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Abstract—In recent years, Body-to-Body Networks (BBNs) have
gained momentum as a means to monitor people behavior and
simplify their interaction with the surrounding environment;
thus representing a key element of the Internet of Things
(IoT) networking paradigm. Within BBNs, several transmission
technologies sharing the same unlicensed band (namely the ISM
band) coexist, increasing dramatically the level of interference,
which in turn negatively affects the network performance.

In this paper, we consider an IoT system composed of several
BBNs and we analyze the Cross Technology Interference (CTI)
problem caused by the utilization of different transmission
technologies that share the same radio spectrum. We formulate
an optimization model considering both the Mutual and Cross
Technology Interference in order to mitigate the overall level of
interference within the IoT system, taking explicitly into account
the node mobility. We further develop two heuristic approaches
to solve efficiently the interference mitigation problem in large
scale network scenarios.

Numerical results show that the proposed heuristics represent
two efficient and practical alternatives to the optimal solution for
solving the CTI mitigation problem in large scale IoT scenarios.

Keywords—Body-to-Body Networks, Internet of Things, Cross
Technology Interference, Interference Mitigation, Optimization.

I. INTRODUCTION

The ongoing evolution of wireless technologies has fostered
the development of innovative network paradigms like the
Internet of Things (IoT), where the pervasive deployment of
wireless devices endowed with sensing capabilities permits
to link the physical to the digital world, thus enabling the
development of enhanced services.

Wireless Personal Area Networks and, more specifically,
Body-to-Body Networks (BBNs) are emerging solutions for
the monitoring of people behavior and their interaction with
the surrounding environment, thus representing a key build-
ing block of the upcoming Internet of Things networking
paradigm [1]. BBNs may correspond to different rescue teams
in a disaster scenario or different groups of people, whose
Wireless Body Area Networks (WBANSs) interact with each
other and the surrounding environment.

In their most common configuration, every BBN consists
of several WBANSs, which in turn are composed of wearable
sensor nodes connected through the 802.15.4 protocol (i.e.,
ZigBee) to their mobile terminals that act as coordinators for
their corresponding WBANS. The set of wearable sensors may
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be used to consistently monitor people’s vital signs, like blood
pressure, breath rate, skin temperature, or important environ-
mental parameters like temperature and humidity. Furthermore,
wireless headsets can be used to enable communication among
people of the BBN, while glasses like those recently proposed
by Google and Microsoft can be connected wirelessly with a
smartphone to provide augmented reality [2].

Mobile terminals are usually equipped with two radio in-
terfaces implementing the 802.15.4 and the 802.11 protocols,
which are used, respectively, for coordinating the activity of
the wearable sensor nodes and to form the wireless backhaul
infrastructure among the WBANs of the BBN.

Due to the broadcast nature of the wireless channel and
the limited radio bandwidth, data transmissions between the
devices involved in BBNs’ communications may interfere,
thus reducing the network performance of the entire system.
More specifically, successful data transmissions over two or
more conflicting wireless links, which use the same PHY
technology, cannot be simultaneously performed. Furthermore,
as illustrated in [3], the interference caused by frequency
overlap across different wireless technologies', like ZigBee
and WiFi, can highly affect the performance of WBANs both
in terms of achievable throughput and reliability. In particular,
data transmissions within ZigBee networks can completely
starve due to WiFi communications, which use 10 to 100 times
higher transmission power.

On the other hand, given the scarce availability of the
radio frequency spectrum used by standard wireless solutions,
many existing wireless technologies are forced to use the same
unlicensed frequency bands. For example, IEEE 802.11 (WiFi),
IEEE 802.15.1 (Bluetooth) and IEEE 802.15.4 (ZigBee) all
share the same 2.4 GHz ISM band. Hence, interference across
these technologies can lead to loss of reliability and an
inefficient use of the radio spectrum.

In this paper, we consider a wireless Body-to-Body Network
scenario and we focus on the interference mitigation problem,
where Mutual (WiFi-WiFi and Zigbee-Zigbee) and Cross-
Technology (WiFi-ZigBee) interference arising in a dynamic
scenario are taken into account simultaneously.

In summary, our work makes the following contributions:

e We analyze the problem of mutual and cross-technology
interference in a dynamic IoT system, where mobile

I'This type of interference is denoted as Cross Technology Interference in
the rest of the paper.



devices use different access technologies on the same
spectrum band.

e We formulate the interference mitigation as an opti-
mization problem, proposing an extended interference
graph to model cross-technology transmission conflicts.
Furthermore, we consider explicitly the network dynam-
ics due to the nodes mobility, by optimizing the worst
interference caused by nodes proximity.

e We present two heuristic solutions, namely a cus-
tomized randomized rounding approach and a tabu-
search scheme, to solve efficiently the problem even for
large-scale network scenarios.

e We perform a thorough numerical evaluation of the pro-
posed mechanisms, considering both static and mobile
network scenarios.

Numerical results show that the proposed model and heuris-
tics reduce significantly the level of interference between
different technologies within an IoT, thus improving the overall
network performance.

The paper is structured as follows: Section II discusses
related work. Section III introduces the communication model
as well as the assumptions considered in our work. Section IV
formulates the interference mitigation problem as an optimiza-
tion model, while Section V describes the heuristic approaches
we designed to solve efficiently the problem. Section VI
illustrates and analyzes numerical results which show the
efficiency and validity of our approaches. Finally, concluding
remarks are discussed in Section VIIL.

II. RELATED WORK

In this section, we discuss the most relevant works that
deal with the problem of interference mitigation between
different technologies (i.e., Zigbee and WiFi) that share the
same frequency spectrum.

The problem of minimizing 802.11 interference on Zigbee
medical sensors is addressed in [4], where the authors proposed
a solution which utilizes a hardware setup that includes both
ZigBee and 802.11 transmitters and permits to transmit both
802.11 and ZigBee messages. The goal was to temporarily
block out 802.11 messages for a time window large enough
such that ZigBee devices can successfully transmit their mes-
sages, thereby solving the interference issue. To do so, they
developed two types of solutions: (i) periodically jam 802.11
and see if ZigBee would be able to fit its messages into the
empty time frames, and (ii) transmit a CTS message directly
before a ZigBee message and verify that the ZigBee message
has a high delivery rate.

Instead of trying to avoid interference from 802.11 traffic,
the work in [3] focused on improving the coexistence of
802.15.4 and 802.11 networks that operate in the overlapping
frequency channels. More specifically, this work presented a
MAC layer solution (BuzzBuzz) that enables 802.15.4 nodes
to coexist with WiFi networks by using multi-headers and
forward error correction codes to overcome the packet loss
caused by 802.11 interference.

A ZigBee frame control protocol (WISE) is proposed in [5]
to deal with the interference between ZigBee and WiFi.

WISE first predicts the length of white space in WiFi traffic
based on a Pareto model and then adapts the frame size to
maximize the throughput efficiency while achieving assured
packet delivery ratio. WISE was implemented in TinyOS 2.x
and evaluated through experiments using 802.11 netbooks
and 802.15.4 TelosB motes, demonstrating some advantages
(19.5% and 42.5%) over B-MAC (the default MAC protocol
in TinyOS) and OppTx [6], [7], respectively. In [8], [9] the
authors proposed two mechanisms that enable the reliable
coexistence of ZigBee and WiFi networks. These mechanisms
include a frequency flip scheme and a cooperative carrier sig-
naling that prevent the mutual interference between cooperative
ZigBee nodes, and a busy tone scheduler that minimizes the
interference due to WiFi networks, for both CSMA and TDMA
packets.

A tool for understanding 802.11 performance in hetero-
geneous environments, without the use of dedicated infras-
tructures, is presented in [10]. This tool, called WiMed, uses
802.11 NICs to produce a time allocation map showing how
the medium is used, and is able to detect non-802.11 sources
of interference using NIC registers and bit error analysis.

Furthermore, in [11], [12], the authors consider a 802.11-
based multiradio mesh network with stationary wireless
routers, where each router is equipped with multiple radio
interfaces, and multiple channels are available for communi-
cation. They address the problem of assigning channels to
communication links in the network, while minimizing the
overall mutual interference among wireless links that use the
same technology. On the contrary, we consider a BBN network
system composed of wireless sensors, equipped with a ZigBee
interface, and mobile terminals, which are equipped with
both ZigBee and WiFi interfaces. Furthermore, the proposed
solutions aim at minimizing both the mutual (i.e., WiFi-WiFi
and ZigBee-ZigBee) and the cross technology (i.e., WiFi-
ZigBee) interference, considering a set of consecutive time
epochs to represent the mobility of WBANs in the BBN
scenario.

In summary, none of the above reviewed works has in-
vestigated an optimization framework to jointly minimize the
mutual and cross technology interferences in a mobile IoT
system composed of several Body-to-Body networks.

III. NETWORK MODEL

This section presents the network model and assumptions we
adopt in the design of our interference mitigation approach.

We consider an IoT system, composed of a set A of
wearable Mobile Terminals (MTs), that use both the 802.15.4
protocol (i.e., ZigBee) to communicate with the sensor nodes
within the WBAN, and the IEEE 802.11 wireless standard (i.e.,
WiFi) to create a backhaul infrastructure for inter-WBANSs
communications. The IoT is therefore formed of several Body-
to-Body Networks (BBNs) that communicate among each
other using the WiFi technology, as illustrated in Figure 1. The
radio channels defined by the WiFi and ZigBee technologies
are identified using the two sets /C,, and K., respectively.

The operating time of the whole system is divided in a
set T of consecutive epochs. We assume that during each



epoch the network topology does not change. Specifically,
the set £,,(¢) represents all WiFi links established by mobile
terminals during the epoch ¢ € 7, which may vary between
two consecutive epochs due to WBANs mobility. On the
contrary, the set £, which contains the ZigBee links used for
intra-WBAN communication among the sensor motes, does
not change during the entire operating time of the system.

In order to model the different types of interference caused
by the utilization of multiple wireless technologies in an
IoT environment, we extend the basic conflict graph pre-
sented in [12] for representing pairs of interfering wireless
links. Specifically, we introduce the concept of cross-conflict
edges to model the Cross Technology Interference (CTI).
The cross-conflict edges in the conflict graph connect two
vertices that represent communication links using two dif-
ferent technologies (i.e., WiFi and Zigbee). Therefore, the
extended conflict graph G.(V.(t),&.(t)) is defined over the
set Ve(t) = Ly(t) U L,, which contains all wireless links
established by mobile terminals (either WiFi or ZigBee), and
a conflict edge (e1,e2) € E.(t) exists between two vertices
using the same radio technology, (e.g., e1,ea € L, (L) or
e1,es € L) if the corresponding wireless links interfere
between each other when they are set on the same channel.
Since WiFi channels may be overlapped, the weight of the
edge connecting two interfering WiFi links is proportional to
intersection area between the spectrum of the two signals [13].

Conversely, when the two vertices represent wireless links
using two different radio technologies, e; € L, (t) and ey €
L., a cross-conflict edge is used to indicate that e; and es
interfere if they use overlapping channels, like, for example,
by tuning e; on the WiFi channel 1 and ey on the ZigBee
channel 12.

Figure 2 shows the extended conflict graph of the network
scenario depicted in Figure 1, where solid lines are used to
represent the classical conflict edges that model the mutual
interference between links based on the same technology,
whereas dashed lines correspond to cross-conflict edges, which
depict the conflicts among links that use different transmission
technologies.

Note that we consider only one ZigBee link for any WBAN
in the set £, (i.e., the link established by the mobile terminal
using its ZigBee interface), since all sensor motes within a
WBAN use the same wireless channel. Indeed, the Cross Tech-
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Fig. 1: IoT scenario: Two BBNs corresponding to two different
groups of people (i.e., blue and red) are using the same unlicensed
spectrum.

802.15.4

Fig. 2: Extended Conflict Graph representing interfering wireless
links (i.e., links that cannot use overlapping channels simultaneously
for successful communication) of the scenario illustrated in Figure 1.

nology Interface affecting all ZigBee links within a WBAN is
accurately captured by the cross-conflicting edge that connects
the representative ZigBee link with any surrounding WiFi
connection.

Formally, we represent the mutual interference caused by
using two overlapping WiFi channels by the |KC,| % |Ky]
matrix C, whose element ¢, € [0, 1] is proportional to the
intersection area between the spectrum of the two signals [13].

Similarly, we model the Cross Technology Interference
between two overlapping channels using a |KC,,| x || matrix
A, whose element aj, = 1 states that WiFi channel & € IC,,
interferes with the ZigBee channel h € K.

Finally, the connectivity among the mobile terminals that
belong to the same BBN and through which the sensor nodes
of different WBANs can communicate, is defined using the
|L| % | L] matrix B, whose element b,,, = 1 indicates that
WiFi links v and v belong to the same BBN.

IV. OPTIMAL CROSS-TECHNOLOGY INTERFERENCE
MITIGATION (CTIM) PROBLEM

This section formalizes the Integer Linear Programming
(ILP) model we propose for the joint assignment of 802.11b/g
and 802.15.4 wireless channels to the interfaces of the devices
that belong to an IoT in order to minimize both the Mutual
and Cross-Technology interference.

We first introduce the decision variables used in our model,
then we provide the ILP description of the problem.

Binary variables x!, represent the temporal assignment of
WiFi channels to wireless links established among the mobile
terminals of a BBN using their WiFi interfaces. Specifically,
z!, =1 indicates that channel k € K,, is assigned to wireless
link u € L, throughout epoch ¢t € 7. Similarly, the set of
binary variables y’, represents the ZigBee channels assigned
to all communication links used by the wearable sensors of the
WBAN wv. As discussed in the previous section, we consider
only one representative link of the WBAN, since we are

assuming that all WBAN’s sensors are set on the same channel.
; l"ll"he temporal Cross Technology Interference is defined as
ollows:
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Specifically, I, (1) and I (zu,v)(t) account for the mutual
interference caused by data transmissions over conflicting links
that use WiFi and ZigBee protocols, respectively, in epoch t.
Conversely, [, ZZ fv) (t) represents the amount of cross technology
interference, in epoch ¢, due to simultaneous transmissions
on interfering links established using different protocols. The
parameters «, $ and 7 permit to weight differently the three
contributions to the overall interference.

Given the above definitions and notations, the optimal Cross
Technology Interference Mitigation (CTIM) problem can be
stated as follows:

min u 2)
s.t.
u > 1(t) vteT 3)
SToaly=1 YVt e T,Vu € Lu(t) 4)
kEKw
buv (T, — Typ) =0 vteT,
Yu,v € Lw(t),Vk € Kuw  (5)
S oyhn=1 vte T,Yue L, (6)
hekC,
zt, = szkl vt e T,
Yu € Lw(t),Vk € Ky (7)
vl =yt vte T,

Yu € L.,Yh e K. (8)

vt € T,V (u,v) € EX (L),
Vk,h € Kw (9)

vt e T,Vk € Kz,
Y(u,v) € EZ(t) (10)

vVt € T,V (u,v) € EX*(t),
Vk € Kw,Vh € K. (11)

LY (6) > cpn - (hy, + by, — 1)
I5 () > Yo +ubp — 1

L5 (6) > apn - (hy, + v — 1)

o €{0,1} Vi € T,Vu € L(t),
Vk € Ky (12)
yt, €{0,1} Vt € T,Yv € L,,Vh € K,. (13)

The objective function (2) along with the set of con-
straints (3) minimize the maximum cross technology interfer-
ence generated by data transmissions using different technolo-
gies on the same available spectrum throughout all epochs.

Constraints (4) force the assignment of a single WiFi
channel to any wireless link established between two mobile
terminals. Indeed, this set of constraints prevents the assign-
ment of multiple channels to the single radio interface with
which a device is equipped. Similarly, constraints (6) force
the utilization of a single ZigBee channel within a WBAN.

Note that removing the edges from the interference graph
representing any pair of conflicting links that belong to the
same BBN does not guarantee the connectivity of the WiFi
mobile terminals. Therefore, we explicitly model the network
connectivity among the devices that belong to the same BBN,
using the set of constraints (5) that forces the utilization of
the same channel for any pair of WiFi links that belong to the
same BBN (ie., by, = 1 = 2!, = 2!, = 1). Indeed, since
we are assuming that mobile terminals are equipped with only
one WiFi interface, we must assign the same wireless channel

to all WiFi links established within the same BBN in order
to create a multi-hop topology that guarantee the connectivity
between any pair of devices.

Constraints (7) and (8) force the utilization of only one
channel throughout all time epochs (7 corresponds to the set
T without the element representing the last epoch). Therefore,
the channel assignments !, and y!, provided by solving the
CTIM problem minimize the worst interference generated by
simultaneous transmissions throughout all epochs.

By neglecting these two latter sets of constraints we can
easily model the channel switching to account for devices
that can select different frequencies between consecutive time
epochs.

The two sets of constraints (9) and (10) model the Mutual
Interference between WiFi and ZigBee links, respectively;
while constraints (11) account for the Cross Technology In-
terference between conflicting links that use the two different
protocols considered in this work. Unlike constraints (9) which
model the mutual interference caused by using overlapped
WiFi channels, the set of constraints (10) takes into account
only the interference generated by setting the same ZigBee
channel on conflicting links, since all ZigBee channels are
orthogonal.

V. HEURISTIC SOLUTIONS FOR THE CTIM PROBLEM

The Optimal Cross-Technology Interference Mitigation
(CTIM) Problem is NP-Hard. Indeed, it can be demonstrated
that the Maximum K-Cut problem can be reduced in polyno-
mial time to our CTIM problem [14]. Finding the exact system
optimum can be thus extremely time consuming, especially
in large-scale, real IoT scenarios composed of several BBNs,
as those analyzed in our numerical evaluation. Motivated by
this observation, in the following we present two heuristic
approaches to solve efficiently (i.e., in polynomial time) the
CTIM problem, while obtaining a low overall interference.

We set out by presenting the algorithm based on a modified
version of the Randomized Rounding (RR) technique. Then,
we illustrate the Tabu Search (TS)-based solutions.

A. RR-CTIM: Randomized Rounding Algorithm

Algorithm 1 illustrates the main steps of the first heuristic
solution, which is based on a modified version of the random-
ized rounding approach. The algorithm receives as input the
parameters that describe the network topology, the extended
conflict graph, which contains all wireless links and their
conflicts, and the available wireless channels. It produces as
output the channel assignment for all BBNs communication
links, which are based either on WiFi or ZigBee technologies.

The algorithm proceeds in 3 steps. Step 1 consists in solving
the continuous relaxation of the CTIM problem described in
the previous section, where integrality constraints (12) - (13)
are replaced with the corresponding continuous relaxations, as
follows:

yf}h € [07 1]

YVt € T,Yu € Liy(t),Vk € Ky
Vte T,Yve L, Yhek,.



Let & and § be the optimal solutions obtained solving
the relaxed version of the CTIM problem. Steps 2 and 3
perform the randomized rounding on assignment variables &
and g, respectively. In both steps, for each wireless link we
consider the most likely channel assignment throughout all
epochs, namely the highest value among the set of variables
representing the channel assignment of one link.

Specifically, for WiFi links (step 2), we select from the set
containing all variables &, corresponding to possible channels
assigned to all links of the same BBN (i.e., the set B,,) the
variable with the highest value x; bm ", We then compare such
Varlable with a random value p umformly distributed in [0, 1]:
if ac " < P, all links using the WiFi technology within the
same BBN are tuned on the same channel k., throughout all
time epochs, by forcing all variables 1, = 1,Yv € B,,Vt €
T (the remaining variables are set to zero, x!, = 0,Vv €
By, YVt € T,k € Ky, k # k). Conversely, the decision about
the feasibility of the WiFi channel assignment to all links of
the corresponding BBN is postponed to step 4.

Regarding the ZigBee channel assigned to the representative
link of a WBAN in step 3, we adopt a similar approach,
considering the most likely assignment of a ZigBee channel to
a WBAN obtained from the relaxed CTIM problem. However,
in this latter case, we can perform the randomized rounding
of each variable ¢, by forcing only the utilization of the
same channel within a WBAN throughout all epochs, since
each element u of the set £, corresponds to an independent
WBAN.

Finally, in steps 4 and 5, we verify the feasibility of the
solution (x,y) provided by the previous operations, ensuring
that only one channel is assigned to any wireless link (i.e.,
constraints (4) and (6)) and that all WiFi links of the same
BBN use the same channel (i.e., constraints (5)).

B. TS-CTIM: Tabu Search Algorithm

We now describe the tabu search-based approach (TS-
CTIM) we propose to solve the CTIM problem in polynomial
time. Since TS-CTIM is based on Tabu search meta-heuristic
and on the idea of searching in the neighborhood of a given
solution, in this section we first define the neighborhoods used
by TS-CTIM, then we provide the reader with some back-
ground on Tabu search and finally we proceed by illustrating
in detail the TS-CTIM heuristic.

Polynomial Size WiFi (WLCAN) and Zigbee (ZLCAN)
Link-Channel Assignment Neighborhoods. We define two
polynomial size neighborhoods: WLCAN and ZLCAN. The
first is considered for the WiFi link-channel assignment prob-
lem, while the second for Zigbee link-channel assignment.

Given a feasible solution f, the neighborhood is generated
by applying the procedure move that assigns a new WiFi
(or ZigBee) channel k to a wireless link w, such that k is
different from the one that has been assigned to u in the current
solution f.

Background on Tabu Search. Tabu search is a local search
based optimization method [15] that can accept interference-
increasing solutions in order to escape from local minima. This

Algorithm 1: RR-CTIM

Input : N, G.(V:(t),E:(t)), Kw, K=, B,C

Output: x,y

(&, 9) < Solve the LP relaxation of the model (2)-(13);

p < rand(0,1);

foreach u € L, (t) do

B, < {U € Ly (t) Sbuw = 1}5

xf:km <=max{zl, :v € Bu,k € Ku,t €T}

if ;™ < p then
foreach v € B,,t € T do
end

—

N

end

end

p <= rand(0,1);

3 foreach v € L. do

ym = max{gl, k€ K.t €T}
if y,v < p then

foreach ¢t € T do
| Yak,, = 1
end
end

end
4 < FeasWiFiSol(&,z,G. (Vc(t) E:(t)), Kw, B,C) ;
5 y < FeasZigBeeSol(g,y, Ge(Ve(t), Ec(t )

feature allows the neighborhood search to explore other parts
of the solution space.

For each neighborhood (WLCAN or ZLCAN), the best
neighboring solution is used as new current solution and, if
it improves upon the best solution found so far, this latter is
updated with the best neighboring solution.

To prevent loops which keep exploring the same set of
solutions, the algorithm maintains a tabu list containing the
solutions explored in the previous iterations. A solution pro-
duced by a move belonging to the tabu list, which we refer to as
tabu move, is discarded. Tabu search stops when it reaches its
stopping condition, for instance after a given number of visited
neighborhoods without improvement to the best solution.

The tabu search parameters (tabu list size and stopping crite-
rion) play a fundamental role in implementing this metaheuris-
tic. In this work, they have been set according to computational
experience:

e Tabu list size: a static tabu list is considered containing

up to L = 100 moves.

e Stopping criterion: the algorithm stops after

nb_iter_max = 20 consecutive neighborhood
searches without improvements to the best solution.

TS-CTIM Algorithm. To solve the CTIM problem, we
develop an efficient heuristic (named TS-CTIM) that uses
the tabu search approach along with the polynomial size
neighborhoods WLCAN and ZLCAN.

To be more precise, we develop two different versions
of the TS-CTIM heuristic (TS-CTIM-1 and TS-CTIM-2),
which correspond to two different ways in defining, generating
and searching the neighborhood of an intermediate solution.
The corresponding neighborhoods are denoted respectively by
Neighborhood-1 and Neighborhood-2.



At the first glance, the TS-CTIM heuristic, which is illus-
trated in Algorithm 4, proceeds as follow:

1) Start with a feasible initial solution fy = (xq,y0).

2) Perform a tabu search using both the polynomial size
WiFi and Zigbee link-channel assignment neighbor-
hoods, and considering the following two alternatives
for generating the neighboring solutions:

e TS-CTIM-1; Neighborhood-1 (see Algorithm 2):
given a current solution f;, (1) generate a neigh-
boring solution in WLCAN, then (2) generate
r neighboring solutions in the ZLCAN neighbor-
hood and finally (3) go back to (1),

e TS-CTIM-2; Neighborhood-2 (see Algorithm 3):
given f;, (1) generate a neighboring solution in
ZLCAN, then (2) generate r neighboring solutions
in the WLCAN neighborhood and finally (3) go
back to (1).

3) Return the best solution fp.s; found in step (2).

Note that for the first iteration of TS-CTIM (for ¢ = 0), the
intermediate solution f; is initialized to fj. Furthermore, both
Algorithm 2 and 3 generate at each iteration a neighborhood
with r 4+ 1 new solutions.

More specifically, TS-CTIM takes as input parameters
the set of mobile terminals A/, the extended conflict graph
G.(Ve(t),E.(t)), an initial solution fy = (zg,yo), the maxi-
mum number of iterations nb_iter_max, the size of the tabu
list L, the number 7 of neighboring solutions, and the version
of the algorithm used to generate the neighborhood, v. The
TS-CTIM algorithm produces as output the best solution fpes¢,
which has been found among those analyzed. To this end, the
algorithm starts from a random initial solution fo = (xq,¥o),
wherein each wireless (WiFi and Zigbee) link is assigned a
channel. The two vectors zy and y, represent, respectively, the
initial WiFi link-channel assignment and Zigbee link-channel
assignment variables’ values. We set the current solution f;
equal to fy.

The first version of the Tabu Search algorithm, TS-CTIM-
1, generates at each iteration the sequence of r? + r solu-
tions according to the following procedure. Given the current
solution f; = (w;,v;), we first apply one time the move
operation on x; and we obtain a neighboring solution (x}, v;).
Then, we apply move on y; generating r neighboring solutions
(x4,9;), and we choose among all these r + 1 solutions the
one with the lowest interference as new solution (z,y;) . This
procedure is repeated 7 times, and among all 72 + r solutions
(x%,y!) generated using r times Neighborhood-1, the one with
the minimum interference is used as starting solution for the
successive iteration of the TS-CTIM algorithm, f; = (2}, y}),
with ¢ updated to : + 1. Conversely, the second version of the
Tabu Search (i.e., TS-CTIM-2), applies the move operation on
the set of variables representing ZigBee links, y;, producing
a novel solution (x;,y}) in which only one channel of a
randomly selected ZigBee link is modified. Then the move
operation is applied r times on the set of WiFi links, xz;, to
generate r nearby solutions (2}, y.).

In order to modify r ZigBee links, the previous procedure,
which is implemented by the Neighborhood-2 algorithm, is

Algorithm 2: Neighborhood-1

IHPUt : fl = (mi7yi)ar
Output: F;
F; < @;
) < move(x;);
F < Fu{(zy,)h
while £ < r do
y; <= move(y,);
F < FU{(zi vy}
k<k+1;
end

executed r times, thus resulting in a set of r2 4+ r solutions
explored at each iteration.

Algorithm 3: Neighborhood-2
Input : fl = (wi7yi)7r
Output: F;

F; < @;
y; <= move(y,);
Fi <= Fiu{(zi,y)}
while £ < r do
x; <= move(x;);
Fi <= Fiu{(zi, y,)h
k<k+1;
end

Finally, both alternative versions of the TS-CTIM algorithm
terminate after nb_iter_max consecutive iterations without
improvements to the cross technology interference. However,
every time a solution f; produces a lower cross-technology
interference CTI(f;), the iterations counter is reset to avoid
local minima (step 8).

A formal description of the TS-CTIM algorithm (i.e., TS-
CTIM-1 and TS-CTIM-2) is provided in Algorithm 4.

VI. NUMERICAL RESULTS

This section presents the numerical results that illustrate
the validity of the proposed algorithms to solve the Cross-
Technology Interference mitigation problem. More specifically,
we evaluate the impact of the BBN density (i.e., the total
number of WBANs in a BBN) on the performance of the
overall system using the algorithms developed in the previous
sections.

We first describe the experimental methodology of our
simulations, then we analyze and discuss the performance
achieved by the proposed algorithms.

A. Experimental Methodology

In our simulations, we consider both static and dynamic
BBN topologies, whose nodes (or WBANS) are randomly
scattered over an area of 1000 x 1000m?2.

In order to evaluate the effect of the node density on the level
of interference, we vary the total number of mobile terminals
in the range [20, 50]. To do so, we fix the number of mobile
terminals within each BBN to 5 and vary the number of BBNs



Algorithm 4: TS-CTIM

N, Gc(Vc (t), gc (t))1 fO - (iEo, y0)7 nb—iter_mam7
L,rv
OUtPUt: Tbest, Ybest
1 Start with an initial solution fo = (z0,%0);
210=0,k=0, frest = fo, Ivest = CTI(fo);
3 while 7 < nb_iter_max do
4 while k& < r do
F; <=Neighborhood-v(f;);
fi <= argming, I1(t);
Add move(f;) to the tabu list;
k<k+1;
end
8 if (CTI(f;) < Ipest) then
fbest <~ fu
-Ibcst = CT-I(fz)v
1 <= 0;
else
| i<=i+1;
end

Input :

N A n

end
9 Return fbest = (mbest, ybest);

from 4 to 10. Specifically, BBN centers are scattered according
to a uniform distribution inside the simulation area, whereas
the mobile terminals are deployed around each BBN center
according to a bi-dimensional Gaussian distribution with a
standard deviation equal to 100 meters.

In the dynamic network scenario, we simulate the BBNs
mobility using the random way-point model [16], which is one
of the most widely used mobility models in mobile networks.
In particular, for each time epoch we compute the random
displacements of all BBNs’ centers, and we move all mobile
terminals within the same BBN towards the same direction
according to the displacement vector.

In our simulations, we consider only the three orthogonal
channels defined by the WiFi alliance (K, = {1,6,11}),
whereas for the WBAN links we use all the 16 available
ZigBee channels (K, € [11,26]). The transmission powers
of WiFi and ZigBee radio interfaces are fixed to 100 mW and
1 mW, respectively. Due to the higher transmission power used
by the WiFi than the ZigBee technology, we set o« = 5, 5 =1
and v = 10 in Equation (1).

The extended conflict graph is computed assuming the
utilization of an ARQ mechanism as error recovery technique
(i.e., we assume DATA-ACK message exchange among the
network nodes involved in data communications). The re-
ception and carrier sense thresholds used to decide whether
nodes can establish communication links or interfere among
each others are defined according to the sensitivity of Atheros
(WiFi)?> and CC2420 (ZigBee)3 radio chipsets.

The path loss, which is necessary to evaluate the sensitivity
of the receiving node, is computed according to the Friis
propagation model. We underline that all above assumptions
do not affect the proposed algorithms, which are general and
can be used to solve any network scenario.

2 Available on-line http://www.diswire.com/SpecsCM9.pdf
3 Available on-line http:/www.ti.com/lit/ds/symlink/cc2420.pdf

In order to gauge the performance of the proposed heuristic
algorithms (Section V) with respect to the optimal solution
(Section 1V), we consider the Cross-Technology Interference
(CTI) defined in Equation (1). Furthermore, in the dynamic
scenario, we measure the number of times different channels
are assigned to ZigBee links across two consecutive epochs,
since it provides an indication of the signaling overhead
necessary to coordinate the channel switching.

Note that, due to the high computational and space complex-
ities of the ILP model, we could not scale beyond the network
sizes and time epochs discussed above (i.e., 40 nodes and 10
time epochs). Indeed, the maximum computational time and
memory utilization we measured to solve the optimal CTIM
problem using the CPLEX solver on an Intel Core 2 Quad
Processor Q8300 with 4 cores, clock speed of 2.5 Ghz and
4 GByte of RAM were approximately equal to 5.5 hours and
70%, respectively. Conversely, the Tabu Search approaches
take always less than 3 seconds to find the corresponding
solutions (when the parameter » = 10).

B. Performance Evaluation

Static Scenario. We first evaluate the effect of the node
density and the number of available channels on the perfor-
mance of our interference mitigation techniques. Specifically,
in the network scenario described above, we vary the number
of mobile terminals in the [20, 50] range and we progressively
increase the number of orthogonal WiFi channels from 1 to
3. Figures 3 show the Cross-Technology Interference obtained
using our proposed algorithms. For the sake of clarity, the
CTTI has been normalized with respect to the maximum value
measured by the RR-CTIM algorithm (Igpg(t) ~ 46000).

The curves identified by labels “Opt.”, “RR” and “TS-v”
(v € {1,2}) illustrate, respectively, the performance metrics
computed using the Optimal, the Randomized Rounding and
the two Tabu Search alternatives that we presented in previous
sections.

As illustrated in the figures, the two versions of the Tabu
Search algorithm well approach the Optimal solution, whereas
the Randomized Rounding technique provides always solutions
with higher interference. We observe that in almost all network
instances, the decision variables of the LP relaxation have
the same values, which are interpreted by the RR-CTIM
algorithm as an even channel assignment, thus failing to drive
effectively the remaining operations of the algorithm. Indeed,
when the optimal solution of the LP relaxation provides the
same values to all decision variables, the FeasWiFiSol()
and FeasZigBeeSol() functions in Algorithm 1 generate
randomly the channels to be assigned to WiFi and ZigBee
links.

As expected, increasing the node density within the simula-
tion area leads to higher cross technology interference, since
the mobile terminals and the sensor devices of the WBANSs get
closer, thus increasing the number of edges of the extended
conflict graph.

It can be further observed from Figures 3(a), 3(b) and
3(c) that the number of available WiFi channels affects the
performance of all approaches. Specifically, the higher is
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Fig. 3: Cross-Technology Interference as a function of the node density and number of orthogonal WiFi channels (i.e., {1,6,11}) measured
in the static network scenario. All results are normalized to the maximum CTI computed using the RR-CTIM algorithm (I(t) ~ 46000).
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Fig. 4: Cross-Technology Interference as a function of the node density and number of orthogonal WiFi channels (i.e., {1,6,11}) measured
in the dynamic network scenario. All results are normalized to the maximum CTI computed using the RR-CTIM algorithm (I(¢) ~ 16000).

the number of orthogonal channels, the lower is the overall
interference of the solution computed by all algorithms. Fur-
thermore, as illustrated in Figure 3(a), when only one channel
is available, TS-CTIM-2 provides slightly worse performance
than TS-CTIM-1, since the procedure Neighborhood-2 changes
only one ZigBee channel, thus generating a neighborhood of
r solutions for each iteration instead of 72 with Neighborhood-
1 (r WiFi links are not really affected by the move operation
of Neighborhood-2). As long as the number of orthogonal
WiFi channels increases, TS-CTIM-2 outperforms TS-CTIM-
1, since the algorithm can analyze more alternative solutions.

Dynamic Scenario with Fixed Channels. The second
set of simulated scenarios, whose results are depicted in
Figure 4, aims at evaluating the effect of the mobility on the
performance of our proposed schemes. To this end, within the
1000 x 1000m? simulation area, we randomly move all nodes
throughout 10 time epochs, according to the mobility model
described above. The mobile terminal speed is set to 1 m/s,
while the duration of a single time epoch is fixed to 10 seconds,
which is long enough to capture significant changes in both
the network topology and the extended conflict graph during
the simulation time.

As in the static scenario, the CTI has been normalized with
respect to the maximum value measured by the RR-CTIM
algorithm (Irr(t) ~ 16000).

The results obtained in the dynamic scenario, and illustrated
in Figures 4, confirm the trends observed in the static scenario
described above. Specifically, the cross-technology interfer-
ence improves by increasing the number of orthogonal WiFi
channels and decreasing the node density (or equivalently by

increasing the spatial reuse). Since the number of orthogonal
WiFi channels in the ISM band is limited, BBNs’ users should
improve the spatial reuse, reducing the transmission power to
the minimum level necessary to maintain network connectivity.

Finally, we can observe that node density affects the network
performance more than the mobility, since all algorithms
minimize the worst cross technology interference throughout
all time epochs.

Dynamic Scenario with Channel Switching. In order to
provide more insights about the gain achievable by enabling
the channel switching, we evaluate the performance in terms
of signaling overhead of the algorithms presented in previous
sections neglecting constraints (7) and (8) for the optimization
based approaches and optimizing the topologies of all time
epochs as consecutive instances of the static scenario for
the tabu-search approaches. In particular, we illustrate the
distribution of ZigBee links that are forced to change channel
during the simulation time and the overall number of channels
used by the algorithms. Note that the algorithms modified
to consider the channel switching functionality achieve the
same maximum Cross Technology Interference illustrated in
Figures 4.

Figure 5 shows the channel switching distributions of the
ZigBee links obtained with the optimal and heuristic al-
gorithms in the network scenario composed of 40 mobile
terminals and 3 available WiFi channels. For the sake of
brevity, we do not illustrate the results obtained with fewer
mobile terminals, since the distributions have similar trends,
even if the average number of channel changes decreases.
Even though the optimal algorithm achieves the lowest Cross



Technology Interference, it forces all ZigBee links to change
their channel at least four times, as illustrated in Figure 5.
Conversely, the percentage of links, which changes channel at
least four times, decreases to 80%, 30% and 10% using the
randomized rounding and the two tabu-search approaches. This
is mainly due to the smaller solution space analyzed by the
heuristic approaches that indirectly requires a lower channel
changes than the optimal algorithm. Indeed, we noticed that
the randomized rounding approach selects almost uniformly
the channels assigned to each epoch, while the generation of
the neighborhood used by the tabu-search techniques limits the
channels changes assigned to wireless links.
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Fig. 5: Channel switching distribution of ZigBee links in the scenario
composed of 40 mobile terminals (5 WBANS for each of the 8§ BBNs).
The black circles represent the percentage of links that switch their
channel less than 4 times (i.e., F(x < 4)).

As for the efficiency of the resource utilization, it can be
observed from Table I that channel switching increases the
total number of channels used by the entire system during the
simulation. In particular, the optimal and tabu-search solutions
require the utilization of all available ZigBee channels, with-
out improving significantly the maximum Cross Technology
Interference experienced by the network nodes.

Therefore, our results suggest that the utilization of the
channel switching is not justified, since despite an increased
signaling overhead necessary to coordinate the devices and an
increased use of the available channels, the algorithms do not
reduce significantly the Cross Technology Interference within
the network with respect to the solution with fixed channels.

TABLE I: Number of ZigBee channels used in the scenario with 40
mobile terminals during the whole simulation time.

Fixed channels Cl 1 switching
[Kw| | Opt. | RR | TS-1 | TS-2 | Opt. | RR | TS-1 | TS-2
1 12 3 9 8 12 4 16 16
2 12 3 8 6 16 8 16 16
3 11 2 5 4 16 4 16 16

VII. CONCLUSION

In this paper, we addressed the Mutual and Cross-
Technology Interference mitigation (CTIM) problem in an IoT
composed of several Body-to-Body networks. We formulated
the interference mitigation across different wireless technolo-
gies (i.e., ZigBee and WiFi) as an optimization problem, and

we introduced a new conflict graph to represent interfering
wireless links that use different radio access technologies.

In order to solve efficiently (i.e., in polynomial time) the
interference mitigation problem for large-scale IoT instances,
we also developed three heuristic approaches based on Ran-
domized Rounding and Tabu-Search techniques.

We evaluated the performance of the proposed algorithms
considering both static and dynamic scenarios, illustrating the
sensitivity of our algorithms to different parameters, like the
BBN density, the total number of available WiFi channels, and
the utilization of the channel switching functionality.
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