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ABSTRACT
Power consumption of disk based storage systems is becomingan
increasingly pressing issue for both commercial and scientific ap-
plication domains. Prior work proposed several hardware based
approaches to reducing disk power consumption by making useof
techniques such as spinning down idle disks and rotating them at
lower speeds than the maximum speed possible. While such tech-
niques are certainly very important, it is also critical to consider
the influence the software can exercise in shaping the power con-
sumption behavior of disk-intensive application programs. Moti-
vated by this, the main goal of this work is to study whether an
optimizing compiler can be used for increasing the power bene-
fits that could be obtained from multi-speed disks. Specifically, we
propose and experimentally evaluate a compiler-directed energy-
aware data prefetching scheme for scientific applications that pro-
cess disk-resident data sets. This scheme automatically determines
the prefetch distance for all disk access instructions, thedisk speeds
to be employed, and the associated disk layouts (striping parame-
ters) in a unified setting. We implemented the proposed approach
within an optimizing compiler framework and conducted experi-
ments with several disk-intensive applications. Our experimental
evaluation shows that the proposed approach brings significant re-
ductions in disk energy consumption over a state-of-the-art software-
based I/O prefetching mechanism that does not take into account
energy consumption explicitly. Our results also show that the energy-
aware prefetching scheme does not bring any extra performance
penalties and the energy reductions achieved are consistent across
a wide spectrum of values of the simulation parameters.
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1. INTRODUCTION
High power consumption is one of the most pressing issues for

computing platforms that target large-scale data-intensive applica-
tions [7, 6, 12, 13]. While most of the recent research efforts on
minimizing power consumption have been performed in the CPU,
network, and memory domains, the research on disk power opti-
mization is still in its infancy. A couple of recent papers (e.g., pro-
viding multi-speed setting for server disks [5, 14], power-aware
storage cache management schemes [32, 33], and compiler-guided
disk power management schemes [25]) have focused exclusively
on disk power consumption and proposed hardware and software
based solutions to the problem. Most of these papers estimate
and/or control disk power consumption or present static/dynamic
code/data reorganizations for maximizing power savings that could
be obtained from the low-power operating modes supported bythe
disk system.

While conventional disk power optimization approach [11, 10,
18] based on spinning down idle disks has been successful in the
context of laptop disks, it is not the best option for server disks
and scientific workloads that exhibit very short idle disk periods.
Therefore, one of the prior proposals [5, 14] to disk power sav-
ing in high-performance systems has been to employ disks with the
capability of changing their rotational speeds dynamically. Since
such multi-speed disks (e.g., those from [19] and [30]) can serve
requests even under low rotational speeds, they can potentially ex-
ploit short idle periods as well and, at the same time, save power
(due to reduced speed). However, the question of whether onecan
increase the power savings that could be achieved through such
multi-speed disks remains important and largely unexplored. In
particular, the role of the software-level optimizations for utilizing
such multi-speed disks in the most effective way needs to be inves-
tigated.

The main goal of this paper is to demonstrate that compiler-
directed rescheduling of disk access instructions in scientific appli-
cations can be very effective in practice and increase powersavings
obtained from multi-speed disks significantly. The specificstrategy
proposed and evaluated in this workhoists disk access instructions
in the program code to increase the time-gap between the issue of
the instruction and the actual access to the disk. In this way, the
hoisted instruction can use a disk that operates with a lowerspeed
than the maximum one. More specifically, the approach proposed
in this paper determines the most suitable prefetch distance for each
array reference in the application code, disk speeds (RPM levels)
for all the disks in the storage system, and data layouts for the disk-
resident arrays in a unified setting. Note that since our goalis to



issue prefetches to disks that rotate at lower speeds, our prefetch
distances are larger than those normally used in conventional I/O
prefetching.

We implemented the proposed approach within a research com-
piler [15] and made experiments with four different data-intensive
applications that process disk-resident datasets. The results from
our experiments indicate that the proposed energy-aware I/O prefetch-
ing approach reduces disk energy consumption over a state-of-the-
art, energy-agnostic I/O prefetching scheme by 19.6% on average,
without hurting the performance of the latter. Our experimental re-
sults also show that the achieved disk energy savings are consistent
across a wide range of values of the major simulation parameters,
and that our approach introduces very little (less than 1%) perfor-
mance overhead, as compared to the conventional I/O prefetching.

The remainder of this paper is structured as follows. The next
section discusses the related work on disk power optimization. Sec-
tion 3 gives a high level view of the storage system under consid-
eration and defines the technical concepts frequently used in this
paper. Section 4 gives an example to demonstrate the benefitsof
the proposed approach. Section 5 explains the technical details
of our approach. An experimental evaluation of our approachand
its quantitative comparison against the prior work are presented in
Section 6. Finally, the paper is concluded by a summary and a brief
discussion of the planned future work in Section 7.

2. RELATED WORK
Most of the prior studies on reducing disk power/energy con-

sumption make use of observed idle times during program execu-
tion. To exploit disk idle periods, the disk drive itself needs to
provide a low-power operating mode, either in the form of com-
pletely stopping disk rotation (spinning down) or in the form of
dynamically adjusting the rotational speed. Providing low-power
modes is important, because even if a disk is idle it consumesal-
most as much energy as it would consume in the active (fully op-
erational) mode [14, 17]. For the laptop/desktop domain where the
applications typically exhibit long idle periods, severalstudies have
already considered techniques such as spinning down idle disks by
using a fixed threshold period (i.e., the time to wait before spinning
down a disk) or by estimating the threshold period adaptively [10,
11, 18].

Once the disk is equipped with some sort of low-power oper-
ating mode, we can make use of these modes within an operat-
ing system (OS) or at an application level by increasing the dura-
tion of idle periods so that a given disk can be placed into low-
power modes for longer durations of time. Among the efforts fo-
cusing on the OS layer, Zhu et al [32] and Papathanasiou et al [20]
consider power-aware caching and prefetching strategies.The ra-
tionale behind both these studies is that conventional I/O caching
and I/O prefetching techniques, which mainly focus on the perfor-
mance angle, can hardly produce any long idle periods. Rather than
spreading disk accesses across the entire execution period, energy-
efficient prefetching generates burst disk access patterns, which is
preferable from the energy perspective. The enlarged idle periods
in turn allow a disk to be placed into one of the supported low-
power operating modes.

Zhu et al [32] also study a power-aware cache replacement al-
gorithm, called PA-LRU, in the context of large storage systems,
which are typically equipped with several GBs of aggregatedcache
memory. The main idea behind their approach is to selectively
maintain cache blocks from certain disks, so that the remaining
disks can stay in low-power modes for a longer period of time.In
another paper, Zhu et al [33] propose a different approach, called
PB-LRU (Partition-Based LRU), to the same problem. PB-LRU

explores various cache replacement techniques in the context of
disk arrays equipped with multi-speed disks. Lastly, Zhu etal [31]
recently proposed a holistic disk power management technique,
called Hibernator, that combines three major techniques: dynamic
disk speed setting, multi-tier data layout, and data reorganization.
Since frequent modulations of disk speeds might decrease disk re-
liability, their idea is to adjust disk speed at a coarse granularity. To
guarantee the specified response time limit, Hibernator keeps track
of average response time dynamically. If the specified response
time guarantee is at risk, Hibernator restores the speeds ofall disks
to full speed.

Several studies investigated the problem of disk power manage-
ment at the application/compiler level. For example, Heathet al
[16] studied an application code transformation techniquefor energy-
aware device management by generating I/O burstiness in laptop
disks. More recently, Son et al proposed several compiler-based
code transformation techniques to conserve disk energy consump-
tion. First, they studied a compiler technique that insertsexplicit
disk power management calls in sources codes of scientific appli-
cations [25]. The idea is that a compiler can extract how disks are
traversed during execution time using the application source code
along with the file level striping information. By insertingexplicit
power management calls, e.g., spinup and spindown, in the appli-
cation code, one can eliminate (to a large extent) the performance
penalty that would normally be incurred by reactive disk power
management schemes. Second, they revisited conventional loop
distribution and iteration space tiling techniques from anenergy
perspective. To achieve the best energy savings without slowing
down performance much, they showed that both code and under-
lying disk layout must be considered at the same time. In another
paper [24], the same authors described a compiler approach to re-
duce disk power consumption in the presence of parallel disksys-
tems. To increase disk idleness, the proposed technique schedules
the code fragments assigned to a number of processors according to
the disk access patterns extracted by an optimizing compiler, which
captures both intra- and inter-processor disk reuses.

Since large data centers host huge amounts of data for several
application domains, they typically exhibit locality at a disk parti-
tion level or a file level. This means that, in a given time period,
not all the disks participate in servicing I/O requests. Observing
this, MAID (Massive Arrays of Idle Disks) [9] was proposed to
reduce disk energy consumption using a small number of disksas
cache drives, thereby potentially reducing the number of spin-ups
for disks. While cache drives service the requests to the disk array,
other unused disk drives can be placed into the low-power modes.
Pinheiro et al [21], on the other hand, proposed a data migration
technique called PDC (Popular Data Concentration). The main idea
behind this scheme is to dynamically move the most frequently-
accessed disk data to a subset of the disks in the array, thereby
increasing the idle periods for the remaining disks in the system.
PDC is a feasible solution for network servers because workloads
processed by such systems are heavily skewed towards a smallset
of files. Techniques such as MAID and PDC manipulate data at
a file system granularity, therefore, at least one day is required to
collect the file access patterns and adjust the file layouts according
to the gathered information.

The approach proposed in this paper is different from all pure
hardware based disk power management schemes since it is com-
piler based. It is also different from the prior compiler based studies
in that, it minimizes disk energy consumption through code hoist-
ing (energy-aware prefetching), instead of linear code transforma-
tions. In addition, as against studies such as [32], our approach
determines the prefetching distance, disk speeds, and datalayouts



Figure 1: Two-level striping of array data across disks.

in a unified setting. However, we also want to mention that theap-
proach proposed in this paper can also be used in conjunctionwith
prior compiler-directed code modification schemes such as [24] for
reducing disk power consumption even further. Finally, in contrast
to the previous studies that target multi-speed disks, our approach
determines disk speeds statically for each application at compile-
time. Therefore, it has practically no impact on reliability due to
the frequent modulation in disk speed at run-time.

3. HIGH LEVEL VIEW OF STORAGE
SYSTEM

The storage system considered in this work is shown in Figure1
at a high level. Our focus is on large, data-intensive scientific ap-
plications that manipulate disk-resident, multi-dimensional arrays.
The disk requests in this architecture are directed to I/O nodes over
which the array files are striped. Within each I/O node, a stripe as-
signed to that I/O node is further striped at the RAID level (depend-
ing on the specific RAID implementation [8] adopted). Therefore,
as depicted in Figure 1, each data array in our storage architecture
is striped attwo different levels (I/O node level and RAID level).
While the RAID level striping is hidden from the software, the I/O
node level striping is visible to the software (to the compiler in our
case) and can be controlled through calls from the underlying I/O
library and/or the parallel file system used. For example, inPVFS
[4, 23], one can manipulate the I/O node level striping informa-
tion of files by changing thepvfs filestat structure, which
includes the stripe unit and the number of disks used for striping.

In this paper, we determine rotational speeds of disks and data
layouts of arrays at an I/O node granularity. That is, when weset
the speed of a particular I/O node, it means setting the speedof
all the disks controlled by that I/O node. However, for the ease of
discussion, we use the term “disk” instead of “I/O node” whenwe
explain our approach below. The “disk layout” concept used in the
rest of this paper refers to the I/O node level striping; i.e., when
we mention “striping”, we mean the striping at the I/O node level.
In our experimental evaluation, we assume a one-to-one mapping
between data arrays and files. In other words, we assume that each
data array is stored in a single file and a file contains only a single
array. Under this assumption, one can talk about “striping an array
over the I/O nodes.” While we can easily relax this assumption
by allowing one-to-many and many-to-one mappings between the
disk files and the data arrays, we do not evaluate these options in
this paper.

The proposed compiler-directed approach operates under two as-
sumptions. The first assumption is that the I/O node level striping
can be accessed and controlled by the compiler. This is possible
because current parallel file systems and run-time libraries (e.g.,

PVFS [4, 23]) provide API calls that enable this. Our second as-
sumption is that the disk system is exercised by a single application
at a time (of course, the different applications can use the same
system at different times). In our approach, the compiler can man-
age/control the disk power consumption by inserting prefetching
instructions to array data, which are stored in multi-speeddisks.
Since storing array data in a low-speed disk doesnot destroy the
data itself, our approach willnot create a correctness issue if the
second assumption fails. However, if the disk speeds determined
when considering one application are not appropriate for the other
concurrently-executing applications, our energy savingsmight be
reduced and we can incur I/O performance degradations unless we
tune the disk speed for the other applications accordingly.We be-
lieve that the disk usage information extracted by our compiler can
be passed to the OS at specific program points, and the OS in turn
can use this information to implement a global disk power manage-
ment algorithm. However, such extensions are not the focus of this
paper. Our goal instead is to evaluate the potential power savings
from a single application’s viewpoint when energy-aware prefetch-
ing is employed.

4. MOTIVATIONAL EXAMPLE
In this section, we demonstrate how our approach can reduce

disk energy consumption by hiding latencies of low-speed disks
using the example code fragment shown in Figure 2(a). The code
fragment given in this figure accesses a two-dimensional disk-resident
array, namedV1, using a loop nest constructed from two loops. For
illustrative purposes,V1 is assumed to be striped over 4 disks with
a stripe size ofS (see Figure 2(b)) and all four disks in question are
assumed to be running at 12,000 RPMs. As depicted in Figure 3(a),
if we do not apply any prefetching, every access to the first data el-
ement in each block incurs an access (Ri) to the disk system. In
this example, we assume that it takesTd cycles to complete a disk
access when the rotational speed of disks is 12,000 RPM. After Td

cycles elapse, the requested data block is ready (Di) and thus the
computation on that block can proceed.

Since our approach targets at scientific benchmarks whose access
patterns can be extracted and reshaped by an optimizing compiler,
we can use the software prefetching algorithm proposed by Brown
et al [2] to hide disk I/O stall time and reduce overall execution
latency. The code fragment after applying I/O prefetching is given
in Figure 2(c). Software prefetching generates a prolog, a steady-
state, and an epilog from each original loop nest. The prefetch
distance (d), i.e., the number of iterations ahead of which the disk
I/O needs to be initiated to hide I/O latency, can be calculated as:

d = ⌈
Td

s + Tpf

⌉, (1)

whereTd is the estimated I/O latency (in cycles) to prefetch one
block, Tpf is the overhead (again in terms of cycles) of executing
a prefetch instruction, ands is the number of cycles in the short-
est path through the loop body. Once the prefetch distance,d, is
calculated, we then stripe-mine the loop nest to make explicit the
point at which the prefetch instruction is to be inserted. The result
of this transformation for our example is given in Figure 2(c). In
this example,d iterations ofj loop are assumed to be required to
hide I/O latency andb1 is the strip size used for strip-mining.

Up to this point, we discussed software prefetching as a tech-
nique that can be used to hide disk I/O latency, specifically hid-
ing Td, as proposed in the literature. However, if we examine the
components of disk I/O time, we can see thatTd is composed of
seek time, rotational latency, transfer time, and controller over-



for i=0 toN − 1 {
for j=0 toM − 1 {
. . . V1[i][j] . . .
}
}

(a) Original code fragment. (b) Disk layout ofV1

for i=0 toN − 1 {
PF (&V1[i][0]); /* prolog */
for jj=0 toM − 1 − d, stepb1 { /* steady-state */
PF (&V1[i][j + d]);
for j=jj to jj + b1 {
. . . V1[i][j] . . .
}
}
for j=M-d to M − 1 { /* epilog */
. . . V1[i][j] . . .
}
}

(c) Code with prefetching.d is the prefetch distance.

Figure 2: An example application of prefetching.

head. Since in modern disk drives the controller overhead isnegli-
gible compared to other three values, we can see thatTd is almost
directly proportional to the disk rotation speed. However,it has
been shown by prior research that the disk power consumptionis
quadratically proportional to the disk rotational speed [14]. This
suggests that one can take an approach to conserve disk energy
by storing array data in low-speed disks, e.g., a disk running at
lower than 12,000 RPM (in this example), and by eliminating the
increased I/O latency using software prefetching with an increased
prefetch distance. That is, one can save disk energy by increasing
prefetch distance and reducing disk speed at the same time.

Figure 3 and Figure 4 show how prefetching to high-speed disks
and low-speed disks affect I/O timing and disk power consump-
tion. In this example, the rotational speed of the low-speeddisks
is assumed to be 6,000 RPM (i.e., half of the maximum speed pos-
sible). Consequently, the time it takes to complete a disk access
is doubled, i.e., it is now2Td. One can see from Figures 3(b) and
(c) that we can hide the latency of low-speed disks by issuingthe
prefetch early enough. Specifically, since the I/O latency is dou-
bled fromTd to2Td, the prefetch distance (d) is also doubled based
on Equation (1) given above. On the other hand, the energy con-
sumption profiles after applying prefetching with different prefetch
distances are depicted in Figure 4. Figure 4(a) shows the power
profile throughout the program execution time when no prefetch-
ing is employed. Note that we assume the disk drive can be placed
in either active mode when servicing I/O request or idle modewhen
the disk is not used. Therefore, the disk is in the active modedur-
ing Td when there is a request being processed. For the remaining
time, the disk is placed into the idle mode. Figures 4(b) and (c)
show how the prefetching affects the power consumption profile of
a disk. If we apply prefetching using high-speed disks, we can con-
serve disk energy consumption by the amount of reduced execution
time. In this case, the energy savings come from the reductions in
the total disk idle time. In comparison, as shown in Figure 4(c), if
the data is stored in low-speed disks and we apply prefetching, we
can reduce disk energy consumption further by cutting the energy
consumption in the active and idle periods as well.

Figure 3: Comparison of I/O timings. (a) Original code without
prefetching. (b) Prefetching to high-speed disks. (c) Prefetch-
ing to low-speed disks.Td is the disk I/O time for a single block
data.

Figure 4: Comparison of disk power states. (a) Original code
without prefetching. (b) Prefetching to high-speed disks.(c)
Prefetching to low-speed disks.Td is the disk I/O time for a
single block data.

It should be noted that we may not be able to take advantage of
low-speed disks for all disk-resident arrays due to following rea-
sons: As mentioned earlier in this section, using low-speeddisks
entails longer prefetch distances, which may not be very appropri-
ate for a loop nest whose iteration count is not sufficient forhiding
such a long I/O latency. Therefore, one needs to be careful when
selecting the disk speeds to employ. Also, since we focus on large
scientific programs that consist of multiple loop nests, it is possi-
ble that the determined disk speed for a particular array in one loop
nest may not be appropriate for another loop nest that manipulates
the same array (by accessing the same set of disks). Consequently,
selecting prefetching distance and disk speeds depends on the disk
layout of data as well as the data access patterns exhibited by the
application code being optimized. Because of this, these parame-
ters should be considered together.

5. COMPILER ALGORITHM
In this section, we discuss the details of our compiler algorithm

for energy-aware prefetching that determines prefetch distance, disk
speeds, and data layouts on disks (I/O nodes).



5.1 Basics
Before describing the algorithm, let us first define a few impor-

tant mathematical concepts. In our framework, an array based,
loop-intensive programP that consists ofs loop nests is repre-
sented as:

P = (L1,L2, . . . ,Ls),

whereLi(i = 1, 2, . . . , s) is theith loop nest in programP . We
further assume that a loop nestLi of the following form:1

Li: for i1 = l1 to u1, stepb1

for i2 = l2 to u2, stepb2

· · ·
for ik = lk to uk, stepbk

{loop body}

can be represented as:

Li = for ~I ∈ [~Li, ~Ui], step~b 〈a1(~I), a2(~I), . . . , am(~I)〉,

where ~I is the iteration vector, and~L = (l1, l2, . . . , lk)T and
~U = (u1, u2, . . . , uk)T are the lower and upper bound vectors,
~b = (b1, b2, . . . , bk)T is the loop step vector, andaj(~I) (j =
1, 2, . . . , m) is thejth array reference in the body of loop nestLi.
While executing, loop nestLi is assumed to accessn arrays,V1,
V2, . . . , Vn. We useV to represent a set comprised of thesen ar-
rays. The array element accessed byaj(~I) (j = 1, 2, . . . , m) can
be represented asVi[~F (~I)] (i = 1, 2, . . . , n, j = 1, 2, . . . , m),
whereVi is the name of the array and function~F maps iteration
vector~I to a vector of subscripts for arrayVi. Specifically,~F (~I),
which mapsk loop iterators intod array indices, wherek is the
depth of the loop nest andd is the dimensionality of the array, can
be defined as:

~F (~I) = M~I + ~o,

whereM is a d × k matrix (called the access matrix),~I is a k-
element iteration vector, and~o is an offset vector [28].

We also assume that the multi-speed disks considered in this
work providel different rotational speeds:RPM = (1, 2, . . . , l),
where 1 represents the lowest disk speed andl corresponds to the
highest disk speed available.

Lastly, we define the disk-layout for each array (Vi) using a
triplet of the following form:

(start disk, stripe factor, stripe size),

where startdisk is the first disk where the file striping starts from,
stripe factor is the number of disks being used for striping, and
stripesize is the unit size of each file stripe residing on each disk.
For example, the layout of arrayV1 in Figure 2(b) can be repre-
sented as (d1, 4,S). The compiler approach described in the next
section determines a prefetch distance for each array access in the
application code, a rotational speed for each disk in the storage sys-
tem, and a data layout for each disk-resident array manipulated by
the application.

5.2 Energy-Aware Prefetching
To exploit low-speed disks using prefetching in order to save en-

ergy, our prefetching algorithm needs to analyze the data locality
exhibited by each loop nestLi in programP . Given the math-
ematical representation discussed in Section 5.1, temporal reuse
is said to occur between two loop iterations~I1 and ~I2 whenever
1If Li is not perfectly nested, one can use techniques such as code
sinking [29] to make it perfectly nested.

~F (~I1) − ~F (~I2) = ~0. That is, temporal reuse occurs whenever the
difference between the two loop iterations lies in the nullspace of
M(~r) = ~0, i.e.,span(M). Spatial reuse, on the other hand, is said
to occur when two different loop iterations access the same row (in
a given array) [28]. To extract the spatial reuse vector space, we
simply replace the last row inM with zeros to create a reduced
access matrix,MS , and solve for nullspace ofMS , which gives
usspan(MS). After determining the temporal/spatial reuse vector
spaces, we next choose the set of innermost loop iterators that can
exploit reuse. This is calledlocalized iteration space [28]. This
space captures only those loops for which data reuse can result in
data locality. In our context, to translate the obtained reuses to lo-
cality, we need to take into account the loop iteration countand
available memory capacity. Since the loop bounds are assumed to
be known at the compile time (if not, we make use of available
profile data), one can determine the set of innermost loops whose
accessed data fit in the main memory capacity. Data locality is then
captured by intersecting the reuse vector space with the localized it-
eration space, where both are represented by vector space notation.
These steps to analyze reuse and data locality exhibited in the given
programs are fundamentally unaltered from those developedin the
context of conventional I/O prefetching [2]. However, to support
prefetching to multi-speed disks for reducing disk power consump-
tion, we need to be careful in selecting prefetch distance for every
disk-resident array references, as will be discussed in detail below.

Using the obtained the vector space representation of data lo-
cality exhibited by each loopLi, our approach next determines
prefetch distance (d value in Equation 1) for each array reference
(Vi[~F (~I)] made by the loop body of nestLi. Note that, once thed
value is calculated and referenceVi[~F (~I)] is found to have spatial
locality on ith loop, theith loop is strip-mined, where1 ≤ i ≤ k
and k is the depth of loop nest. Generally, prefetches are soft-
ware pipelined around thisith loop that changes the value of the
array-indexing function (Vi[~F (~I)]). This chosen loop is called the
pipeline loop. As mentioned in the previous section, if we put the
data in low-speed disks, the prefetch distance linearly increases
with respect to disk I/O time (i.e., theTd value in Equation (1)),
while power consumption is quadratically reduced by the amount
of disk speed scaling [14]. Therefore, we need to tune the prefetch
distance based on the disk speed, and in fact, our approach deter-
mines them together, as explained below.

In the first step of our energy-aware prefetching algorithm,we
determine the disk speeds that will provide the maximum energy
savings for each array in the application code. To do this, wepro-
cess array references in the code one by one. In processing an
array reference, we consider all possible disk speeds (RPM levels)
and select the one that brings the maximum energy savings without
performance penalty. It needs to be noted that we may not always
select the minimum RPM level for a given array access because
there may not be sufficient number of iterations in the loop nest
where this array reference appears2. Therefore, at the end of this
first step of our approach, we determine the preferable disk speed
for each array reference. However, if a disk-resident arraycan be
accessed from within multiple loop nests, we set the disk speed for
that array to the highest speed among all the preferable speeds for
all the references to that array. The algorithm that selectsthe most
suitable disk speeds to be used for each array is given in Figure 5.
The for-each loop in this algorithm goes over the loop nests in the

2An alternate approach would be inserting the prefetch call for a
given loop nest in one of the preceding loop nests; but, this makes
code generation extremely difficult; so, we did not explore this op-
tion further.



INPUT:
Input program,P = (L1, L2, . . ., Ls);
Available disk speeds,RPM = (1, 2, . . . , l);

OUTPUT:
Determined RPM-group(i), where 1≤ i ≤ l;

Tpf = the number of cycles forPF instruction;
for eachVk ∈ V // for each array;

G[Vk] = ∅; // possible disk speeds for each array;

// repeat for each loop nestLi.
for eachLi ∈ P {

si = number of cycles need to execute the loop body ofLi;
for j = 1 tol { // for eachRPM available

// repeat for all array reference inLi

// assume thatai(~I) accesses array elementVk[~F (~I)].
for each array referenceai(~I) {

calculate I/O latency,Td(j), whenRPM is j;
// determine prefetch distance,dj , atjth RPM .

dj = ⌈
Td(j)

si+Tpf
⌉;

if (dj > total number of iterations for the pipeline loop)
G[Vk] = G[Vk] ∪ {j};

}
}

}

// RPM-group(l) generated by adding maximum value from setG[Vi].
for each arrayVi {

l = {x|x ∈ G[Vi] and MAX(G[Vi])};
RPM-group(l) = RPM-group(l) ∪ {Vi};

}

Figure 5: Disk speed detection algorithm.

application and the references in them and determines the required
disk speed. The for-loop at the end of the algorithm, on the other
hand, selects the required RPM level for each array (eachVi). Note
that, at the end of this first step, our approach also determines the
prefetch distances for all array references, in addition todetermin-
ing the preferable disk speeds for disk-resident arrays, using the
approach explained in the first two paragraphs of this section. To
summarize, in the first step, we determine both prefetch distances
and preferable disk speeds for arrays.

In the next step of our approach, we determine the disk layouts
of the arrays in the application. In order to do this, we first form
what we call theRPM-groups. An RPM group holds the arrays that
require the same RPM level. Each RPM-group is also attached a
weight, which captures the sum of the number of accesses to the
elements of the arrays in that RPM-group. Our approach next de-
termines the number of disks that will be assigned to each RPM-
group. We currently perform this by distributing the available disks
(actually I/O nodes as mentioned in Section 3) across the RPM-
groups based on their weights in a proportional manner. More
specifically, an RPM-group with a larger weight gets assigned more
disks than an RPM-group with a lower weight. The reason is that,
by assigning more disks to the RPM-group with larger weight,one
can exploit the aggregated bandwidth and parallelism presented by
multiple disks better. In other words, assigning more disksto the
heavy-weighted RPM-group tends to buy more performance ben-
efits. After an RPM-group is assigned its disks, the arrays inthat
group are striped over those disks using conventional striping. Note
that, at the end of this second step of our approach, we fix the disk
layout of all disk-resident arrays in the application. The algorithm
for determining the disk layouts of arrays is given in Figure6.

The last step of our approach is to restructure the application
code to insert prefetch instructions. Since the prefetch distances for
all array references have already been determined by the first step
explained above, the third step uses this information and restruc-
tures the application code accordingly based on the strip-mining

INPUT:
Input program,P = (L1, L2, . . ., Ls);
Determined RPM-group(i), where1 ≤ i ≤ l;

OUTPUT:
Determined data layout for each array;

tot disks = total number of disks available;
init disk = 0;
weight[Vi ]: the number of accesses made toVi within P ;
weight[V]: the number of accesses made to all arrays withinP ;

// determine stripefactor forVi with same disk speed
// based on the sum ofweight[Vi] in RPM-group(i).
for i = 1 tol { // for each RPM-group

for all Vi ∈ RPM-group(i)
sum +=weight[Vi];

stripe factor(Vi ) = tot disks× ⌈ sum
weight[V]

⌉;
tot disks –= stripefactor(Vi);

}

// determine startdisk for each arrayVi

// based on the determined stripefactor for each array.
for i = 1 tol {

start disk (Vi) = init disk;
init disk += stripefactor (Vi);

}

Figure 6: Data layout detection algorithm.

based approach proposed by Brown et al [2]. Figure 7 shows the
pseudo-code for the algorithm that modifies the applicationcode.
The overall view of our approach to energy-aware prefetching is
depicted in Figure 8.

As explained above, our approach determines prefetch distances,
data layouts and disk speeds in a unified setting. However, itcan
also be modified to work with given data layouts and disk speeds.
If the data (array) layout and disk speeds are fixed, our hoisting
algorithm determines prefetch distance based on existing informa-
tion and then modifies the code accordingly. As an example for
this case, let us consider the code fragment shown in Figure 9(a).
As shown in Figure 9(b), arraysV1 andV2 are striped across three
disks, each of which has a different rotational speed. In this case,
we split the original loop nest into a series of smaller loop nests
such that each split loop nest accesses the data stored in thedisk
with a particular speed. We use the Omega library [1, 22], a poly-
hedral tool, to generate these restructured loop nests using the given
data layouts and the data access patterns extracted by the compiler.
In this example, we see that, we can divide the original loop nest
into three loop nests. We then calculate the prefetch distance for
the reference in each loop nest,di (1 ≤ i ≤ 3) and restructure
the nests accordingly. The transformed code is illustratedin Fig-
ure 9(c). This small example shows that our approach can be appli-
cable even if the data layouts and the disk speeds are determined a
priori.

5.3 Example
We now give a more detailed example to show how our algo-

rithm described in Section 5.2 works in practice. The original code
fragment shown in Figure 10(a) has three loop nests,L1, L2, and
L3 and it manipulates three different disk-resident arrays, namely
V1, V2, andV3, using different indexing functions in each loop nest.
For illustrative purposes, let us assume that all the arraysare of the
same size,N×N . Let us further assume that we have four possible
RPM levels, namely, 15K, 12K, 9K, and 6K RPMs, for each disk in
the system. Originally, all disks are assumed to be run at 15KRPM.
Based on the locality analysis, we can obtain the temporal/spatial
locality information ofP , as shown in Figure 10(b). This locality
information indicates that, in the first loop nest (L1), all three array



INPUT:
A loop nestL: for ~I ∈ [~L, ~U ], step~b 〈a1(~I), . . . , am(~I)〉

~L = (l1, l2, . . . , ln)T

~U = (u1, u2, . . . , un)T

OUTPUT:
Transformed loop nestL′; for ~I′ ∈ [~L′, ~U ′]〈a1(~I

′), . . . , am(~I′)〉

// assume that~Ip ∈ (I1, I2, . . . , Ik)T is the selected pipeline loop
for eachIp selected forVi {

add a new controlling loop denoted byIIp (=[l′p, u′

p]) to the loop nest~I
such that~I′ = (I1, . . . , IIp, Ip, . . . , Ik)T ;

// calculate new loop bounds forIIp andIp.
[l′p,u′

p] = [lp, up];
b′p = loop step needed to strip-mineIp loop;

addb′p into the loop step vector,~b

such that~b′ = (b1, . . . , b′p, bp, . . . , bn);
[lp,up] = [l′p, l′p+b′p];

}

emit “for ~I′ ∈ [~L′, ~U ′], step~b′ 〈”;
// insert prefetch instruction.
for all array references being prefetched

emit “PF(Vi[~F [~I′])”;
// copy loop body from original loop body.
emit “a1(~I

′), . . . , am(~I′)〉”;
emit “〉”;

Figure 7: Code restructuring algorithm.

Figure 8: The three steps of our approach to energy-aware data
prefetching.

references have spatial locality in thej loop. Sincej is chosen as
the pipeline loop, we subsequently calculate the prefetch distance
(di) for every possible disk speeds, i.e., 15K, 12K, 9K, and 6K
(using the algorithm in Figure 5). For ease of illustration,let us as-
sume that the determineddi values for disk speeds 15K, 12K, 9K,
and 6K are(N/8)j, (N/4)j, Nj, and2Nj loop iterations, respec-
tively. This implies that, when consideringL1 alone, we can store
all arrays (V1, V2, andV3) in 6K RPM disks, which require2Nj
loop iterations to schedule-ahead the disk access since thelatency
incurred by 6K RPM disks can be eliminated by choosing next sur-
rounding loop nest, i.e.,i loop as the pipeline loop. However, since
both arraysV1 andV2 are accessed again in nestsL2 andL3 re-
spectively, possible disk speeds forV1 andV2 arrays are also de-
pendent on theL2 andL3 nests. After processing all the three loop
nests, we obtain the possible RPMs for each array, i.e., we have
G[V1] = {6K, 12K}, G[V2] = {6K, 15K}, andG[V3] = {6K}.
The RPM-groups can be obtained by aggregating the maximum
possible RPM from eachG[Vi], and they are listed in Figure 10(c).
This indicates that, for the arrayV1 accessed by bothL1 andL2,

L: for i = 0 toN − 1 {
. . . V1[i] . . .
. . . V2[i] . . .
}

(a) Original code fragment. (b) Data layouts and disk speeds.

L1: for ii = 0 to (N−1)
3 − d1, stepb1 {

PF (&V1[i + d1]); PF (&V2 [i + d1]);
for i = ii to ii+b1 {

. . . V1[i], V2[i], . . .
}
}

L2: for ii = (N−1)
3 to 2(N−1)

3 − d2, stepb2 {
PF (&V1[i + d2]); PF (&V2 [i + d2]);
for i = ii to ii+b2 {

. . . V1[i], V2[i], . . .
}
}

L3: for ii = 2(N−1)
3 to N − 1 − d3, stepb3 {

PF (&V1[i + d3]); PF (&V2 [i + d3]);
for i = ii to ii+b3 {

. . . V1[i], V2[i], . . .
}
}

(c) Transformed code fragment. The three loops show only
the steady-state of the pipelined loops.

Figure 9: Application of our approach when data layouts and
disk speeds are not adjustable.

we can assign 12K RPM because thej loop inL2 is sufficient for
hiding latency with a(N/4)j prefetch distance. The disk speed
originally assigned toV2 remains in 15K RPM since the obtained
reuse vector for array reference inL3 indicates that there is no in-
herent spatial locality. Based on these disk speeds determined, the
resulting data layouts (determined using the algorithm in Figure 6)
and the transformed code fragment (obtained using the algorithm
in Figure 7) are given in Figures 10(d) and (e), respectively. In this
example, since all three arrays are of the same size, we assign two
disks (out of six disks) per each array (and per RPM-group in this
case), and the speed of each disk is set to the RPM level as deter-
mined by our algorithm. As we can see from Figure 10(d), we can
save disk energy consumption by running four disks (out of a total
of six disks) at lower speeds. Also important to note that theperfor-
mance of this transformed code is not expected to be any worsethan
an alternate code that uses compiler-based I/O prefetching, such as
[2], that does not care about energy consumption.

6. EXPERIMENTAL EVALUATION

6.1 Simulation Platform
To evaluate the effectiveness of our approach in reducing disk

energy consumption, we implemented a simulation platform using
DiskSim [3]. We assumed that each I/O node has one disk; that
is, no further striping is applied within any I/O node. DiskSim
is driven by externally-provided disk I/O traces, which aregen-
erated by our trace generator. The trace generator generates disk
I/O traces, extracted from the disk layout information and the disk
access pattern, the latter of which can be obtained either through
profiling or static analysis. We modeled an IBM Ultrastar 36Z15
disk [17] and its relevant power and performance characteristics are
shown in Table 1. Since we use multi-speed disks running at dif-



L1: for i = 1 toN − 2 {
for j = 1 toN − 2 {
. . . V1[i][j] . . .
. . . V2[i][j] . . .
. . . V3[i][j] . . .
}
}

L2: for j = 0 toN − 1 {
. . . V1[N ][j] . . .
}

L3: for i = 0 toN − 1 {
. . . V 2[i][N ] . . .
}

(a) Original loop nests.

RPM-group arrays
15K V2

12K V1

6K V3

Reference Locality

V1[i][j], V2[i][j], V3[i][j]

»

i
j

–

=

»

none
spatial

–

V1[N ][j]
ˆ

j
˜

=
ˆ

spatial
˜

V2[i][N ]
ˆ

i
˜

=
ˆ

none
˜

(b) Locality analysis for each array reference.

L′

1: for ii = 1 toN − 4, stepb1 {
PF (&V3[i + 2][j]);
for jj = 1 toN − 2 − (N/4), stepb2 {
PF (&V1 [i][j + (N/4)]);
for i = ii to ii+b1 {
for j = jj to jj+b2 {
. . . V1[i][j] . . .
. . . V2[i][j] . . .
. . . V3[i][j] . . .
}
}
}
}

L′

2: for jj = 0 to (N − 1) − (N/4), stepb3 {
PF (&V1[N ][j + (N/4)]);
for j = jj to jj+b3 {
. . . V1[N ][j] . . .
}
}

L3: for i = 0 toN − 1 {
. . . V 2[i][N ] . . .
}

(c) Determined RPM-groups. (d) Determined disk speeds and data layouts for arrays. (e) Transformed loop nests. BothL′

1 andL′

2 show
only the steady state of the pipelined loops.

Figure 10: An example application of our hoisting algorithm.

ferent RPM levels, we model the performance and energy values at
every possible disk speed used. Based on the data from a conven-
tional IBM36Z15 disk, whose rotational speed is 15K RPM, we
obtained the performance and energy consumption values at idle
and active state by using the quadratic disk power model described
in [14]. The energy and performance values for these multi-speed
disks are also given in Table 1.

For each application in our experimental suite, we performed
experiments with three different schemes:

• Base: This is the baseline version that does not employ any
prefetching scheme. It executes benchmark programs on a
disk subsystem where all disks run at the highest available
speed, i.e, 15K RPM. All the reported disk energy and per-
formance numbers presented later in this section are given
as normalized values with respect to the corresponding num-
bers obtained using this version (which are given in the last
two columns of Table 2).

• PF: This scheme corresponds to the conventional I/O prefetch-
ing approach, as explained in [2]. The underlying disk speed
is fixed at the default RPM level (15K) and the data lay-
outs are exposed to the compiler. As in the base version,
we striped all arrays across all disks in the system. Given
the disk speeds and data layout of arrays, this scheme re-
structures the loop nests in the application code to hide I/O
latency incurred by accessing high-speed disks.

• PF+: This scheme corresponds to our energy-aware data
prefetching approach, as has been discussed in detail in Sec-
tion 5. As discussed earlier, it determines the disk speeds
for all disks in the system and the data layout for each disk-
resident array. Based on these determined parameters, it also
restructures loop nests.

In our experiments, we used four SPEC2000 float-point bench-
mark programs [26]. The important characteristics of thesebench-
mark programs are given in Table 2. We made the array data ma-
nipulated by these benchmark programs disk-resident; so, access-
ing an array data during execution results in a disk I/O of a block
size (default block size is 8KB), unless the access is captured in

the cache. To be fair in evaluating our approach, however, wealso
optimized these benchmark codes (even the base version) so that
the number and volume of I/O accesses are minimized as much as
possible. That is, our benchmarks are highly optimized as far as
their I/O behavior is concerned. Also, to complete our simulations
within a reasonable amount of time, we focused only on the loop
nests whose cumulative I/O times account for more than 90% of
the total I/O time of each benchmark. Using the default simulation
parameters given in Table 1, the baseline energy and performance
results are given in the last two columns of Table 2. These base-
line results are obtained by executing our benchmark programs on a
disk subsystem where all disks run at the highest RPM level (15K).
As mentioned earlier, the results which will be given in the next
subsection, are normalized with respect to the values in these last
two columns.

6.2 Results
The bar-chart shown in Figure 11 gives the normalized energy

consumptions of the benchmark programs in our experimentalsuite.
One can make several observations from these results. First, PF
brings an average disk energy savings of 39.6% across all four
benchmarks compared to the Base version. These savings are due
to the reductions in disk idle times. The second observationone
can make from this bar-char is that the PF+ version (our approach)
achieves additional energy savings, 19.6% on average when all
benchmarks are considered. This indicates that our approach suc-
cessfully determines the lowest possible rotational speedfor each
disk and the corresponding disk layouts. As opposed to the PF
version, our approach is able to reduce the energy spent in active
periods.

We now present the performance results obtained. The normal-
ized execution times for our benchmarks are presented in Figure 12.
One can see from this graph that the PF scheme reduces execution
time by 41.3% compared to the Base scheme. This result shows that
prefetching is beneficial in enhancing performance by hiding the
latency incurred by I/O requests. One can also see that the perfor-
mance of the PF+ scheme is almost same as that of the PF scheme
(the execution time difference between PF and PF+ is negligible,
i.e., below 1%). This suggests that our approach can achievea



Table 1: Major simulation parameters and their default values.
Disk Parameters Disk Performance and Energy Model Striping Information

Parameter Value Parameter Value Parameter Value
Disk Model IBM Ultrastar 36Z15 Rotation speed 15K/12K/9K/6K RPM Stripe size 64 KB

Interface SCSI Average seek time 3.4/3.76/7.0/10.83 ms Stripe factor (# of disks) 16
Storage Capacity 18.4 GB Average rotational latency 2.0/2.5/3.33/5.0 ms Starting iodevice (starting disk) 1 (the first disk)
Disk Cache Size 4 MB Power (active) 13.5/11.3/9.1/6.9 W

Internal Transfer Rate 55 MB/sec Power (idle) 10.2/8.66/7.12/5.58 W

Table 2: Benchmarks and their characteristics.
Name Description Data Size (GB) Base Energy (J) Exec Time (sec)

171.swim Shallow Water Modeling 115.2 50648.1 301.9
172.mgrid Multi-grid Solver: 3D Potential Field 95.5 175470.3 1066.1
173.applu Parabolic/Elliptic Partial Differential Equations 99.2 121798.5 736.9
301.apsi Meteorology: Pollutant Distribution 107.9 456479.1 2786.7

Figure 11: Normalized energy
consumptions.

Figure 12: Normalized execu-
tion times.

Figure 13: Normalized energy
consumptions with the different
stripe sizes.

Figure 14: Normalized energy
consumptions with the different
stripe factors.

significant amount of disk energy savings with little impacton the
performance improvement achieved by the PF scheme.

6.3 Sensitivity Analysis
In our next set of experiments, we perform a sensitivity analysis,

varying simulation parameters pertinent to disk striping.Specifi-
cally, we vary the stripe size and stripe factor (the number of disks
used for striping) to see how our approach gets affected. Forillus-
trative purposes, we choose one benchmark,173.applu, and con-
duct all sensitivity analysis using that benchmark. However, the
results we observed extend to other three benchmarks as well. Fig-
ure 13 gives the normalized energy consumptions with the differ-
ent stripe sizes (ranging from 32KB to 256KB). Recall from Ta-
ble 1 that the default stripe size was 64KB. The values of the all
other simulation parameters are fixed at the values given in Table 1.
We see from these results that the energy savings achieved byour
scheme are slightly increasing as we increase the stripe size. This
can be explained as follows. When the stripe size increases,a given
disk tends to service I/O requests for a longer period of time. This
in turn leads to fewer disks being involved in processing theI/O
requests, thereby increasing the idle periods of other disks. Con-
sequently, these longer idle periods contribute to reduction in disk
energy consumption.

In our next sensitivity experiment, we measured the impact of the

different stripe factors (i.e., the total number of disks used for strip-
ing). Figure 14 gives the normalized energy consumptions with the
different stripe factors (ranging from 8 to 64 disks). We observe
from these results that the energy savings our approach achieve are
slightly decreasing as the number of disks increases. This is be-
cause, as we increase the number of disks used in striping, this
increases the overall idleness of disks. And, since a disk inthe
idle state consumes almost same amount of energy as it would con-
sume in the active state, this in turn increases the overall energy
consumption. Still, the experimental results given in Figures 13
and 14 clearly show that our approach is successful across a range
of values for stripe sizes and the number of disks.

7. CONCLUDING REMARKS AND FUTURE
WORK

The main contribution of this paper is a compiler-directed energy-
aware prefetching scheme for disk-intensive scientific applications.
The proposed approach determines, in a unified setting, the prefetch
distances for disk access (I/O) instructions, the disk speeds for all
disks in the storage system, and the data (array) layouts on the
disks, given an application program. To test the effectiveness of the
proposed strategy, we implemented it within an optimizing com-
piler and made experiments with four applications that manipulate
disk-resident data arrays. The results obtained so far fromour ex-
periments are very encouraging and show that the energy-aware
prefetching brings significant energy benefits over a state-of-the-art
(performance oriented) I/O prefetching scheme, without degrading
the performance of the latter. Our ongoing work involves integrat-
ing this optimization with well-known I/O optimizations such as
collective I/O [27] and caching. We are also planning to enhance
our approach to accommodate disk spin-downs as well, in addition
to multi-speed disks.
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