
A Framework for Query Processing over
Compressed Knowledge Bases

Floriano Scioscia
Dipartimento di Elettrotecnica ed Elettronica

Politecnico di Bari
Via Re David 200, I-70125, Bari, Italy

Email: f.scioscia@poliba.it

Eufemia Tinelli
Dipartimento di Informatica

Università di Bari
Via Orabona, I-70125, Bari, Italy

Email: tinelli@di.uniba.it

Abstract—In semantic-based pervasive computing, annotated
information is tied to micro-devices, such as RFID tags and
wireless sensors, deployed in an environment. Compressiontech-
niques are essential, because of the verbosity of standard XML-
based languages for ontologies and semantic annotations. Beyond
compression ratio, query efficiency is a key aspect. This paper
presents a framework for querying knowledge bases expressed
in OWL, serialized in RDF/XML syntax and compressed with
a homomorphic encoding, in order to allow query evaluation
without requiring decompression. Formalization of a significant
set of queries demonstrates feasibility of the approach, while
practical examples highlight its usefulness.

I. I NTRODUCTION

In the Semantic Web, available information resources should
be annotated in RDF (Resource Description Framework,
http://www.w3.org/TR/rdf-primer/), with respect to an ontol-
ogy in RDF Schema or OWL (Web Ontology Language,
http://www.w3.org/TR/owl2-overview/) defining a common
vocabulary for a domain. Language specifications include a
standard XML serialization syntax. Query languages, such
as SPARQL (http://www.w3.org/TR/rdf-sparql-query/), are de-
fined to extract and combine asserted information, while
reasoning engines (based on OWL-DL subset) can perform
automated inference of knowledge entailed by a givenKnowl-
edge Base(KB) of asserted concepts, relationships and facts.

The integration of Semantic Web and pervasive comput-
ing technologies aims at associating semantically annotated
information with real-world objects, locations and events,
through micro-devices capable of sensing and/or carrying
useful data; notable technologies includeRadio Frequency
IDentification(RFID) andwireless sensor networks. Such data
should be automatically extracted and processed by agents on
mobile computing devices, through Mobile Ad-hoc Networks
(MANETs), in order to better support current user activities.

In pervasive contexts, events cause information needs that
must be satisfied immediately. Furthermore, several factors
make information resource availability unpredictable: mobility
of objects and nodes, range limitations and inherent unrelia-
bility of wireless communications, node failure due to energy
depletion. The capability of exploiting volatile resources to
satisfy immediate needs is often defined asopportunistic
networking/computing: traditional approaches, based on cen-
tralized information storage and management, are evidently

impractical. Furthermore, XML-based languages adopted in
the Semantic Web are too verbose to allow efficient data
management. Compression techniques become essential, in
order to enable storage and transmission of semantically
annotated information on micro-devices such as RFID tags or
wireless sensors. When evaluating encoding algorithms from
an information management standpoint, traditional metrics
such as compression ratio and speed do not provide the full
picture. Efficiency of queries on compressed data becomes a
critical parameter, even more so in ad-hoc contexts.

This paper presents a formal framework for querying KB
fragments expressed in OWL, serialized in RDF/XML syntax
and encoded withCOX (Compressor for Ontological XML-
based languages)[1], an approach exploiting thehomomor-
phism property to preserve XML document structure during
compression. Algorithms are defined for the execution of
some of the most significant query types adopted in the
Semantic Web literature, related to both terminological (TBox)
and assertional (ABox) knowledge. The main contribution is
demonstrating the feasibility and soundness of a set of general-
purpose semantic queries for on-the-fly knowledge extraction
from compressed KBs. The theoretical formalization opens
possibilities for further applied research, devoted to supporting
the implementation of high-level query languages, such as
SPARQL, and inference services by combining the proposed
building blocks.

The rest of the paper is structured as follows. Section II
motivates the work by outlining the main challenges that
are faced. Technical background and related work about KB
compression and querying are recalled in Section III. Section
IV describes the framework in detail, while Section V provides
practical query examples. Finally, Section VI closes the paper.

II. CHALLENGES

The proposed approach is aimed at pervasive computing
scenarios characterized by large numbers of inexpensive, dis-
posable and unobtrusive micro-devices (such as RFID tags
or wireless sensors) capable of producing and/or carrying
semantically annotated data within a given environment. Mo-
bile computing devices extract and exploit such information,
by acting as cluster-heads with respect to micro-devices in
their direct range and by exploiting MANETs to exchange

information with nearby peers. Notable application scenarios
of semantic-enhanced RFID solutions are smart supply chain
management [2], ubiquitous commerce [3] and healthcare
(both in hospitals and for ubiquitous health monitoring).
Applications of wireless semantic sensor networks include
environmental monitoring (also for road conditions and within
buildings), disaster recovery and precision agriculture.

Several technological challenges characterize such contexts:
(1) due to strict power, size and cost constraints, micro-devices
have little or no processing capabilities, very small storage
and short-range, low-throughput wireless links; (2) MANET
hosts are battery-powered mobile computing devices, and
communication is generally more expensive than computation
from an energy standpoint; (3) wireless communications are
vulnerable to electromagnetic noise; (4) applications generally
need on-the-fly query answering. Compression of semantically
annotated information introduces benefits in each of these
areas: more information can be stored in limited memory
amounts; due to lower data transfer times, power consumption
is decreased, the impact of noise is mitigated [3] and query
processing latency can be reduced.

Semantic-based resource discovery frameworks for
MANETs can be found in literature. In some approaches
[2], [4], resources are pre-selected by matching only the
reference ontology identifier and ancillary extra-logical,
data-oriented attributes w.r.t. the request. This hybrid solution
grants efficiency, but semantic data management capabilities
are somewhat limited. Other approaches choose a direct
reuse of Semantic Web technologies (e.g., [5] uses SPARQL
for queries and HTTP protocol for resource access), but
significant performance issues can ensue. The main goal
of the present work is to provide a feasible approach for
the execution of semantic-based queries on compressed
KB fragments (ontology segments or resource annotations).
That can enhance significantly semantic data management
capabilities in pervasive contexts. To this aim,homomorphic
compression algorithms for XML-based semantic annotations
–briefly recalled in the next section– are exploited. Full
decompression introduces a fixed processing step that can
have a significant performance impact, particularly on
relatively simple queries, which can be considered as a
frequent case in pervasive scenarios. Therefore, we deem
that avoiding full decompression is important to improve
efficiency of on-the-fly query processing. Finally, a suitable
communication protocol (e.g., extending the ones in [2], [4])
is needed to support semantic requests and replies among
MANET hosts, but that is outside the scope of the paper.

III. B ACKGROUND

A. COX Compression

In this work, COX [1] is adopted as reference format for
querying compressed XML-based semantic annotations. COX
exploits two different solutions to encode data structuresand
data, in a two-step compression process. For data structures
(XML tags and attributes), aReverse Arithmetic Encoding
(RAE) [6] variant is used. For attribute values, a dictionary

maps the most frequent strings to 1-byte codes. COX deals
with tag and attribute names in the same way. Attributes are
distinguished by a “@” prefix added to the name. Therefore,
in the rest of the section the word “tag” will refer equivalently
to a tag or an attribute.

In the first step the XML document is parsed and statistics
are gathered. After parsing, an adjusted frequency of each
tag name is computed as the ratio between the number of
occurrences of the tag itself and the total document tags.
The [d,D) = [1.0 + 2−7, 2.0 − 2−15) interval is split in
disjoint sub-intervals, assigning slightly longer sub-intervals
to very rare tags while preserving proportionality with respect
to frequency. That avoids encoding errors for tags with a very
low frequency. All values that represent opening tags fall in
the interval[d,D). The interval[1.0, d) is reserved to encode
closing tags. Since every possible value is strictly between
1.0 and2.0, the first byte will always be011111112 in 32-bit
floating point representation, so it can be truncated without
loss of information [6]. After the first step atag header
is written at the beginning of the output file. It contains a
sequence of records composed by: 1 byte for the length of
the tag name; the tag name; 3 bytes (after truncation) for the
encoding of the minimum value of the sub-interval of the tag.
The statistics collection for text string frequencies is performed
concurrently with the analysis of document structure. At the
end of the first step, avalue headeris written after the tag
header. It consists in a sequence of strings, separated by the
ffh character. The corresponding codes are single-byte values
from 00h to fdh and they are assigned to strings in progressive
order, hence they are omitted in the header.

In the second step, the body of the output file is produced.
Opening and closing tags, attributes and attribute values are en-
coded in the same order as they appear in the input document
(homomorphism). Each tagt is encoded by applying RAE:
as input message, the sequenceS = (s0, s1, . . . , sn) of tag
names is considered, starting withs0 = t and going toward its
ancestors (hence the adjective “reverse”) up to the root XML
tag. This tag path (namedsimple-path) is then mapped to an
intervalI as follows: at the beginning,I = [d,D); for eachsi,
I is reduced proportionally to the sub-interval ofsi; at the end
of S, the minimum limit ofI is represented as a 32-bit floating
point value and the two central bytes are taken to encodeT .
Finally, an attribute value is processed as follows: if it belongs
to the dictionary produced in the first step, it is replaced by
its 1-byte code followed by the delimiterfeh, otherwise the
string is copied to output, followed by the delimiterffh.

B. Related Work

With reference to XML-based languages, several tools sup-
porting efficient querying over compression schemes exists;
see [7] for a comprehensive survey.XGrind [8] can perform (i)
exact-match and prefix-match queries directly on compressed
values and (ii) range and partial-match queries on values
decompressed on-the-fly.XPress[6] exploits RAE to improve
the path-based queries. XPress query engine transforms a label
path expression into a sequence of intervals. Then, by using

this sequence, the query executor checks whether the encoded
values of XML tags are in an interval of the sequence or
not. XQueC[9] exploits indexing and XML storage strategies
since it is focused on search speed rather than compres-
sion efficiency. The above tools execute path-based queries,
which allow syntactic match of document elements and are
strictly tied to the XML Schema of the compressed document.
Therefore, it is not possible to reuse an existing approach
for semantic-based queries, but new query primitives must be
defined w.r.t. COX format.

In existing strategies for storing and querying RDF an-
notations, data structures and optimizations are focused on
a database perspective [10]. The Semantic Web community
has generally used traditional database systems [11], even
though recently alternative technologies have been proposed
by e.g., NoSQL (http://nosql-database.org/). Moreover, stan-
dard RDF query language SPARQL closely follows SQL syn-
tax. Consequently, most of the RDF-based query processing
techniques rely on database optimizations [12], [13]. These
technologies do not cope with mobile computing issues. An
interesting exception is the MQuery [14] framework. It creates
a compressed index of RDF graphs for improving context-
aware retrieval, according to the idea that a mobile user wants
to access specific data depending on certain situations. The
main drawback w.r.t. our approach is limited flexibility and
extensibility, as MQuery provides a pre-defined query interface
for selecting only from four possible query types.

Study of the above works suggested the main query types
that semantic-based applications expect: (i) full-text search,
i.e., keyword or string matching; (ii) queries based on data
structure,i.e., path-based and structural-based queries and (iii)
a combination of them. Accordingly, our proposal includes
both keyword-based search and a set of path-based queries.

IV. FRAMEWORK

A. Query Model

In the proposed framework, the classical KB definitionK =
〈T ,A〉 is adopted, where theTBoxT specifies the ontological
knowledge, and theABoxA specifies the assertional one. The
framework deals with KBs in an OWL-DL subset specified as
follows: (i) T is asimple Tbox, i.e., a set ofPrimitive Concept
Specifications(A ⊑ B); (ii) object properties, data properties
and disjoint concepts sets can be defined; (iii)A is a role-free
ABox, i.e., a finite set of individuals defined as instances of a
general concept expressionC without binary relations between
individuals. C can be a conjunction of atomic concepts,
unqualified existential quantifications, number restrictions and
universal quantifications.

With reference to TBox reasoning, a set of path-based
queries is presented (most of which are exploited in [10]):

• parents(A) - it retrieves all the conceptsB such that
A is direct sub-class ofB. Obviously, it is possible to
retrieve all the ancestors ofA by applying recursively
the parent primitive.

• children(A) - it retrieves all the conceptsB such thatB
is direct sub-class ofA. Also in this case, it is possible to

Fig. 1. Instance description in OWL and graph-based COX representation

retrieve all the descendants ofA by applying recursively
the children primitive.

• properties(A) - it retrieves all the propertiesp such that
A is domain ofp.

• leaves(A) - it retrieves all the conceptsB such thatB are
the most specific concepts ofA. More formally, we say
that leaves(A) = {B|B = subClassOf(A) ∧ ¬∃B′ :
(B′ = subClassOf(A) ∧B′ = subClassOf(B))}.

• nca(A1, . . . , An) - it retrieves the nearest common an-
cestor ofn concepts. In other words,nca query retrieves
the most specific concept of a collection composed of the
ancestors common to all then concepts. More formally,
nca(A) = {B|A1 = subClassOf(B) ∧ . . . ∧ An =
subClassOf(B) ∧ ¬∃B′ : (A1 = subClassOf(B′) ∧
. . .∧An = subClassOf(B′)∧B′ = subClassOf(B))}.

With reference to ABox reasoning, two types of queries
are presented: (i) entity-based search, implemented by means
of a string matching on the required concepts and their
descendants, and (ii) more complex path-based queries.
The former is useful when the knowledge structure is
not known. The latter can be considered as a solution
to the classicalquery answeringproblem. In particular,
we consider three path-based queries on ABox. COX sees
an OWL individual as a tree of nodes; in the example
of Figure 1, owl:Restriction tag precedes directly
owl:allValuesFrom (i.e., one hop of distance), whereas
owl:allValuesFrom andowl:onProperty are at the
same depth level. The following path-based queries on ABox
are needed, since it is not possible to use the ISA relation
underlying the path-based queries on the TBox:
– a//b: it retrieves all the individuals having a nodea
which precedes a nodeb. In other words, we retrieve all the
individuals having at least a path betweena andb;

– a/b: it retrieves all the individuals having a nodea which
precedes directly a nodeb;
– a ↔ b: it retrieves all the individuals having nodesa and b
at the same depth level.
Keyword-based search on the TBox can be exploited to
suggest class names to be used in the query composition.

B. Query Engine Formalization

The proposed query engine can be formalized now. The
approach refers to the constructors listed in Section IV-A,ex-
pressed in the RDF/XML serialization recommended by OWL
2 language specifications. The management of all syntactic
variants of RDF/XML is not explicitly dealt with in this work.

Primitives. The following simple-paths are referenced in
query execution algorithms to find elements in the RDF model.
For reader’s convenience, they are not reported in reverse
order.

P1 rdf : RDF → owl : Class → @rdf : about
P2 rdf : RDF → owl : ObjectP roperty → @rdf : about
P3 rdf : RDF → owl : Class → rdfs : subClassOf → @rdf :

resource
P4 rdf : RDF → owl : ObjectP roperty → rdfs : domain →

@rdf : resource
P5 rdf : RDF → rdf : Description → @rdf : about
P6 rdf : RDF → rdf : Description → rdf : type → owl :

Class → @rdf : about
P7 rdf : RDF → rdf : Description → rdf : type → owl :

Class → owl : intersectionOf → rdf : Description →

@rdf : about

Query execution is based on a set of primitives for the access
to a COX compressed document, whose structure, as said,
consists in a tag headerHT , a value headerHV and a body
B. The primitives are listed in Table I and explained hereafter.
The wordtokenwill be used to denote any of the following: an
opening tag; a closing tag; the start of an attribute; the endof
an attribute.HT , HV , B are supposed to be always accessible
and therefore are not part of the input. Data complexity
characterization is provided, as the number of required (read-
only) accesses w.r.t. document size.
– lookupTagsearches a tag name inHT ; if found, it returns
its associated interval, else it returnsnull.
– lookupValuesearches a string value inHV ; if found, it
returns its associated 1-byte code, else it returns the value
of the input argument.
- lookupValueLikesearchesHV for strings containing the input
argument; it returns the (possibly empty) set of 1-byte codes
associated to matching strings.
– lookupCodesearches a code inHV ; if found, it returns its
associated string, else it returnsnull.
– computeSimplePathcomputes the interval for a simple-path;
it uses the arithmetic encoding algorithm described in Section
III-A and requires alookupTagcall for each element in the
simple-path.
– getNextTokentakes positionn and returns the value encoding
the next token inB after positionn.
– getPreviousTokentakes positionn and returns the value
encoding the previous token inB before positionn.
– isStartTokentakes numbern encoding a token and returns
true if it is the start of an XML element or attribute,false

otherwise.
– getNextValuetakes positionn and returns the next (possibly
encoded) attribute value.
– findSimplePathsWithValuetakes in input an intervali and a
string valuev; it gets c := lookupV alue(v), then it scansB
to find all occurrences of the simple-path encoded byi and
immediately followed byc; they are returned as positions (in
bytes) from the start ofB. This primitive is useful to search
for a specific attribute value, which in RDF/XML is needed
to find e.g., occurrences of a class name.
– findSimplePathsWithValueLikeis similar to the previous
primitive. It takes in input an intervali and a string valuev.
It scansB to find all occurrences of the simple-path encoded
by i and immediately followed by a string containingv; they
are returned as positions (in bytes) from the start ofB.
– getValuesAfterPositiontakes in input an intervali, and a
positionn; it scans the document from positionn, up to the
end of the XML element atn. It returns a (possibly empty)
set of string values that immediately follow attributes encoded
with a number withini. Algorithm 1 formalizes this primitive,
which is useful to get values of attributes within a specific
XML element.
– getValuesBeforePositionis the dual primitive ofgetValue-
sAfterPosition. It scans the document backwards from position
n, up to the start of the XML element atn.

TBox queries. Algorithm 2 and Algorithm 3 exploit simple-
pathsP1 and P3 and COX access primitives to find par-
ents and children of a given class, respectively. Algorithm
4 (respectively 5) calls Algorithm 2 (resp. 3) to find the
class ancestors (resp. descendants). Finding leaves of a class
and the nearest common ancestor of a set of classes exploit
the previous algorithms, as reported in Algorithm 6 and 7.
Algorithm 8 uses simple-pathP4 to look up for a domain
relationship between the input class and a property name,
then P2 is used to find the property name by scanning the
compressed document backwards. Finally, Algorithm 9 uses
partial string matching both in the document value header and
body to find the input keyword.

ABox queries. Algorithm 10 and 11 allow to find the ABox
individuals that are instances of a class and of an intersection
of classes, respectively.

V. I LLUSTRATIVE EXAMPLE

To better clarify the framework and the different query
types, a simple example in awireless semantic sensor and
actor network is considered. Let us suppose that the action
planning to respond to an emergency is performed on-the-fly
by a mobile coordinator unit, which must select the best actors
for intervention based on their advertised capabilities. The
coordinator is able to execute queries on its local TBox copy
and to issue ABox queries to other units in order to discover
which ones match required characteristics. The example task
is to find a unit equipped with an “aid kit” and “sensors” able
to measure “weather” conditions. According to a modified
version of the ontology developed in [4] in order to satisfy
the simple TBox condition (not reported here due to lack of

Algorithm 1
getV aluesAfterPosition(i, n)
Require: i simple-path interval, n position

∈ {0, . . . , |B|}
Ensure: V set of values

1: pos := n
2: C = ∅
3: count := 1
4: while count > 0 do
5: t := getNextToken(pos)
6: pos := pos + sizeof(t)
7: if isStartToken(t) then
8: count := count+ 1
9: if t ∈ i then

10: c := getNextV alue(pos)
11: C := C ∪ {c}
12: pos := pos + sizeof(c)
13: end if
14: else
15: count := count− 1
16: end if
17: end while
18: for all c ∈ C do
19: if c is a stringthen
20: V = V ∪ {c}
21: else
22: V = V ∪ {lookupCode(c)}
23: end if

24: end for

Algorithm 2 parents(a)
Require: a class name,P1 andP3 simple-paths
Ensure: P set of parents ofa

1: P := ∅
2: i1 := computeSimplePath(P1)
3: i2 := computeSimplePath(P3)
4: N := findSimplePathsWithV alue(i1, a)
5: for all n ∈ N do
6: P := P ∪

getV aluesAfterPosition(i2 , n)

7: end for

Algorithm 3 children(a)
Require: a class name,P1 andP3 simple-paths
Ensure: C set of children ofa

1: C := ∅
2: v := lookupV alue(a)
3: i1 := computeSimplePath(P3)
4: i2 := computeSimplePath(P1)
5: N := findSimplePathsWithV alue(i1, a)
6: for all n ∈ N do
7: C := C ∪

getV aluesBeforePosition(i2 , n)

8: end for

Algorithm 4 ancestors(a)
Require: a class name
Ensure: A set of ancestors ofa

1: A := ∅
2: P := parents(a)
3: A := P
4: for all p ∈ P do
5: A := A ∪ ancestors(p)

6: end for

Algorithm 5 descendants(a)
Require: a class name
Ensure: D set of descendants ofa

1: D := ∅
2: C := children(a)
3: D := C
4: for all c ∈ C do
5: D := D ∪ descendants(c)

6: end for

Algorithm 6 leaves(a)
Require: a class name
Ensure: L set of leaves ofa

1: L := ∅
2: C := children(a)
3: if C == ∅ then
4: L := L ∪ {a}
5: else
6: for all c ∈ C do
7: L := L ∪ leaves(c)
8: end for

9: end if

Algorithm 7 nca(a1, . . . , an)
Require: a1, . . . ,an class names
Ensure: NCA the nearest common ancestor of

a1, . . . , an

1: NCA := ∅
2: for k = 1 to n do
3: CA := ancestors(ak)
4: NCA := NCA ∩ CA
5: end for
6: if NCA == ∅ then
7: NCA := Thing
8: else
9: while |NCA| > 1 do

10: for j = 1 to |NCA| do
11: for k = j + 1 to |NCA| do
12: if NCAj ∈ parents(NCAk)

then
13: NCA := NCA/{NCAj}
14: j := j − 1
15: k := |NCA|
16: else if NCAk ∈

parents(NCAj) then
17: NCA := NCA/{NCAk}
18: k := k − 1
19: end if
20: end for
21: end for
22: end while

23: end if

Algorithm 8 properties(a)
Require: a class name,P2 andP4 simple-paths
Ensure: P list of properties havinga as domain

1: P := ∅
2: i1 := computeSimplePath(P4)
3: i2 := computeSimplePath(P2)
4: A := ancestors(a) ∪ a
5: for all a ∈ A do
6: N :=

findSimplePathsWithV alue(i1, a)
7: for all n ∈ N do
8: P := P ∪

getV alueBeforePosition(i2 , n)
9: end for

10: end for

Algorithm 9
keyword-based search(A1, . . . , An)
Require: a1, . . . , an names to search,P1 simple-path
Ensure: C set of classes syntactically similar to

a1, . . . , an

1: C := ∅
2: i := computeSimplePath(P1)
3: for k = 1 to n do
4: V := lookupV alueLike(ak)
5: for all v ∈ V do
6: if v! = null then
7: n :=

findSimplePathsWithV alue(i, v)
8: if n! = ∅ then
9: C := C ∪ {lookupCode(v)}

10: end if
11: else
12: n :=

findSimplePathsWithV alueLike(i, v)
13: if n! = ∅ then
14: C := C ∪ {v}
15: end if
16: end if
17: end for

18: end for

Algorithm 10 entity-based search(a)
Require: a class name,P5, P6 andP7 simple-paths
Ensure: Ins list of individuals instance ofA

1: Ins := ∅
2: i1 := computeSimplePath(P6)
3: i2 := computeSimplePath(P5)
4: i3 := computeSimplePath(P7)
5: C := descendants(a) ∪ {a}
6: for all c ∈ C do
7: N :=

findSimplePathsWithV alue(i1, c)
8: M :=

findSimplePathsWithV alue(i3, c)
9: for all n ∈ N do

10: Ins := Ins ∪
getV aluesBeforePosition(i2 , n)

11: end for
12: for all m ∈ M do
13: Ins := Ins ∪

getV aluesBeforePosition(i2 ,m)
14: end for

15: end for

Algorithm 11
entity-based search(a1, . . . , an)
Require: a1, . . . , an classes names,P5 and P7

simple-paths
Ensure: Ins list of individuals instance of the intersec-

tion of a1, . . . , an

1: Ins := ∅
2: i1 := computeSimplePath(P7)
3: i2 := computeSimplePath(P5)
4: for 1 := 1 to n do
5: Ci := descendants(ai) ∪ {ai}
6: for all c ∈ Ci do
7: N :=

findSimplePathsWithV alue(i1, c)
8: for all n ∈ N do
9: Insi := Insi ∪

getV aluesBeforePosition(i2 , n)
10: end for
11: end for
12: end for

13: Ins := Ins1 ∩ . . . ∩ Insn

Name Input Output Complexity
lookupTag(t) tag namet interval ornull O(|HT |)
lookupV alue(v) string valuev code ofv or v itself O(|HV |)
lookupV alueLike(v) string valuev (possibly empty) set of codes of strings containingv O(|HV |)
lookupCode(c) codec between 0 and 253 string at positionc in HV or null O(|HV |)
computeSimplePath(P) simple-pathP interval ornull O(|P | × |HT |)
getNextToken(n) positionn next tokent O(1)
getPreviousToken(n) positionn previous tokent O(1)
isStartToken(t) token t true or false O(1)
getNextV alue(n) positionn (possibly encoded) string O(1)
findSimplePathsWithV alue(i, v) interval i of simple-path, string valuev (possibly empty) set of occurrences,

as positions from start ofB
O(|B| + |HV |)

findSimplePathsWithV alueLike(i, v) interval i of simple-path, string valuev (possibly empty) set of occurrences,
as positions from start ofB

O(|B|)

getV aluesAfterPosition(i, n) interval i, positionn (possibly empty) set of strings O(|B| + |HV |)
getV aluesBeforePosition(i, n) interval i, positionn (possibly empty) set of strings O(|B| + |HV |)

TABLE I
ACCESS PRIMITIVES FOR ACOX COMPRESSED DOCUMENT

space), a possible set of executable queries is the following:
– keyword-based search(aid kit, sensor, weather): Algo-
rithm 9 suggestsFirst aid kit, Sensorand WeatherSensor
classes. It is useful to point out that a keyword-based search
gives support to select suitable ontology classes, but it isnot
a necessary pre-condition for other types of ABox queries.
– entity-based search(First aid kit,Weather Sensor):
Algorithm 11 returns all the individuals that are instance of
the intersection of the input concepts. The individual in Figure
1 is returned becauseThermometer class is subsumed by
Weather Sensor class and the remaining class is in the
individual definition. So, the problem of instance retrieval can
be solved.
– owl : Class//@rdf : about/F irst aid kit ∧ (owl :
Class//((owl : restriction//measures) ↔ (owl :
restriction//owl : someV aluesFrom)): a generic path-
based query that retrieves the instances of a general concept
expression. It is expressed according to definitions in Section
IV-A and on the RDF/XML syntax exemplified in Figure
1. It is executed using thecomputeSimplePathCOX access
primitive. Now, in order to retrieve all the individuals instance
of the concept expression (i.e., equivalent resources and more
specific ones), the query has to be rewritten according to
recursive application of normalization rules (see concept-
normal form rules in [15] for more details). Also in this
case, the individual in Figure 1 is returned because it is
instance of intersection ofFirst aid kit class and unqualified
existential restriction onmeasures property. In the devised
query framework, path-based search on semantically annotated
instances solves the problem of query answering on the ABox.

VI. CONCLUSION

In the context of semantic-based data management for
pervasive computing, a framework has been presented for
querying knowledge bases expressed in OWL, serialized in
RDF/XML and compressed with a homomorphic algorithm.
The provided query engine formalization, based on a set of
data access primitives, has demonstrated the feasibility of the
approach, the absence of algorithmic complexity issues and
an acceptable theoretical scalability. Implementation ofthe
framework is ongoing. It will allow extensive experimental
analysis, which is needed to compare performance of our

query processing strategy with other existing ones as well
as to evaluate possible optimizations. Future developments
include: (i) a full-featured query and reasoning engine for
compressed KBs; (ii) integration of queries on compressed
KBs in a protocol for semantic resource discovery in pervasive
environments.

REFERENCES

[1] F. Scioscia and M. Ruta, “Building a Semantic Web of Things: issues and
perspectives in information compression,” inSWIM’09. IEEE Computer
Society, 2009, pp. 589–594.

[2] R. De Virgilio, E. Di Sciascio, M. Ruta, F. Scioscia, and R. Torlone,
“Semantic-based RFID Data Management,” inUnique Radio Innovation
for the 21st Century: Building Scalable and Global RFID Networks.
Springer, 2010.

[3] T. Di Noia, E. Di Sciascio, F. M. Donini, M. Ruta, F. Scioscia, and
E. Tinelli, “Semantic-based Bluetooth-RFID interaction for advanced
resource discovery in pervasive contexts,”IJSWIS, vol. 4, no. 1, pp.
50–74, 2008.

[4] M. Ruta, G. Zacheo, A. L. Grieco, T. Di Noia, G. Boggia, E. Tinelli,
P. Camarda, and E. Di Sciascio, “Semantic-based Resource Discovery,
Composition and Substitution in IEEE 802.11 Mobile Ad Hoc Net-
works,” WiNet, vol. 16, no. 5, pp. 1223–1251, 2010.

[5] J. Vazquez and D. López-de Ipiña, “mRDP: An HTTP-basedlightweight
semantic discovery protocol,”Computer Networks, vol. 51, no. 16, pp.
4529–4542, 2007.

[6] J. Min, M. Park, and C. Chung, “A compressor for effectivearchiving,
retrieval, and updating of XML documents,”TOIT ’06, vol. 6, no. 3, pp.
223–258, 2006.

[7] S. Sakr, “XML compression techniques: A survey and comparison,”
JCSS, vol. 75, no. 5, pp. 303–322, 2009.

[8] P. Tolani and J. Haritsa, “XGRIND: A Query-friendly XML Compres-
sor,” in ICDE ’02. IEEE, 2002, pp. 225–234.

[9] P. Skibiski and J. Swacha, “Combining Efficient XML Compression with
Query Processing,” inADBIS. Springer, 2007, vol. 4690, pp. 330–342.

[10] V. Christophides, D. Plexousakis, M. Scholl, and S. Tourtounis, “On
labeling schemes for the Semantic Web,” inWWW ’03. ACM, 2003,
pp. 544–555.

[11] S. Sakr and G. Al-Naymat, “Relational processing of RDFqueries: a
survey,” SIGMOD Rec., vol. 38, pp. 23–28, June 2010.

[12] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “MatrixBit loaded: a
scalable lightweight join query processor for RDF data,” inWWW ’10.
ACM, 2010, pp. 41–50.

[13] R. Delbru, N. Toupikov, M. Catasta, and G. Tummarello, “A Node
Indexing Scheme for Web Entity Retrieval,” inThe Semantic Web:
Research and Applications, 2010, vol. 6089, pp. 240–256.

[14] Y. Zhang, N. Zhang, J. Tang, J. Rao, and W. Tang, “Mquery:Fast graph
query via semantic indexing for mobile context,” inWI-IAT ’10. IEEE
Computer Society, 2010, pp. 508–515.

[15] F. Baader, D. Calvanese, D. Mc Guinness, D. Nardi, and P.Patel-
Schneider, Eds.,The Description Logic Handbook. Cambridge Uni-
versity Press, 2003.

