A Framework for Query Processing over
Compressed Knowledge Bases

Floriano Scioscia Eufemia Tinelli
Dipartimento di Elettrotecnica ed Elettronica Dipartimento di Informatica
Politecnico di Bari Universita di Bari
Via Re David 200, I-70125, Bari, Italy Via Orabona, 1-70125, Bari, Italy
Email: f.scioscia@poliba.it Email: tinelli@di.uniba.it

Abstract—In semantic-based pervasive computing, annotated impractical. Furthermore, XML-based languages adopted in
information is tied to micro-devices, such as RFID tags and the Semantic Web are too verbose to allow efficient data
wireless sensors, deployed in an environment. Compressi¢ech- yanagement. Compression techniques become essential, in
nigues are essential, because of the verbosity of standardvi_- - .
based languages for ontologies and semantic annotationseynd order to Qnable storage a_md tran_sm|SS|on of semantically
Compression ratio’ query ef—ficiency is a key aspect_ This pa&p annotated |nf0rmat|0n on m|Cr0'deV|CeS SUCh as RFID tagS or
presents a framework for querying knowledge bases expresse wireless sensors. When evaluating encoding algorithma fro
in OWL, serialized in RDF/XML syntax and compressed with an information management standpoint, traditional metric
o e Cmesson Eomatonon s Sapheans SUch 85 compression falo and speed do not provide the
set of qugries %emonst?ates feasibility of the approa%h, wie p'?FU"e- Efficiency of queries on (_:ompressed data becomes a
practical examples highlight its usefulness. critical parameter, even more so in ad-hoc contexts.

This paper presents a formal framework for querying KB
l. INTRODUCTION fragments expressed in OWL, serialized in RDF/XML syntax

In the Semantic Web, available information resources shownd encoded withCOX (Compressor for Ontological XML-
be annotated in RDF (Resource Description Framewoikased languaged)l], an approach exploiting theomomor-
http://lwww.w3.org/TR/rdf-primer/), with respect to antoih phismproperty to preserve XML document structure during
ogy in RDF Schema or OWL (Web Ontology Languagesompression. Algorithms are defined for the execution of
http://lwww.w3.org/TR/owl2-overview/) defining a commonsome of the most significant query types adopted in the
vocabulary for a domain. Language specifications includeSemantic Web literature, related to both terminologic&8d¢X)
standard XML serialization syntax. Query languages, sualmd assertional (ABox) knowledge. The main contribution is
as SPARQL (http://www.w3.org/TR/rdf-spargl-query/eate- demonstrating the feasibility and soundness of a set ofrgéne
fined to extract and combine asserted information, whifgurpose semantic queries for on-the-fly knowledge exoacti
reasoning engines (based on OWL-DL subset) can perfofrom compressed KBs. The theoretical formalization opens
automated inference of knowledge entailed by a gikaowl- possibilities for further applied research, devoted topguring
edge Bas€KB) of asserted concepts, relationships and factte implementation of high-level query languages, such as

The integration of Semantic Web and pervasive compuBPARQL, and inference services by combining the proposed
ing technologies aims at associating semantically anedtabuilding blocks.
information with real-world objects, locations and events The rest of the paper is structured as follows. Section Il
through micro-devices capable of sensing and/or carryingptivates the work by outlining the main challenges that
useful data; notable technologies incluBadio Frequency are faced. Technical background and related work about KB
IDentification(RFID) andwireless sensor networkSuch data compression and querying are recalled in Section Ill. $acti
should be automatically extracted and processed by agantdVd describes the framework in detail, while Section V prasd
mobile computing devices, through Mobile Ad-hoc Networkpractical query examples. Finally, Section VI closes thgegpa
(MANETS), in order to better support current user actigtie

In pervasive contexts, events cause information needs that Il. CHALLENGES
must be satisfied immediately. Furthermore, several factor The proposed approach is aimed at pervasive computing
make information resource availability unpredictablehifity = scenarios characterized by large numbers of inexpensi, d
of objects and nodes, range limitations and inherent wumrelposable and unobtrusive micro-devices (such as RFID tags
bility of wireless communications, node failure due to gyer or wireless sensors) capable of producing and/or carrying
depletion. The capability of exploiting volatile resousce® semantically annotated data within a given environment: Mo
satisfy immediate needs is often defined @sportunistic bile computing devices extract and exploit such informatio
networking/computing: traditional approaches, based em c by acting as cluster-heads with respect to micro-devices in
tralized information storage and management, are evigentheir direct range and by exploiting MANETs to exchange

information with nearby peers. Notable application scesar maps the most frequent strings to 1-byte codes. COX deals
of semantic-enhanced RFID solutions are smart supply chaiith tag and attribute names in the same way. Attributes are
management [2], ubiquitous commerce [3] and healthcadistinguished by a @ prefix added to the name. Therefore,
(both in hospitals and for ubiquitous health monitoring)n the rest of the section the word “tag” will refer equivatlign
Applications of wireless semantic sensor networks include a tag or an attribute.
environmental monitoring (also for road conditions andhivit In the first step the XML document is parsed and statistics
buildings), disaster recovery and precision agriculture. are gathered. After parsing, an adjusted frequency of each

Several technological challenges characterize such xsntetag name is computed as the ratio between the number of
(1) due to strict power, size and cost constraints, micnde@s occurrences of the tag itself and the total document tags.
have little or no processing capabilities, very small sgera The [d,D) = [1.0 + 277,2.0 — 271%) interval is split in
and short-range, low-throughput wireless links; (2) MANETisjoint sub-intervals, assigning slightly longer sukemvals
hosts are battery-powered mobile computing devices, atwlvery rare tags while preserving proportionality withpest
communication is generally more expensive than computatito frequency. That avoids encoding errors for tags with g ver
from an energy standpoint; (3) wireless communications am@v frequency. All values that represent opening tags fall i
vulnerable to electromagnetic noise; (4) applicationsegalty the intervalld, D). The interval[1.0, d) is reserved to encode
need on-the-fly query answering. Compression of semalyticatlosing tags. Since every possible value is strictly betwee
annotated information introduces benefits in each of thes® and2.0, the first byte will always b®11111115 in 32-hit
areas: more information can be stored in limited memofioating point representation, so it can be truncated withou
amounts; due to lower data transfer times, power consumptioss of information [6]. After the first step &éag header
is decreased, the impact of noise is mitigated [3] and quesy written at the beginning of the output file. It contains a
processing latency can be reduced. sequence of records composed by: 1 byte for the length of

Semantic-based resource discovery frameworks filte tag name; the tag name; 3 bytes (after truncation) for the
MANETs can be found in literature. In some approachesicoding of the minimum value of the sub-interval of the tag.
[2], [4], resources are pre-selected by matching only thihe statistics collection for text string frequencies isfgpened
reference ontology identifier and ancillary extra-logicatoncurrently with the analysis of document structure. At th
data-oriented attributes w.r.t. the request. This hyboidt®n end of the first step, aalue headeiis written after the tag
grants efficiency, but semantic data management capasilitheader. It consists in a sequence of strings, separatedeby th
are somewhat limited. Other approaches choose a dirég}, character. The corresponding codes are single-byte values
reuse of Semantic Web technologiesg, [5] uses SPARQL from 00, to £d;, and they are assigned to strings in progressive
for queries and HTTP protocol for resource access), botder, hence they are omitted in the header.
significant performance issues can ensue. The main goaln the second step, the body of the output file is produced.
of the present work is to provide a feasible approach f@pening and closing tags, attributes and attribute valiesra
the execution of semantic-based queries on compresseded in the same order as they appear in the input document
KB fragments (ontology segments or resource annotation§)omomorphism). Each tatjis encoded by applying RAE:
That can enhance significantly semantic data managemastinput message, the sequertte= (so, s1,...,s,) of tag
capabilities in pervasive contexts. To this airmmomorphic names is considered, starting with= ¢ and going toward its
compression algorithms for XML-based semantic annotatioancestors (hence the adjective “reverse”) up to the root XML
—briefly recalled in the next section— are exploited. Futhg. This tag path (namesimple-path is then mapped to an
decompression introduces a fixed processing step that datervall as follows: at the beginnind, = [d, D); for eachs;,
have a significant performance impact, particularly onis reduced proportionally to the sub-intervalsf at the end
relatively simple queries, which can be considered as ofiS, the minimum limit of] is represented as a 32-bit floating
frequent case in pervasive scenarios. Therefore, we depaint value and the two central bytes are taken to enddde
that avoiding full decompression is important to improv€&inally, an attribute value is processed as follows: if itoings
efficiency of on-the-fly query processing. Finally, a suiéabto the dictionary produced in the first step, it is replaced by
communication protocole(g, extending the ones in [2], [4]) its 1-byte code followed by the delimitefie,, otherwise the
is needed to support semantic requests and replies ametring is copied to output, followed by the delimitet;,.
MANET hosts, but that is outside the scope of the paper.

B. Related Work
With reference to XML-based languages, several tools sup-

A. COX Compression porting efficient querying over compression schemes exists

In this work, COX [1] is adopted as reference format forsee [7] for a comprehensive surve§Grind [8] can perform (i)
guerying compressed XML-based semantic annotations. C@Xact-match and prefix-match queries directly on comptesse
exploits two different solutions to encode data structuned values and (i) range and partial-match queries on values
data, in a two-step compression process. For data strectutecompressed on-the-fl{Press[6] exploits RAE to improve
(XML tags and attributes), &everse Arithmetic Encodingthe path-based queries. XPress query engine transforrbgla la
(RAE) [6] variant is used. For attribute values, a dictignarpath expression into a sequence of intervals. Then, by using

I1l. BACKGROUND

this sequence, the query executor checks whether the athcode i bttt tion tir i dbouie st omoratore acd Kipey

values of XML tags are in an interval of the sequence or R s
not. XQueC[9] exploits indexing and XML storage strategies O Deccription et about i griret sid Kit-/>
since it is focused on search speed rather than compres T4t iDescription rdf:about="#Thernoneter/s
- <rdf:Description rdf:about= ermometer”/>
sion efficiency. The above tools execute path-based queries o peiric o
= <owl:onP t df: =" "/>
which allow sy)./ntactic match of documentpelements acrlllé are ol n oo
</owl:Restriction>
. . <owl:Restriction>
strictly tied to the XML Schema of the compressed document. <owl:onProperty rdf:resource="#measures"/>
L. 3 L. <ow1:auVa1l.uesFrom rdf:resource="#Temperature"/>
Therefore, it is not possible to reuse an existing approach o /ouliRestriction>
for ;emantic—based queries, but new query primitives mast b et
defined w.r.t. COX format. 2/t Description > C o>

In existing strategies for storing and querying RDF an-
notations, data structures and optimizations are focused o
a database perspective [10]. The Semantic Web community
has generally used traditional database systems [11], even
though recently alternative technologies have been peipos
by e.g, NoSQL (http://nosqgl-database.org/). Moreover, stan-
dard RDF query language SPARQL closely follows SQL syn-
tax. Consequently, most of the RDF-based query processing
techniques rely on database optimizations [12], [13]. €hes
technologies do not cope with mobile computing issues. An
interesting exception is the MQuery [14] framework. It desa
a compressed index of RDF graphs for improving contextig. 1. Instance description in OWL and graph-based COXessmtation
aware retrieval, according to the idea that a mobile usetsvan
to access specific data depending on certain situations. The retrieve all the descendants dfby applying recursively
main drawback w.r.t. our approach is limited flexibility and the children primitive.
extensibility, as MQuery provides a pre-defined query fatee ~ « properties(A) - it retrieves all the propertigs such that

owl:Restriction
owl:onProperty owl:allValuesFrom

@rdf:resource @rdf:resource

|#measures| | #Temperature |

@rdf:parseType
Collection

for selecting only from four possible query types. A is domain ofp.
Study of the above works suggested the main query types leaves(A) - it retrieves all the concepi8 such that3 are
that semantic-based applications expect: (i) full-texarsk, the most specific concepts ¢f. More formally, we say

i.e., keyword or string matching; (ii) queries based on data thatlecaves(A) = {B|B = subClassOf(A) A =3B’ :
structurej.e., path-based and structural-based queries and (i) (B’ = subClassOf(A) A B" = subClassO f(B))}.

a combination of them. Accordingly, our proposal includes » nca(Ay, ..., Ay) - it retrieves the nearest common an-
both keyword-based search and a set of path-based queries. cestor ofn concepts. In other words,ca query retrieves
the most specific concept of a collection composed of the

IV. FRAMEWORK ancestors common to all the concepts. More formally,

A. Query Model nca(A) = {B|A; = subClassOf(B) A ... N A, =
In the proposed framework, the classical KB definitign= subClassOf(B) A 3B’ : (A1 = subClassOf(B') A
(T, A) is adopted, where thEBox T specifies the ontological .. NA, = subClassOf(B')AB' = subClassO f(B))}.

knowledge, and th@Box A specifies the assertional one. The With reference to ABox reasoning, two types of queries
framework deals with KBs in an OWL-DL subset specified agre presented: (i) entity-based search, implemented bysnea
follows: (i) 7 is asimple Thoxi.e., a set ofPrimitive Concept of a string matching on the required concepts and their
Specification§A C B); (i) object properties, data propertiesdescendants, and (i) more complex path-based queries.
and disjoint concepts sets can be defined; dii}s a role-free The former is useful when the knowledge structure is
ABox, i.e, a finite set of individuals defined as instances of got known. The latter can be considered as a solution
general concept expressiohwithout binary relations betweento the classicalquery answeringproblem. In particular,
individuals. C' can be a conjunction of atomic conceptswe consider three path-based queries on ABox. COX sees
unqualified existential quantifications, number resiicé and an OWL individual as a tree of nodes; in the example
universal quantifications. of Figure 1, owl : Restriction tag precedes directly
With reference to TBox reasoning, a set of path-basewM : al | Val uesFr om(i.e., one hop of distance), whereas
queries is presented (most of which are exploited in [10]): owl : al | Val uesFromandow : onProperty are at the
« parents(A) - it retrieves all the concept® such that same depth level. The following path-based queries on ABox
A is direct sub-class of3. Obviously, it is possible to are needed, since it is not possible to use the ISA relation
retrieve all the ancestors ol by applying recursively underlying the path-based queries on the TBox:
the parent primitive. — a//b: it retrieves all the individuals having a node
« children(A) - it retrieves all the concept8 such thatB which precedes a node In other words, we retrieve all the
is direct sub-class afl. Also in this case, it is possible toindividuals having at least a path betweemandb;

— a/b: it retrieves all the individuals having a nodewhich otherwise.

precedes directly a node — getNextValuaakes positiom and returns the next (possibly
—a +» b: it retrieves all the individuals having nodesandb encoded) attribute value.
at the same depth level. — findSimplePathsWithValuakes in input an interval and a

Keyword-based search on the TBox can be exploited $tring valuewv; it getsc := lookupV alue(v), then it scand3
suggest class names to be used in the query composition.to find all occurrences of the simple-path encoded: and
immediately followed bye; they are returned as positions (in
bytes) from the start of5. This primitive is useful to search

The proposed query engine can be formalized now. TRg a specific attribute value, which in RDF/XML is needed
approach refers to the constructors listed in Section &4, 5 find e.g, occurrences of a class name.

pressed in the RDF/XML serialization recommended by OWL findsimplePathswithValueLikis similar to the previous
2 language specifications. The management of all syntagligmitive. It takes in input an interval and a string value:.
variants of RDF/XML is not explicitly dealt with in this work |t scanss to find all occurrences of the simple-path encoded
Primitives. The following simple-paths are referenced Ihy i and immediately followed by a string containingthey
query execution algorithms to find elements in the RDF modegfe returned as positions (in bytes) from the star5of
For reader's convenience, they are not reported in reversgetvaluesAfterPositioiakes in input an interval, and a
order. positionn; it scans the document from positien up to the
PL rdf: RDF — owl: Class — Qrdf : about end of the XML element at. It returns a (possibly empty)

P2 rdf : RDF — owl : ObjectProperty — Qrdf : about
P3 rdf : RDF — owl : Class — rdfs : subClassOf — @rdf : Set of string values that immediately follow attributes ehed

B. Query Engine Formalization

resource A . with a number withiri. Algorithm 1 formalizes this primitive,
Pa p RDF - owl: ObjectProperty = rdfs - domain = which is useful to get values of attributes within a specific
P5 rdf : RDF — rdf : Description — Qrdf : about XML element.
P6 rdf : RDF — rdf : Description — rdf : type — owl : — getValuesBeforePositiois the dual primitive ofgetValue-

Class — Qrdf : about . L.
P7 rdf : RDF — rdf : Description — rdf : type — owl : sAfterPosition It scans the document backwards from position

Class — owl : intersectionOf — rdf : Description — T, UP to the start of the XML element at

Qrdf : about TBox queries Algorithm 2 and Algorithm 3 exploit simple-
Query execution is based on a set of primitives for the accgssths P1 and P3 and COX access primitives to find par-
to a COX compressed document, whose structure, as sa&idis and children of a given class, respectively. Algorithm
consists in a tag headé{r, a value headeH and a body 4 (respectively 5) calls Algorithm 2 (resp. 3) to find the
B. The primitives are listed in Table | and explained hereafteclass ancestors (resp. descendants). Finding leaves ags cl
The wordtokenwill be used to denote any of the following: anand the nearest common ancestor of a set of classes exploit
opening tag; a closing tag; the start of an attribute; theafndthe previous algorithms, as reported in Algorithm 6 and 7.
an attributeHr, Hy, B are supposed to be always accessibklgorithm 8 uses simple-pati®4 to look up for a domain
and therefore are not part of the input. Data complexitglationship between the input class and a property name,
characterization is provided, as the number of requireddre then P2 is used to find the property name by scanning the

only) accesses w.r.t. document size. compressed document backwards. Finally, Algorithm 9 uses
— lookupTagsearches a tag name #ir; if found, it returns partial string matching both in the document value headdr an
its associated interval, else it retumsll. body to find the input keyword.

— lookupValuesearches a string value iHy; if found, it ABox queries Algorithm 10 and 11 allow to find the ABox
returns its associated 1-byte code, else it returns theevalndividuals that are instances of a class and of an intaosect
of the input argument. of classes, respectively.

- lookupValueLikesearche${y, for strings containing the input

argument; it returns the (possibly empty) set of 1-byte sode V. ILLUSTRATIVE EXAMPLE

associated to matching strings. To better clarify the framework and the different query
— lookupCodesearches a code iHy; if found, it returns its types, a simple example in wireless semantic sensor and
associated string, else it returnsll. actor networkis considered. Let us suppose that the action

— computeSimplePattomputes the interval for a simple-pathplanning to respond to an emergency is performed on-the-fly
it uses the arithmetic encoding algorithm described iniSect by a mobile coordinator unit, which must select the bestracto
[lI-A and requires alookupTagcall for each element in the for intervention based on their advertised capabilitieke T
simple-path. coordinator is able to execute queries on its local TBox copy
— getNextToketakes positiom and returns the value encodingand to issue ABox queries to other units in order to discover
the next token inB after positionn. which ones match required characteristics. The example tas
— getPreviousTokenakes positionn and returns the value is to find a unit equipped with an “aid kit” and “sensors” able
encoding the previous token i before positiom. to measure “weather” conditions. According to a modified
— isStartTokerntakes number encoding a token and returnsversion of the ontology developed in [4] in order to satisfy
true if it is the start of an XML element or attributdalse the simple TBox condition (not reported here due to lack of

Algorithm

getValuesAfterPosition(i,n)

Require: ¢ simple-path interval, n position
€ 0,5}
Ensure: V set of values
1: pos:=n
22.C=0
3. count :=1
4: while count > 0 do
5: t := getNextToken(pos)
6: pos := pos + sizeof(t)
7 if isStartToken(t) then
8: count := count + 1
9: if t € ¢ then
10: ¢ := getNextV alue(pos)
11: C:=CuU{c}
12: pos 1= pos + sizeof(c)
13: end if
14: else
15: count := count — 1
16: end if
17: end while
18: for all ¢ € C do
19: if c is a stringthen
20: V=V uU{c}
21: else
22: V =V U {lookupCode(c)}
23: end if
24: end for

Algorithm 2 parents(a)

Require:

Ensure:
P

i1

N

oaRrwNhE

~

ig:

a class namepP1 and P3 simple-paths
P set of parents ofi
=0
computeSimplePath(P1)
computeSimplePath(P3)
:= findSimplePathsWithV alue(i1, a)

: foral n € N do

P = P U
getValuesA fter Position(iz, n)

: end for

Algorithm 3 children(a)

Require:
Ensure
C

i1

:‘G’S-’.":'?."?!‘:’!—‘

19 1=
N.
: foral n € N do

a class nameP1 and P3 simple-paths

C set of children ofa
=0
= lookupV alue(a)
:= computeSimplePath(P3)
computeSimplePath(P1)
findSimplePathsWithV alue(iy, a)

C c U
getValuesBeforePosition(iz, n)

8: end for

Algorithm 4 ancestors(a)

Require: a class hame

Ensure:
1. A
2. P
3 A

A set of ancestors of
=0

:= parents(a)

=P

4: for all p € P do

5:

A := AU ancestors(p)

6: end for

1 Algorithm 5 descendants(a)

Require: a class hame
Ensure: D set of descendants af

D :=
C:=
D :=
for all ¢ € C do

D := D U descendants(c)

end for

children(a)

Algorithm 6 leaves(a)

Require: a class hame
Ensure: L set of leaves of

1:

2
3
4:
5:
6
7
8
9

L:=0

: C := children(a)
1 if C == 0 then

L:=LU{a}
else
for all ¢ € C do
L := L Uleaves(c)
end for

: end if

Algorithm 7 nca(aq,. ..

7an)

Require: a1, ...,a, class names
Ensure: NCA the nearest common ancestor
ai,...,an
1. NCA:=0
2: for k=1ton do
3: CA := ancestors(ay)
4: NCA:=NCANCA
5: end for
6: if NCA == () then
7: NCA := Thing
8: else
9: while INCA| > 1 do
10: for j = 1to |[NCA| do
11: for k=j+1to |[NCA| do
12: if NCA; € parents(NCAy)
then
13: NCA := NCA/{NCA;}
14:] =j-1
15: = |NCA|
16: else if NCAy c
parents(NCAj) then
17: NCA := NCA/{NCA,}
18: ki=k—1
19: end if
20: end for
21: end for
22: end while
23: end if

Algorithm 8 properties(a)

Require:
Ensure:

=
o

a class nameP2 and P4 simple-paths
P list of properties having: as domain
P:=90
i1 := computeSimplePath(P4)
iz := computeSimple Path(P2)
A := ancestors(a) U a
for all @ € A do
N
findSimplePathsWithV alue(iy, a)
for all n € N do
P P @]
getValueBeforePosition(iz, n)
end for

: end for

Algorithm
keyword-based_search(Ay, . ..

9
s An)

Require: a1, ...

, an Names to search?1 simple-path

Ensure: C set of classes syntactically similar to

al, ...

C =

£ a’IL

0

i := computeSimplePath(P1)

for k

V=

for

=1ton do
lookupV alueLike(ay,)
all v e Vdo
if v! = null then
n =
findSimplePathsWithV alue(i, v)
if n! = @ then
C := C U {lookupCode(v)}
end if
else
n =
findSimplePathsWithV alueLike(i, v)
if n! = @ then
C:=CU{v}
end if
end if

end for

end for

Algorithm 10 entity-based_search(a)

Require: a class nameP5, P6 and P7 simple-paths
gnsure Ins list of individuals instance ofA
Ins:=10

9
10:
11:
12:
13:

14:

QO NouhlkwhkE

11 =
i2 =
i3 1=
C:=

: for all

N

computeSimplePath(P6)
computeSimplePath(P5)
computeSimplePath(PT)
descendants(a) U {a}

ce Cdo

findSimplePathsWithV alue(ii, c)

M
fi

for

ndSimplePathsWithV alue(is, c)

all n € N do
Ins Ins u
getValuesBeforePosztwn(zQ ,m)

end for

for

all m € M do
Ins Ins]
getValuesBeforePosztwn(zQ ,m)

end for

15: end for

Algorithm
entity-based_search(ay, . ..

11
aan)

Require: aq, ...

N

10:
11:
12:

13:

,an, Classes namesP5 and P7

simple-paths
Ensure: Ins list of individuals instance of the intersec-

tion of aq, ...

Ins :

i =

Qg 1=

for 1
C;
for

en

El a‘”.

computeSimplePath(PT)
computeSimplePath(P5)
:=1tondo
:= descendants(a;) U {a;}
all c € C; do
N
findSimple PathsWithV alue(iy, c)
for all n € N do
Ins; Ins; @]
getValuesBeforePosztwn(zz, n)
end for
d for

end for

Ins

=1Ins; N...

NIns,

Name Input Output Complexity
lookupTag(t) tag namet interval or null O(|Hr])
lookupV alue(v) string valuev code ofv or v itself O(|Hv])
lookupV alueLike(v) string valuev (possibly empty) set of codes of strings containing O(|Hv])
lookupCode(c) codec between 0 and 253 string at positionc in Hy or null O(|Hv])
computeSimple Path(P) simple-pathP interval ornull O(|P| X |Hr])
getNextToken(n) positionn next tokent O(1)
getPreviousT oken(n) positionn previous tokent O(1)
isStartToken(t) tokent¢ true or false O(1)
getNextValue(n) positionn (possibly encoded) string 0O(1)
findSimplePathsWithV alue(i, v) interval ¢ of simple-path, string value (possibly empty) set of occurrences, O(IB] + [Hv])
as positions from start oB
findSimplePathsWithV alueLike(i, v) | intervali of simple-path, string value (possibly empty) set of occurrences, O(|B])
as positions from start oB
getValuesAfterPosition(i, n) interval ¢, positionn (possibly empty) set of strings O(|B| + [Hv])
getValuesBe forePosition(i, n) interval ¢, positionn (possibly empty) set of strings O(|B] + [Hv])

TABLE |

ACCESS PRIMITIVES FOR ACOX COMPRESSED DOCUMENT

space), a possible set of executable queries is the follpwinquery processing strategy with other existing ones as well
as to evaluate possible optimizations. Future developsnent

— keyword-based_search(aid kit, sensor, weather): Algo-

rithm 9 suggestdhirst_aid_kit, Sensorand WeatherSensor include: (i) a full-featured query and reasoning engine for

classes. It is useful to point out that a keyword-based keamompressed KBs; (ii) integration of queries on compressed

gives support to select suitable ontology classes, butnbts KBs in a protocol for semantic resource discovery in pemesi
a necessary pre-condition for other types of ABox queries.environments.

— entity-based_search(First_aid_kit, Weather_Sensor):
Algorithm 11 returns all the individuals that are instande o
the intersection of the input concepts. The individual igufe

1 is returned becaus€hermometer class is subsumed by
Weather_Sensor class and the remaining class is in the[2]
individual definition. So, the problem of instance retriesan
be solved.

— owl : Class//Qrdf : about/First_aid_kit N (owl
Class//((owl restriction//measures) <+ (owl
restriction//owl : someValuesFrom)): a generic path-
based query that retrieves the instances of a general concep
expression. It is expressed according to definitions iniGect
IV-A and on the RDF/XML syntax exemplified in Figure
1. It is executed using theomputeSimplePatROX access
primitive. Now, in order to retrieve all the individuals tasce
of the concept expressiond., equivalent resources and more g
specific ones), the query has to be rewritten according to
recursive application of normalization rules (see concept
normal form rules in [15] for more details). Also in this v
case, the individual in Figure 1 is returned because it i)
instance of intersection dfirst_aid_kit class and unqualified
existential restriction onneasures property. In the devised
guery framework, path-based search on semantically at@tbtgz10]
instances solves the problem of query answering on the ABox.

[11]

(1]

(3]

(5]

VI. CONCLUSION

In the context of semantic-based data management %ZIJ
pervasive computing, a framework has been presented for
querying knowledge bases expressed in OWL, serialized [#d!
RDF/XML and compressed with a homomorphic algorithm.
The provided query engine formalization, based on a set [04]
data access primitives, has demonstrated the feasibflitlyeo
approach, the absence of algorithmic complexity issues agej
an acceptable theoretical scalability. Implementationthod
framework is ongoing. It will allow extensive experimental
analysis, which is needed to compare performance of our

REFERENCES

F. Scioscia and M. Ruta, “Building a Semantic Web of Thinigsues and
perspectives in information compression,”"SWIM'09 |IEEE Computer
Society, 2009, pp. 589-594.

R. De Virgilio, E. Di Sciascio, M. Ruta, F. Scioscia, and Forlone,
“Semantic-based RFID Data Management,Unique Radio Innovation
for the 21st Century: Building Scalable and Global RFID Netis
Springer, 2010.

T. Di Noia, E. Di Sciascio, F. M. Donini, M. Ruta, F. Scidac and
E. Tinelli, “Semantic-based Bluetooth-RFID interactioor fadvanced
resource discovery in pervasive contexte]SWIS vol. 4, no. 1, pp.
50-74, 2008.

M. Ruta, G. Zacheo, A. L. Grieco, T. Di Noia, G. Boggia, Endlli,
P. Camarda, and E. Di Sciascio, “Semantic-based Resousmo\@iry,
Composition and Substitution in IEEE 802.11 Mobile Ad HoctNe
works,” WiNet vol. 16, no. 5, pp. 1223-1251, 2010.

J. Vazquez and D. Lopez-de Ipifia, “mRDP: An HTTP-bakgitweight
semantic discovery protocolComputer Networksvol. 51, no. 16, pp.
4529-4542, 2007.

J. Min, M. Park, and C. Chung, “A compressor for effectaechiving,
retrieval, and updating of XML documentsTOIT 06, vol. 6, no. 3, pp.
223-258, 2006.

1 S. Sakr, “XML compression techniques: A survey and corngoa,”

JCSSvol. 75, no. 5, pp. 303-322, 2009.
P. Tolani and J. Haritsa, “XGRIND: A Query-friendly XML @npres-
sor,” in ICDE '02. |EEE, 2002, pp. 225-234.

] P. Skibiski and J. Swacha, “Combining Efficient XML Corepsion with

Query Processing,” idDBIS Springer, 2007, vol. 4690, pp. 330—-342.
V. Christophides, D. Plexousakis, M. Scholl, and S. ffounis, “On
labeling schemes for the Semantic Web,"WAWWW '03 ACM, 2003,
pp. 544-555.

S. Sakr and G. Al-Naymat, “Relational processing of Reries: a
survey,” SIGMOD Reg.vol. 38, pp. 23-28, June 2010.

M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “MatriRit loaded: a
scalable lightweight join query processor for RDF data, WiwWw 10
ACM, 2010, pp. 41-50.

R. Delbru, N. Toupikov, M. Catasta, and G. Tummarelld, Node
Indexing Scheme for Web Entity Retrieval,” ifthe Semantic Web:
Research and Application2010, vol. 6089, pp. 240-256.

Y. Zhang, N. Zhang, J. Tang, J. Rao, and W. Tang, “MquEnst graph
query via semantic indexing for mobile context,”\MI-IAT '10. |EEE
Computer Society, 2010, pp. 508-515.

F. Baader, D. Calvanese, D. Mc Guinness, D. Nardi, andPdel-
Schneider, Eds.The Description Logic Handbook Cambridge Uni-
versity Press, 2003.

