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ABSTRACT

Power consumption of disk based storage systems is becaning
increasingly pressing issue for both commercial and sifiematp-
plication domains. Prior work proposed several hardwaseta
approaches to reducing disk power consumption by makingfise
techniques such as spinning down idle disks and rotating thie
lower speeds than the maximum speed possible. While subh tec
nigues are certainly very important, it is also critical Twnsider
the influence the software can exercise in shaping the powrer c
sumption behavior of disk-intensive application progranvoti-
vated by this, the main goal of this work is to study whether an
optimizing compiler can be used for increasing the powereben
fits that could be obtained from multi-speed disks. Spedificae
propose and experimentally evaluate a compiler-directextgy-
aware data prefetching scheme for scientific applicatibatsfro-
cess disk-resident data sets. This scheme automaticadiyndees
the prefetch distance for all disk access instructionsgisiespeeds
to be employed, and the associated disk layouts (stripinanpe:
ters) in a unified setting. We implemented the proposed a&mpro
within an optimizing compiler framework and conducted eixpe
ments with several disk-intensive applications. Our expental
evaluation shows that the proposed approach brings signifie-
ductions in disk energy consumption over a state-of-theedtware-
based 1/0 prefetching mechanism that does not take intouatco
energy consumption explicitly. Our results also show tha&nergy-
aware prefetching scheme does not bring any extra perfa®enan
penalties and the energy reductions achieved are cortsistarss

a wide spectrum of values of the simulation parameters.
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1. INTRODUCTION

High power consumption is one of the most pressing issues for
computing platforms that target large-scale data-intenapplica-
tions [7, 6, 12, 13]. While most of the recent research effort
minimizing power consumption have been performed in the CPU
network, and memory domains, the research on disk power opti
mization is still in its infancy. A couple of recent papersy(epro-
viding multi-speed setting for server disks [5, 14], povaerare
storage cache management schemes [32, 33], and compidkdgu
disk power management schemes [25]) have focused exdisive
on disk power consumption and proposed hardware and seftwar
based solutions to the problem. Most of these papers estimat
and/or control disk power consumption or present statitddyic
code/data reorganizations for maximizing power savingscbuld
be obtained from the low-power operating modes supportetidy
disk system.

While conventional disk power optimization approach [1Q, 1
18] based on spinning down idle disks has been successfhkin t
context of laptop disks, it is not the best option for servisksl
and scientific workloads that exhibit very short idle diskipds.
Therefore, one of the prior proposals [5, 14] to disk powes sa
ing in high-performance systems has been to employ diskstigt
capability of changing their rotational speeds dynamjca8ince
such multi-speed disks (e.g., those from [19] and [30]) cawes
requests even under low rotational speeds, they can paltgrek-
ploit short idle periods as well and, at the same time, saveepo
(due to reduced speed). However, the question of whethecame
increase the power savings that could be achieved through su
multi-speed disks remains important and largely unexplorén
particular, the role of the software-level optimizations fitilizing
such multi-speed disks in the most effective way needs tovesi
tigated.

The main goal of this paper is to demonstrate that compiler-
directed rescheduling of disk access instructions in sifieappli-
cations can be very effective in practice and increase peasgngs
obtained from multi-speed disks significantly. The spedifiategy
proposed and evaluated in this wdists disk access instructions
in the program code to increase the time-gap between the afsu
the instruction and the actual access to the disk. In this ey
hoisted instruction can use a disk that operates with a lepeed
than the maximum one. More specifically, the approach pregos
in this paper determines the most suitable prefetch distBoreach
array reference in the application code, disk speeds (RRbide
for all the disks in the storage system, and data layout$#odisk-
resident arrays in a unified setting. Note that since our ot



issue prefetches to disks that rotate at lower speeds, etstpn
distances are larger than those normally used in conveaitité@
prefetching.

explores various cache replacement techniques in the xtoote
disk arrays equipped with multi-speed disks. Lastly, Zhal¢81]
recently proposed a holistic disk power management teakeniq

We implemented the proposed approach within a research com-called Hibernator, that combines three major techniqugsanhic

piler [15] and made experiments with four different dateeirsive
applications that process disk-resident datasets. Thitsesom
our experiments indicate that the proposed energy-aw@rner&fetch-
ing approach reduces disk energy consumption over a state-0
art, energy-agnostic 1/0 prefetching scheme by 19.6% oragee
without hurting the performance of the latter. Our experitakre-
sults also show that the achieved disk energy savings asistent
across a wide range of values of the major simulation pamesiet
and that our approach introduces very little (less than 18tjop-
mance overhead, as compared to the conventional I/0 pnaigtc

The remainder of this paper is structured as follows. The nex
section discusses the related work on disk power optincizatec-
tion 3 gives a high level view of the storage system underidens
eration and defines the technical concepts frequently usélis
paper. Section 4 gives an example to demonstrate the beokfits
the proposed approach. Section 5 explains the technicailglet
of our approach. An experimental evaluation of our appraauh
its quantitative comparison against the prior work are gmé=d in
Section 6. Finally, the paper is concluded by a summary amitt b
discussion of the planned future work in Section 7.

2. RELATED WORK

Most of the prior studies on reducing disk power/energy con-
sumption make use of observed idle times during programuexec
tion. To exploit disk idle periods, the disk drive itself mseto
provide a low-power operating mode, either in the form of eom
pletely stopping disk rotation (spinning down) or in thenfoof
dynamically adjusting the rotational speed. Providing-fmewer
modes is important, because even if a disk is idle it consuahes
most as much energy as it would consume in the active (fully op
erational) mode [14, 17]. For the laptop/desktop domainrestige
applications typically exhibit long idle periods, sevesaldies have
already considered techniques such as spinning down isks diy
using a fixed threshold period (i.e., the time to wait bef@iasing
down a disk) or by estimating the threshold period adapti{/&0,

11, 18].
Once the disk is equipped with some sort of low-power oper-

ating mode, we can make use of these modes within an operat-

ing system (OS) or at an application level by increasing tad
tion of idle periods so that a given disk can be placed into-low
power modes for longer durations of time. Among the effoots f
cusing on the OS layer, Zhu et al [32] and Papathanasiou 20hl [
consider power-aware caching and prefetching strategibs.ra-
tionale behind both these studies is that conventional #hing
and 1/O prefetching techniques, which mainly focus on théqgpe
mance angle, can hardly produce any long idle periods. Rttae
spreading disk accesses across the entire execution peniexdy-
efficient prefetching generates burst disk access paftetrish is
preferable from the energy perspective. The enlarged ieif®gs

in turn allow a disk to be placed into one of the supported low-
power operating modes.

Zhu et al [32] also study a power-aware cache replacement al-

gorithm, called PA-LRU, in the context of large storage eyst,
which are typically equipped with several GBs of aggregatathe
memory. The main idea behind their approach is to selegtivel
maintain cache blocks from certain disks, so that the reimgin
disks can stay in low-power modes for a longer period of tifne.
another paper, Zhu et al [33] propose a different approaaitec:
PB-LRU (Partition-Based LRU), to the same problem. PB-LRU

disk speed setting, multi-tier data layout, and data revrgdion.
Since frequent modulations of disk speeds might decreagereli
liability, their idea is to adjust disk speed at a coarse gjaity. To
guarantee the specified response time limit, Hibernatqukeack
of average response time dynamically. If the specified mespo
time guarantee is at risk, Hibernator restores the speealsditks
to full speed.

Several studies investigated the problem of disk power g&na
ment at the application/compiler level. For example, Hesthl
[16] studied an application code transformation techniquenergy-
aware device management by generating /O burstiness foplap
disks. More recently, Son et al proposed several compdset
code transformation techniques to conserve disk energyucop-
tion. First, they studied a compiler technique that insexglicit
disk power management calls in sources codes of scientifili-ap
cations [25]. The idea is that a compiler can extract howslele
traversed during execution time using the application ®gode
along with the file level striping information. By insertimxplicit
power management calls, e.g., spipand spindown, in the appli-
cation code, one can eliminate (to a large extent) the pegoce
penalty that would normally be incurred by reactive disk pow
management schemes. Second, they revisited conventaogal |
distribution and iteration space tiling techniques fromearergy
perspective. To achieve the best energy savings withoutirgjo
down performance much, they showed that both code and under-
lying disk layout must be considered at the same time. Inhamot
paper [24], the same authors described a compiler approash t
duce disk power consumption in the presence of parallel siisk
tems. To increase disk idleness, the proposed techniqesisies
the code fragments assigned to a number of processors aartod
the disk access patterns extracted by an optimizing compilech
captures both intra- and inter-processor disk reuses.

Since large data centers host huge amounts of data for fevera
application domains, they typically exhibit locality at ekl parti-
tion level or a file level. This means that, in a given time péyi
not all the disks participate in servicing 1/0 requests. €ting
this, MAID (Massive Arrays of Idle Disks) [9] was proposed to
reduce disk energy consumption using a small number of disks
cache drives, thereby potentially reducing the number wi-sps
for disks. While cache drives service the requests to tHeatigy,
other unused disk drives can be placed into the low-poweresiod
Pinheiro et al [21], on the other hand, proposed a data nwgrat
technique called PDC (Popular Data Concentration). Theidea
behind this scheme is to dynamically move the most frequentl
accessed disk data to a subset of the disks in the arraybthere
increasing the idle periods for the remaining disks in thetey.
PDC is a feasible solution for network servers because wadd
processed by such systems are heavily skewed towards asahall
of files. Techniques such as MAID and PDC manipulate data at
a file system granularity, therefore, at least one day isireduo
collect the file access patterns and adjust the file layowtsrding
to the gathered information.

The approach proposed in this paper is different from alepur
hardware based disk power management schemes since itis com
piler based. Itis also different from the prior compiler bdstudies
in that, it minimizes disk energy consumption through codista
ing (energy-aware prefetching), instead of linear codesfiama-
tions. In addition, as against studies such as [32], ourcgubr
determines the prefetching distance, disk speeds, andayjeatats



Figure 1: Two-level striping of array data across disks.

in a unified setting. However, we also want to mention thate
proach proposed in this paper can also be used in conjungttbn
prior compiler-directed code modification schemes suc24fpr

reducing disk power consumption even further. Finally,ontcast
to the previous studies that target multi-speed disks, ppraach
determines disk speeds statically for each applicatiorompile-

time. Therefore, it has practically no impact on reliagilitue to
the frequent modulation in disk speed at run-time.

3. HIGH LEVEL VIEW OF STORAGE
SYSTEM

The storage system considered in this work is shown in Figjure
at a high level. Our focus is on large, data-intensive sifierstp-
plications that manipulate disk-resident, multi-dimensil arrays.
The disk requests in this architecture are directed to |/@eam@ver
which the array files are striped. Within each I/O node, psteas-
signed to that I/O node is further striped at the RAID leveldend-
ing on the specific RAID implementation [8] adopted). Theref
as depicted in Figure 1, each data array in our storage acthit
is striped attwo different levels (I/O node level and RAID level).
While the RAID level striping is hidden from the softwareetilO
node level striping is visible to the software (to the corapih our
case) and can be controlled through calls from the undeyliid
library and/or the parallel file system used. For exampl@&\itrS
[4, 23], one can manipulate the I/O node level striping infar
tion of files by changing th@vfs_fil est at structure, which
includes the stripe unit and the number of disks used fquiatyi

In this paper, we determine rotational speeds of disks atal da
layouts of arrays at an 1/0 node granularity. That is, whersete
the speed of a particular 1/0 node, it means setting the sp&ed
all the disks controlled by that I/0 node. However, for theesaf
discussion, we use the term “disk” instead of “I/O node” winen
explain our approach below. The “disk layout” concept usethe
rest of this paper refers to the I/O node level striping; ivehen
we mention “striping”, we mean the striping at the /O nodeele
In our experimental evaluation, we assume a one-to-one imgpp
between data arrays and files. In other words, we assumedtiat e
data array is stored in a single file and a file contains oniynglsi
array. Under this assumption, one can talk about “stripimgraay
over the I/O nodes.” While we can easily relax this assumptio
by allowing one-to-many and many-to-one mappings betwben t
disk files and the data arrays, we do not evaluate these gpition
this paper.

The proposed compiler-directed approach operates undexsw
sumptions. The first assumption is that the 1/O node levidiaty
can be accessed and controlled by the compiler. This islgessi
because current parallel file systems and run-time lits&éeg.,

PVFS [4, 23]) provide API calls that enable this. Our secosd a
sumption is that the disk system is exercised by a singleécgijun

at a time (of course, the different applications can use #mes
system at different times). In our approach, the compilerroan-
age/control the disk power consumption by inserting posiieg
instructions to array data, which are stored in multi-spdist{s.
Since storing array data in a low-speed disk doatsdestroy the
data itself, our approach wiliot create a correctness issue if the
second assumption fails. However, if the disk speeds datedn
when considering one application are not appropriate f®iother
concurrently-executing applications, our energy savimight be
reduced and we can incur I/O performance degradationssmies
tune the disk speed for the other applications accordinglg.be-
lieve that the disk usage information extracted by our céengian
be passed to the OS at specific program points, and the OShin tur
can use this information to implement a global disk power agen
ment algorithm. However, such extensions are not the fottiis
paper. Our goal instead is to evaluate the potential powenga
from a single application’s viewpoint when energy-awarefgich-
ing is employed.

4. MOTIVATIONAL EXAMPLE

In this section, we demonstrate how our approach can reduce
disk energy consumption by hiding latencies of low-speezkgi
using the example code fragment shown in Figure 2(a). The cod
fragment given in this figure accesses a two-dimensionkisident
array, named/;, using a loop nest constructed from two loops. For
illustrative purposesy; is assumed to be striped over 4 disks with
a stripe size of (see Figure 2(b)) and all four disks in question are
assumed to be running at 12,000 RPMs. As depicted in Figaje 3(
if we do not apply any prefetching, every access to the first da
ement in each block incurs an access)(to the disk system. In
this example, we assume that it takBscycles to complete a disk
access when the rotational speed of disks is 12,000 RPM:. Afte
cycles elapse, the requested data block is rea}y &nd thus the
computation on that block can proceed.

Since our approach targets at scientific benchmarks whasssic
patterns can be extracted and reshaped by an optimizingilesmp
we can use the software prefetching algorithm proposed bwr
et al [2] to hide disk I/O stall time and reduce overall exéemut
latency. The code fragment after applying I/O prefetchisgiven
in Figure 2(c). Software prefetching generates a prologeady-
state, and an epilog from each original loop nest. The prefet
distance {), i.e., the number of iterations ahead of which the disk
1/0 needs to be initiated to hide 1/0O latency, can be caledlas:

T

d= [ (1)
whereTy is the estimated I/O latency (in cycles) to prefetch one
block, T, is the overhead (again in terms of cycles) of executing
a prefetch instruction, anelis the number of cycles in the short-
est path through the loop body. Once the prefetch distafcis,
calculated, we then stripe-mine the loop nest to make akfitie
point at which the prefetch instruction is to be insertede Tésult
of this transformation for our example is given in Figure)2(n
this exampled iterations ofj loop are assumed to be required to
hide 1/0O latency and1 is the strip size used for strip-mining.

Up to this point, we discussed software prefetching as a tech
nique that can be used to hide disk 1/O latency, specificatly h
ing Ty, as proposed in the literature. However, if we examine the
components of disk I/O time, we can see tligtis composed of
seek time, rotational latency, transfer time, and corgrotiver-



fori=0to N — 1 { 12K RPM
for j=0toM — 1 {
Sl

}

(a) Original code fragment.

Q d4
(b) Disk layout

fori=0to N — 1 {
PF & V1 [i][0]); /* prolog */
for jj=0to M — 1 — d, stepb, { /* steady-state *
PF VA [i][j + d]);
for j=jj tojj + b1 {
VAl

}
for j=M-dto M — 1 { /* epilog */
VAl
}

(c) Code with prefetchingd is the prefetch distance.

Figure 2: An example application of prefetching.

head. Since in modern disk drives the controller overheaeggi-
gible compared to other three values, we can se€ftha almost
directly proportional to the disk rotation speed. Howevehas
been shown by prior research that the disk power consumpgtion
quadratically proportional to the disk rotational speed][1This
suggests that one can take an approach to conserve diskyenerg
by storing array data in low-speed disks, e.g., a disk run@n
lower than 12,000 RPM (in this example), and by eliminating t
increased 1/O latency using software prefetching with amgased
prefetch distance. That is, one can save disk energy byasitrg
prefetch distance and reducing disk speed at the same time.
Figure 3 and Figure 4 show how prefetching to high-speedsdisk
and low-speed disks affect I/O timing and disk power consump
tion. In this example, the rotational speed of the low-spdisils
is assumed to be 6,000 RPM (i.e., half of the maximum speed pos
sible). Consequently, the time it takes to complete a disgless
is doubled, i.e., it is nov2Ty. One can see from Figures 3(b) and
(c) that we can hide the latency of low-speed disks by issthieg
prefetch early enough. Specifically, since the 1/O laterscgau-
bled fromTy to 274, the prefetch distancé)is also doubled based
on Equation (1) given above. On the other hand, the energy con
sumption profiles after applying prefetching with differpnefetch
distances are depicted in Figure 4. Figure 4(a) shows thepow
profile throughout the program execution time when no peéfet
ing is employed. Note that we assume the disk drive can beglac
in either active mode when servicing I/0 request or idle metien
the disk is not used. Therefore, the disk is in the active nthde

F{1 D1 RZ D2 RS D3
(@ —] [—] A time
Ty T, j B !
b PF, D PF2D2‘,’ PF,D,
() e e e time
Td
PF, D,y PF, D, PF, Dy
© ; ; time
2T,

‘ —= /0 access == Computation ‘

Figure 3: Comparison of I/O timings. (a) Original code without
prefetching. (b) Prefetching to high-speed disks. (c) Pretch-
ing to low-speed disksT} is the disk I/O time for a single block

data.
- Ty
time
T, ? ? :
el B N
power
time
(©) Mo
power - - -
time

Figure 4: Comparison of disk power states. (a) Original code
without prefetching. (b) Prefetching to high-speed disks.(c)
Prefetching to low-speed disks.T} is the disk I/O time for a
single block data.

It should be noted that we may not be able to take advantage of
low-speed disks for all disk-resident arrays due to follogviea-
sons: As mentioned earlier in this section, using low-spdiskis
entails longer prefetch distances, which may not be veryagpp
ate for a loop nest whose iteration count is not sufficienhfding
such a long I/O latency. Therefore, one needs to be carefahwh
selecting the disk speeds to employ. Also, since we focusige|
scientific programs that consist of multiple loop nestss ip@ssi-
ble that the determined disk speed for a particular array@loop
nest may not be appropriate for another loop nest that meagsu
the same array (by accessing the same set of disks). Comslygue

ing T; when there is a request being processed. For the remainingselecting prefetching distance and disk speeds depende atisk

time, the disk is placed into the idle mode. Figures 4(b) and (
show how the prefetching affects the power consumption Iprofi
adisk. If we apply prefetching using high-speed disks, weamn-
serve disk energy consumption by the amount of reduced ggacu
time. In this case, the energy savings come from the rechetio
the total disk idle time. In comparison, as shown in Figur® 4
the data is stored in low-speed disks and we apply prefeichie
can reduce disk energy consumption further by cutting theegsn
consumption in the active and idle periods as well.

layout of data as well as the data access patterns exhibjtéueb
application code being optimized. Because of this, thesenpe:
ters should be considered together.

5. COMPILER ALGORITHM

In this section, we discuss the details of our compiler atlyor
for energy-aware prefetching that determines prefetdanlie, disk
speeds, and data layouts on disks (/O nodes).



5.1 Basics

Before describing the algorithm, let us first define a few impo
tant mathematical concepts. In our framework, an arraydase
loop-intensive progranP that consists ofs loop nests is repre-
sented as:

P=(L1,L2...,Ls),

wherel;(i = 1,2,...,s) is theith loop nest in prograr®. We
further assume that a loop nest of the following form?

L;: for iy =11 touy, stepby
for is =I5 to uz, Stepbs

for iy, =1y, to uy, Stepby
{loop body}

can be represented as:
L; =for I € [L;,U;], stepb (a1 (1), az(I),. .., am(I)),

where I is the iteration vector, and, = (l1,ls,...,1)” and
U= (u1,uz,...,ux)” are the lower and upper bound vectors,
b = (b1,bs,...,bx)7T is the loop step vector, and,(I) (j =
1,2,...,m) is thejth array reference in the body of loop nest
While executing, loop nest; is assumed to accessarrays,Vi,
Va, ..., V,. We useV to represent a set comprised of thesar-
rays. The array element accessedipyl) (j = 1,2,...,m) can
be represented ag[F(I)] (i = 1,2,...,n, j = 1,2,...,m),
whereV; is the name of the array and functidn maps iteration
vectorI to a vector of subscripts for arrdy;. Specifically,F (1),
which mapsk loop iterators intad array indices, wheré is the
depth of the loop nest andlis the dimensionality of the array, can
be defined as:

F(IY=MI+3,

where M is ad x k matrix (called the access matrixlT,is ak-
element iteration vector, ariglis an offset vector [28].

We also assume that the multi-speed disks considered in this

work provide! different rotational speed2PM = (1,2,...,1),
where 1 represents the lowest disk speed lacmiresponds to the
highest disk speed available.

Lastly, we define the disk-layout for each arrdy;)(using a
triplet of the following form:

(start_disk, stripe_factor, stripe_size),

where stariisk is the first disk where the file striping starts from,
stripefactor is the number of disks being used for striping, and
stripesize is the unit size of each file stripe residing on each disk
For example, the layout of arrdy; in Figure 2(b) can be repre-
sented as (d1, 49). The compiler approach described in the next
section determines a prefetch distance for each array surtéise
application code, a rotational speed for each disk in theagtosys-
tem, and a data layout for each disk-resident array martgmitay
the application.

5.2 Energy-Aware Prefetching

To exploit low-speed disks using prefetching in order tcesanw-
ergy, our prefetching algorithm needs to analyze the datality
exhibited by each loop nedl; in programP. Given the math-
ematical representation discussed in Section 5.1, terhpeuae
is said to occur between two loop iteratiofisand > whenever

F(I) — F(I5) = 0. That is, temporal reuse occurs whenever the
difference between the two loop iterations lies in the matse of
M(F) = 0, i.e.,span(M). Spatial reuse, on the other hand, is said
to occur when two different loop iterations access the sawg(in

a given array) [28]. To extract the spatial reuse vector spae
simply replace the last row ifi/ with zeros to create a reduced
access matrixMs, and solve for nullspace affs, which gives
usspan(Mg). After determining the temporal/spatial reuse vector
spaces, we next choose the set of innermost loop iteratarsdim
exploit reuse. This is callebbcalized iteration space [28]. This
space captures only those loops for which data reuse cah iresu
data locality. In our context, to translate the obtainedesuto lo-
cality, we need to take into account the loop iteration ccamd
available memory capacity. Since the loop bounds are asbtone
be known at the compile time (if not, we make use of available
profile data), one can determine the set of innermost loopsah
accessed data fit in the main memory capacity. Data localityen
captured by intersecting the reuse vector space with tladited it-
eration space, where both are represented by vector spt®no
These steps to analyze reuse and data locality exhibitée igiven
programs are fundamentally unaltered from those developte:
context of conventional 1/0 prefetching [2]. However, tgpport
prefetching to multi-speed disks for reducing disk powerszonp-
tion, we need to be careful in selecting prefetch distancevery
disk-resident array references, as will be discussed mildetiow.

Using the obtained the vector space representation of data |
cality exhibited by each loo;, our approach next determines
prefetch distanced(value in Equation 1) for each array reference
(Vi[F(I)] made by the loop body of nest,. Note that, once thé
value is calculated and referentg F'(I)] is found to have spatial
locality onith loop, theith loop is strip-mined, wheré < i < k
and k is the depth of loop nest. Generally, prefetches are soft-
ware pipelined around thigh loop that changes the value of the
array-indexing function(;[£'(1)]). This chosen loop is called the
pipeline loop. As mentioned in the previous section, if we put the
data in low-speed disks, the prefetch distance linearlyezses
with respect to disk 1/O time (i.e., tH€; value in Equation (1)),
while power consumption is quadratically reduced by the @mo
of disk speed scaling [14]. Therefore, we need to tune thiefte
distance based on the disk speed, and in fact, our approaeh de
mines them together, as explained below.

In the first step of our energy-aware prefetching algoritiva,
determine the disk speeds that will provide the maximumgner
savings for each array in the application code. To do thisprmee
cess array references in the code one by one. In processing an
array reference, we consider all possible disk speeds (RR&ld)
and select the one that brings the maximum energy savingsutit
performance penalty. It needs to be noted that we may notyalwa
select the minimum RPM level for a given array access because
there may not be sufficient number of iterations in the loogt ne
where this array reference appear3herefore, at the end of this
first step of our approach, we determine the preferable giskd
for each array reference. However, if a disk-resident aceay be
accessed from within multiple loop nests, we set the diskdper
that array to the highest speed among all the preferablalsgee
all the references to that array. The algorithm that setbetsnost
suitable disk speeds to be used for each array is given inmé-igu
The for-each loop in this algorithm goes over the loop nesthe

2An alternate approach would be inserting the prefetch calbf
given loop nest in one of the preceding loop nests; but, tlikan

Lif £, is not perfectly nested, one can use techniques such as codecode generation extremely difficult; so, we did not expldis op-

sinking [29] to make it perfectly nested.

tion further.



INPUT:
Input programP = (L1, L2, ..., Ls);
Available disk speedsR PM = (1,2,...,1);
OUTPUT:
Determined RPM-group(i), whered ¢ < [;

T, ¢ = the number of cycles foP F' instruction;
for eachV, € V // for each array;
G[Vi] = 0; Il possible disk speeds for each array;

Il repeat for each loop nest; .
foreachl; € P {
s; = number of cycles need to execute the loop body gf
for j =1tol { // for eachRP M available
Il repeat for all array reference ify;
Il assume that; (I) accesses array elemérit [F(1)].
for each array referenae; (I) {
calculate /O latencyl 'y (j), whenRP M is j;
/I determine prefetch distanag;, at jth RPM.
d: = ’— Ty(5) -‘
J sitIpp
if (d; > total number of iterations for the pipeline loop
) GIVk] =G[Vi] U {5}

}
}

/I RPM-group{) generated by adding maximum value from 681/;].
for each array; {

1 ={x|x € G[V;] and MAX(G[Vi])};

RPM-group{) = RPM-group{) U {V; };

Figure 5: Disk speed detection algorithm.

application and the references in them and determines tjereel
disk speed. The for-loop at the end of the algorithm, on therot
hand, selects the required RPM level for each array (#achNote
that, at the end of this first step, our approach also detesrtime
prefetch distances for all array references, in additioteti@rmin-
ing the preferable disk speeds for disk-resident arrayisguhe
approach explained in the first two paragraphs of this secti®
summarize, in the first step, we determine both prefetclaligts
and preferable disk speeds for arrays.
In the next step of our approach, we determine the disk layout

of the arrays in the application. In order to do this, we fistf
what we call theRPM-groups. An RPM group holds the arrays that

INPUT:
Input programP = (L1, L2, ..., Ls);
Determined RPM-group), wherel < ¢ < [;
OUTPUT:
Determined data layout for each array;

tot.disks = total number of disks available;

init_disk = 0;

weight[V;]: the number of accesses maddfowithin P;
weight[V]: the number of accesses made to all arrays witijr}

/I determine stripdactor for V; with same disk speed
/I based on the sum afeight[V;] in RPM-groupg).
for ¢ = 1 to!l { // for each RPM-group
for all V; € RPM-group()
sum +=weight[V;];
stripefactor(V;) = tot.disks x |
tot.disks —= stripefactor(V;);

sum
weight[V]

T;
}

/I determine startlisk for each array;
/I based on the determined strifsector for each array.
fori=1tol {

startdisk (V;) = init_disk;

init_disk += stripefactor (V;);

}

Figure 6: Data layout detection algorithm.

based approach proposed by Brown et al [2]. Figure 7 shows the
pseudo-code for the algorithm that modifies the applicatiode.

The overall view of our approach to energy-aware prefetglisn
depicted in Figure 8.

As explained above, our approach determines prefetchmdissa
data layouts and disk speeds in a unified setting. Howeveanit
also be modified to work with given data layouts and disk speed
If the data (array) layout and disk speeds are fixed, our ihgist
algorithm determines prefetch distance based on existiiogra-
tion and then modifies the code accordingly. As an example for
this case, let us consider the code fragment shown in Figiaje 9
As shown in Figure 9(b), arrayi§, and V- are striped across three
disks, each of which has a different rotational speed. I ¢thse,
we split the original loop nest into a series of smaller lo@sta
such that each split loop nest accesses the data stored disthe
with a particular speed. We use the Omega library [1, 22],Ig-po

require the same RPM level. Each RPM-group is also attached ahedral tool, to generate these restructured loop nestg tmirg_iven
weight, which captures the sum of the number of accesses to the data layouts and the data access patterns extracted byrtipeo

elements of the arrays in that RPM-group. Our approach rext d
termines the number of disks that will be assigned to each RPM
group. We currently perform this by distributing the avhitadisks
(actually /0 nodes as mentioned in Section 3) across the RPM
groups based on their weights in a proportional manner. More
specifically, an RPM-group with a larger weight gets assignere
disks than an RPM-group with a lower weight. The reason is tha
by assigning more disks to the RPM-group with larger weighg
can exploit the aggregated bandwidth and parallelism ptedeby
multiple disks better. In other words, assigning more diskthe
heavy-weighted RPM-group tends to buy more performance ben
efits. After an RPM-group is assigned its disks, the arraythan
group are striped over those disks using conventionalistripNote
that, at the end of this second step of our approach, we fixithe d
layout of all disk-resident arrays in the application. Thgoathm
for determining the disk layouts of arrays is given in Fig@re

The last step of our approach is to restructure the appbicati
code to insert prefetch instructions. Since the prefetstadces for
all array references have already been determined by theti#s
explained above, the third step uses this information astiue-
tures the application code accordingly based on the st

In this example, we see that, we can divide the original loegt n
into three loop nests. We then calculate the prefetch distéor
the reference in each loop nest, (1 < 7 < 3) and restructure
the nests accordingly. The transformed code is illustratdeig-
ure 9(c). This small example shows that our approach cane ap
cable even if the data layouts and the disk speeds are detdrai
priori.

5.3 Example

We now give a more detailed example to show how our algo-
rithm described in Section 5.2 works in practice. The oagjcode
fragment shown in Figure 10(a) has three loop nests,L2, and
L3 and it manipulates three different disk-resident arragsnely
V1, V2, andVs, using different indexing functions in each loop nest.
For illustrative purposes, let us assume that all the ameg®f the
same sizeN x N. Let us further assume that we have four possible
RPM levels, namely, 15K, 12K, 9K, and 6K RPMs, for each disk in
the system. Originally, all disks are assumed to be run atRBKI.
Based on the locality analysis, we can obtain the tempqatia
locality information of P, as shown in Figure 10(b). This locality
information indicates that, in the first loop nestj, all three array



INPUT:
Aloop nestZ: for I' € [, U], stepb (a1 (1), . . . , am (1))

L=, 12, ... )T
ﬁz(“la“&a»-w”n)T
OUTPUT:

Transformed loop nest’; for I” € [L/, U'{a1 (I"), ..., am(I"))

/I assume thafp € (I, Ia,..., Ik)Tis the selected pipeline loop
for eachI,, selected foV; {
add a new controlling loop denoted BY,, (=[l/p, u/p]) to the loop nest”

suchthatl’ = (I1, ..., Iy, Ip, ..., I;)7;
/I calculate new loop bounds fdi,, andI,.
[l,’p,u;] =lp, upl;

b, = loop step needed to strip-mirdg loop;
addb; into the loop step vectob,
suchthab’ = (by, ..., by bpy - -y b);
} [Lp o] = (1, U +b] )
emit“for I’ € [L', '], stepb’ (";
/l'insert prefetch instruction.
for all array references being prefetched
emit “PF(V; [F[I'])"
/I copy loop body from original loop body.
emit“ay (1), ..., am (D))"
emit “)";

Figure 7: Code restructuring algorithm.

# of disks
available
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System parameters
- Memory capacity

- Block size
- /O latency

RPM-groups

Prefetch
Distances

Original
Code

Transformed Qg Disk
Code \p/ Layouts
L~

Figure 8: The three steps of our approach to energy-aware dat
prefetching.

references have spatial locality in thidoop. Sincej is chosen as
the pipeline loop, we subsequently calculate the prefeistance
(d;) for every possible disk speeds, i.e., 15K, 12K, 9K, and 6K
(using the algorithm in Figure 5). For ease of illustratil@t us as-
sume that the determinet] values for disk speeds 15K, 12K, 9K,
and 6K arg(N/8)j, (N/4)j, Nj, and2Nj loop iterations, respec-
tively. This implies that, when considering; alone, we can store
all arrays {41, V2, andV3) in 6K RPM disks, which requir@ N j
loop iterations to schedule-ahead the disk access sindatérey
incurred by 6K RPM disks can be eliminated by choosing next su
rounding loop nest, i.ei,loop as the pipeline loop. However, since
both arraysls and V- are accessed again in negls and L3 re-
spectively, possible disk speeds figr and V> arrays are also de-
pendent on th&€, and L3 nests. After processing all the three loop
nests, we obtain the possible RPMs for each array, i.e., we ha
G[Vi] = {6K,12K}, G[V2] = {6 K, 15K}, andG[V3] = {6K}.

L:fori=0toN —1{ v d1 15K RPM

o Vald] . 1
}...vgm... d, 12K RPM
Vo d; 9K RPM

(a) Original code fragment. (b) Data layouts and disk speeds

Lq: forii:Oto% — dq, stepb; {
PF (&V1[i + d1]); PF (&Va[i + di]);
for ¢ =44 to 4i+by {

LoVl Valdl, ..

}

for i = % to 3 — da, stepbs {
PF (&V1[i + dz2]); PF (&V2[i + d2]);
for i =47 to 4i+ba {

Lo ald], Valdl, ..

}

: foris = w to N — 1 — ds, stepbs {
for ¢ =44 to 4i+b3 {
Lo VA, Valdl, .

}

(c) Transformed code fragment. The three loops show only
the steady-state of the pipelined loops.

Lo 2(N-1)

Figure 9: Application of our approach when data layouts and
disk speeds are not adjustable.

we can assign 12K RPM because thieop in L is sufficient for
hiding latency with a(IN/4); prefetch distance. The disk speed
originally assigned td» remains in 15K RPM since the obtained
reuse vector for array referenceAn indicates that there is no in-
herent spatial locality. Based on these disk speeds detednihe
resulting data layouts (determined using the algorithmigufe 6)

and the transformed code fragment (obtained using theitigor

in Figure 7) are given in Figures 10(d) and (e), respectivelyhis
example, since all three arrays are of the same size, wenasgig
disks (out of six disks) per each array (and per RPM-groupis t
case), and the speed of each disk is set to the RPM level as dete
mined by our algorithm. As we can see from Figure 10(d), we can
save disk energy consumption by running four disks (out otal t

of six disks) at lower speeds. Also important to note thaptrdor-
mance of this transformed code is not expected to be any iltase

an alternate code that uses compiler-based 1/0O prefetchirnty as

[2], that does not care about energy consumption.

6. EXPERIMENTAL EVALUATION

6.1 Simulation Platform

To evaluate the effectiveness of our approach in reducisl di
energy consumption, we implemented a simulation platfosmagi
DiskSim [3]. We assumed that each 1/0O node has one disk; that
is, no further striping is applied within any I/O node. DiskS
is driven by externally-provided disk I/O traces, which gen-
erated by our trace generator. The trace generator gegeatiate
1/0 traces, extracted from the disk layout information amel disk
access pattern, the latter of which can be obtained eitmeudgh

The RPM-groups can be obtained by aggregating the maximum profiling or static analysis. We modeled an IBM Ultrastar 36Z

possible RPM from eact¥[V;], and they are listed in Figure 10(c).
This indicates that, for the arrdy; accessed by bothi; and L,

disk [17] and its relevant power and performance charatiesiare
shown in Table 1. Since we use multi-speed disks runningfat di



L:forii=1t0N — 4, stepby {
PF (&V3[i + 2][5]);
| Reference [ Locality | forjj=1toN —2 — (N/4), stepbs {
Lq:fori=1toN —2{ S onG PE@&V1[d[j + (N/D)]);
forj=1toN —2{ V[ [5], Valé][5], Valil[4] [ - } = [ s atial] for i =4 to ii+by {
SVALG). i J. pat for j = jj tojj+bs {
L Valilfi] ARG i ] =1 spatal] AOTI e
L Vald[d]. .. Va [4)[N] [ i [ = none] o Valilld] -
(b) Locality analysis for each array reference. W) -
} -
Lo:forj=0toN —1{ L d }
}Vl[N][J] Vi 12K RPM }}
Lo Tori=0toN —1{ . L3 forjj =010 (N — 1) — (N/4), stepba {
.. V2[][N]. .. o PF (&V1[N][j + (N/4)]);
I s P for j =33 t0 5+b3 {
(a) Original loop nests. Ve Il 15K RPM }' - VaINIT -
d }
— L3 fori=0toN — 1
RPM-group | arrays — ds 3 . V2[i][N].. .{
15K Ve Vs o 6K RPM
12K Vi
6K Vs e,
(c) Determined RPM-groups. (d) Determined disk speeds atalldyouts for arrays. (e) Transformed loop nests. BHtrand £, show

only the steady state of the pipelined loops.

Figure 10: An example application of our hoisting algorithm.

ferent RPM levels, we model the performance and energy satie  the cache. To be fair in evaluating our approach, howevegls@
every possible disk speed used. Based on the data from arconve optimized these benchmark codes (even the base versiohpso t
tional IBM36215 disk, whose rotational speed is 15K RPM, we the number and volume of I/O accesses are minimized as much as
obtained the performance and energy consumption valueleat i  possible. That is, our benchmarks are highly optimized asga

and active state by using the quadratic disk power moderithest their 1/0O behavior is concerned. Also, to complete our satiohs

in [14]. The energy and performance values for these mpéed within a reasonable amount of time, we focused only on the loo

disks are also given in Table 1. nests whose cumulative I/O times account for more than 90% of
For each application in our experimental suite, we perfakme the total I/O time of each benchmark. Using the default satioh

experiments with three different schemes: parameters given in Table 1, the baseline energy and peafaren

results are given in the last two columns of Table 2. These-bas
. line results are obtained by executing our benchmark progien a
prefetchlng scheme. 1t exegutes benchmark programs on a gy subsystem where all disks run at the highest RPM led )1
disk subsystem where all disks run at the highest available As mentioned earlier, the results which will be given in thexn

speed, i.e, 15K RPM. All the reporte_d d'.Sk energy and PE" subsection, are normalized with respect to the values sethest
formance numbers presented later in this section are given two columns

as normalized values with respect to the corresponding num-
bers obtained using this version (which are given in the last
two columns of Table 2).

e Base: This is the baseline version that does not employ any

6.2 Results

] ] The bar-chart shown in Figure 11 gives the normalized energy

e PF:This scheme corresponds to the conventional /O pfefetc ¢onsumptions of the benchmark programs in our experimenuita.

ing approach, as explained in [2]. The underlying disk speed One can make several observations from these results., PFst

is fixed at the default RPM level (15K) and the data lay- prings an average disk energy savings of 39.6% across all fou

outs are exposed to the compiler. As in the base version, henchmarks compared to the Base version. These savingsere d

we striped all arrays across all disks in the system. Given tg the reductions in disk idle times. The second observatiue

the disk speeds and data layout of arrays, this scheme re-can make from this bar-char is that the PF+ version (our o

structures the loop nests in the application code to hide I/O achieves additional energy savings, 19.6% on average wihen a

latency incurred by accessing high-speed disks. benchmarks are considered. This indicates that our appmss
cessfully determines the lowest possible rotational siieedach
disk and the corresponding disk layouts. As opposed to the PF
version, our approach is able to reduce the energy spentiieac
periods.

We now present the performance results obtained. The normal
ized execution times for our benchmarks are presented iné&ip.
One can see from this graph that the PF scheme reduces executi
In our experiments, we used four SPEC2000 float-point bench- time by 41.3% compared to the Base scheme. This result shaivs t

e PF+: This scheme corresponds to our energy-aware data
prefetching approach, as has been discussed in detail in Sec
tion 5. As discussed earlier, it determines the disk speeds
for all disks in the system and the data layout for each disk-
resident array. Based on these determined parameters it al
restructures loop nests.

mark programs [26]. The important characteristics of tHesech- prefetching is beneficial in enhancing performance by Igidire

mark programs are given in Table 2. We made the array data ma-latency incurred by 1/0 requests. One can also see that tfierpe
nipulated by these benchmark programs disk-resident;cagsa- mance of the PF+ scheme is almost same as that of the PF scheme
ing an array data during execution results in a disk I/O ofakl (the execution time difference between PF and PF+ is néigigi

size (default block size is 8KB), unless the access is cagtur i.e., below 1%). This suggests that our approach can aclseve



Table 1: Major simulation parameters and their default values.

Disk Parameters I

Disk Performance and Energy Model

Striping Information I

Parameter Value Parameter Value Parameter Value
Disk Model IBM Ultrastar 36215 Rotation speed 15K/12K/9K/6K RPM Stripe size 64 KB
Interface SCsSI Average seek time 3.4/3.76/7.0/10.83 ms| Stripe factor (# of disks) 16
Storage Capacity 18.4GB Average rotational latency  2.0/2.5/3.33/5.0 ms || Starting iodevice (starting disk) 1 (the first disk)
Disk Cache Size 4 MB Power (active) 13.5/11.3/9.1/6.9 W
Internal Transfer Rate 55 MB/sec Power (idle) 10.2/8.66/7.12/5.58 W|

Table 2: Benchmarks and their characteristics.

[ Name ] Description | Data Size (GB) [ Base Energy (J) [ Exec Time (sec)]
171.swim Shallow Water Modeling 115.2 50648.1 301.9
172.mgrid Multi-grid Solver: 3D Potential Field 95.5 175470.3 1066.1
173.applu | Parabolic/Elliptic Partial Differential Equations 99.2 121798.5 736.9
301.apsi Meteorology: Pollutant Distribution 107.9 456479.1 2786.7

[DBASE BPF OPF-]
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significant amount of disk energy savings with little impantthe
performance improvement achieved by the PF scheme.

6.3 Sensitivity Analysis

In our next set of experiments, we perform a sensitivity gsial
varying simulation parameters pertinent to disk stripifgpecifi-
cally, we vary the stripe size and stripe factor (the numbfetisks
used for striping) to see how our approach gets affectedillEsr
trative purposes, we choose one benchméav.applu, and con-
duct all sensitivity analysis using that benchmark. Howgetlee
results we observed extend to other three benchmarks ashigll
ure 13 gives the normalized energy consumptions with ttferdif
ent stripe sizes (ranging from 32KB to 256KB). Recall from Ta
ble 1 that the default stripe size was 64KB. The values of the a
other simulation parameters are fixed at the values giveahteTL.
We see from these results that the energy savings achievedrby
scheme are slightly increasing as we increase the stripe $ias
can be explained as follows. When the stripe size increaggsen
disk tends to service I/O requests for a longer period of tifirtés
in turn leads to fewer disks being involved in processinglte
requests, thereby increasing the idle periods of othersdislon-
sequently, these longer idle periods contribute to redndti disk
energy consumption.

In our next sensitivity experiment, we measured the impkitte

different stripe factors (i.e., the total number of diskedifor strip-
ing). Figure 14 gives the normalized energy consumptiortis thie
different stripe factors (ranging from 8 to 64 disks). We eve
from these results that the energy savings our approachwachie
slightly decreasing as the number of disks increases. FhigA
cause, as we increase the number of disks used in stripiigg, th
increases the overall idleness of disks. And, since a digkén
idle state consumes almost same amount of energy as it wonld ¢
sume in the active state, this in turn increases the ovenaltgy
consumption. Still, the experimental results given in Fegul3
and 14 clearly show that our approach is successful acreasge r
of values for stripe sizes and the number of disks.

7. CONCLUDING REMARKS AND FUTURE
WORK

The main contribution of this paper is a compiler-directadrgy-
aware prefetching scheme for disk-intensive scientifidiagions.
The proposed approach determines, in a unified settingréifietph
distances for disk access (I/O) instructions, the disk dpéer all
disks in the storage system, and the data (array) layoutdi®n t
disks, given an application program. To test the effectigsrof the
proposed strategy, we implemented it within an optimizioghe
piler and made experiments with four applications that imalaie
disk-resident data arrays. The results obtained so far &nonex-
periments are very encouraging and show that the energseawa
prefetching brings significant energy benefits over a stbthe-art
(performance oriented) I/O prefetching scheme, withogtaiding
the performance of the latter. Our ongoing work involvesgnat-
ing this optimization with well-known I/O optimizations clu as
collective 1/0 [27] and caching. We are also planning to emea
our approach to accommodate disk spin-downs as well, irtiaddi
to multi-speed disks.
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