caching
techniques, however, one can implement protocols that are
both efficient and library.

appoint is solely based on 3PRC-FNP-implicit. Since the
performance on the iTouches is significantly reduced with
increasing key size, the worst-case tests were performed us-
ing 256-bit, 512-bit and 1,024-bit keys to investigate how the
protocol performance develops. The number of set elements
was varied between 2 and 20 in steps of 1. This corresponds
to reasonable inputs for our application scenario, i.e., be-
tween two and twenty open time-slots. Figure 10 presents
the results. For all key sizes the behavior is quadratic in the
size of the set. However, as the tests of the cryptosystem
indicated already, the performance is significantly reduced
for large key sizes.

The results for the MOR preference order composition
scheme are deferred to Appendix B.2.

Average-Case.
For the Linux platform, one set of experiments related to

the average case was based on one matching element which
was located at a random position in each ordered set. Given
this random distribution, the average case is given by aver-
aging the runtime over several independently chosen ordered
sets. The cardinality was varied from 5 elements to 100 el-
ements in steps of 5 elements and for each size the timings
corresponding to 100 different ordered sets were averaged
while using a fixed key. The resulting graph for 3PRC-FNP-
implicit using the SOR scheme is shown in Figure 12. As in
the worst-case scenario, the results show quadratic complex-
ity with the CPU time being half of the wall time. However,
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Wall time and CPU time are shown. 100 runs were averaged and the fraction of matching elements is 5%.

the actual average runtime is about half of the one in the
worst-case setting. This is due to the fact that a match, on
average occurs after half the steps, i.e., when the elements
in the middle of the ordered sets are being compared to each
other.

Having only one matching set element is certainly a special
case and thus additional experiments using multiple com-
mon elements were performed. Increasing the size of the
ordered set while keeping the common elements constant
does not constitute a good testing set. It is more represen-
tative to investigate how the runtime changes with ordered
sets of different size where the sets have the same fraction
of common elements. Figure 13(a) was obtained by creat-
ing ordered sets having 5% matching elements and vary-
ing their size n from 2 elements to 100 elements in steps of
one element. The key size was kept constant at 256 bits
and each set element had a length of 32 bits. For each
data point, the timings corresponding to 100 different or-
dered sets were averaged while using a fixed key. Note that
for n < 20 no single element matches since 0.05 · 19 < 1.
Furthermore, an additional matching element is introduced
for n ∈ {x · 20|x ∈ N+}. For the intervals in between,
n increases but the number of matching elements remains
constant. This structure is visible in Figure 13(a). The
runtime drops down for n = 20, 40, 60, . . . , i.e., whenever
an additional matching element is introduced. The behav-
ior in between appears quadratic for small n but cannot be
clearly determined for the sections with larger n. This may
be due to the fact that the number of possible combina-
tions of matching elements increases with n and averaging
100 ordered sets may not be sufficient for reducing the error
well-enough in order to obtain a clean graph.

For real-world applications, the overall behavior is often
more important than the small-scale features described be-
fore. To remove the variations due to a new matching el-
ement, a set of tests was specifically crafted to only in-
clude the worst-case value of each section. For example,
at n = 20, 40, 60, . . . a new matching element would be in-
troduced and therefore ordered sets with n = 19, 39, 59, . . .
were created. More precisely, the testing scenario varied n
between 19 and 2,019 in steps of 20 and at each step 500
different ordered sets were considered to reduce the error

in the resulting average value. The key size was kept at
256 bits and each set element was 32 bits long. The re-
sulting graph in Figure 13(b) clearly shows that the run-
time increases only linearly. This is a significant reduc-
tion over the worst-case behavior and constitutes a major
result w.r.t. practical applications based on these proto-
cols. It is possible to confirm this linear behavior by mod-
eling the expected number of comparisons statistically, us-
ing the average-case input described above. The probability
of finding a match after exactly i comparisons is given by

p(i)i>1 =
∏i−2
j=0

n2−αn−h
n2−j · αn

n2−i+1
where α is the fraction of

matching elements. Evaluating the expected value numeri-
cally yields the blue curve (right axis) in Figure 13(b). The
plot shows that our experimental runtime is proportional to
the theoretically expected number of comparisons.5

The same experiment was carried out for both 3PRC-
FNP-explicit protocols. Figure 13(c) compares the 3PRC-
FNP-explicit-cached with the 3PRC-FNP-implicit. The re-
lation between the runtime of the two implementations is
similar to what it is in the tests for the worst-case scenario:
3PRC-FNP-explicit-cached has a runtime which is slightly
less than that of 3PRC-FNP-implicit.

For the iTouch platform, tests were performed using 512-
bit keys for sets of size 5, 10, 15, 20. For each set size,
the number of matching elements was varied from 1 to the
number of elements in the set. The set generation process
is similar to the one described above. However, because of
the low number of elements in the sets, it was feasible to
test each possible set configuration, instead of testing only
those for a fixed fraction. For each data point, 50 different
sets were averaged. Figure 11 shows the results for SOR.
The runtime rapidly decreases when the number of matches
increases. For 1 to 15 elements, the application is very prac-
tical with turn-around times of at most 27 seconds.

Appendix B.2 details the results for the MOR composition
scheme, which are very similar to those of SOR discussed
here.

5Due to space limitations, the Linux results for the MOR
scheme in the average case are not included in this paper.
However, it is important to note that the results are very
similar to those for the SOR scheme.
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7. CURRENT AND FUTURE WORK
Directions for current and future work include the anal-

ysis of the protocols for LAN and WAN environments. In
addition, we are investigating possible performance improve-
ments for the encryption algorithm. We also plan to extend
the library to include other homomorphic cryptosystems as
well as leveraging our new, 3PRC-PSI-explicit implementa-
tion to evaluate the effect of using other privacy-preserving
set intersection protocols.
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APPENDIX
A. appoint GUI

Figure 18 presents some screenshots of the appoint GUI.
The leftmost one shows the main calendar screen which lists
already scheduled appointments. Right next to it, the inter-
face to enter a time-slot is illustrated. In the third screen-
shot one can see the list of time-slots—ordered by prefer-
ence. Finally, the rightmost screenshot shows the result of
the reconciliation process.

B. ADDITIONAL PERFORMANCE DATA

B.1 Crypto Performance as Function of
Plaintext Size

Figure 14 shows that keeping the key size constant at
1,024 bits and varying plaintext sizes from 8 to 256 bits
yields a linear runtime behavior.

B.2 MOR Worst-Case Performance
Figures 15 and 16 show the worst-case results for the MOR

scheme on the Linux platform and on the iTouch respec-
tively. The Linux timings were obtained by varying the
number of set elements in steps of 5 between 5 and 200
averaging over 20 different sets. The key size was fixed at
256 bits and each set element was 32 bits in length. For
the iTouch, keys of sizes 256-bit, 512-bit, and 1,024-bit were
used. The number of set elements was varied between 2 and
20 in steps of 1 averaging timings for 50 different sets.

The timings for the MOR scheme are almost identical to
the ones for SOR. This is due to the fact that in the worst-
case the same number of comparisons is required in both
cases. The tests show that the larger number of rounds
required by SOR does not significantly impact the perfor-
mance.

B.3 MOR Average-Case Performance
In Figure 17 the average-case performance using the MOR

scheme on the iTouch platform is shown. The tests were
performed based on the same parameters as the SOR tests:
using 512-bit keys for sets of size 5, 10, 15, and 20. For each
set size, the number of matching elements was varied from
1 to the number of elements in the set. The behavior is very
similar to Figure 11.
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