
Service Oriented Interactive Media (SOIM) Engines
Enabled by Optimized Resource Sharing

Aly, Mahy; Franke, Michael;
Kretz, Moritz; Schamel, Folker

Spinor GmbH
Munich, Germany

{ mahy.aly, michael.franke, moritz.kretz, fms }
@spinor.com

Simoens, Pieter
Ghent University - iMinds

Ghent, Belgium
pieter.simoens@intec.ugent.be

Abstract—In the same way as cloud computing, Software as a
Service (SaaS) and Content Centric Networking (CCN) triggered
a new class of software architectures fundamentally different from
traditional desktop software, service oriented networking (SON)
suggests a new class of media engine technologies, which we call
Service Oriented Interactive Media (SOIM) engines. This includes
a new approach for game engines and more generally interactive
media engines for entertainment, training, educational and
dashboard applications. Porting traditional game engines and
interactive media engines to the cloud without fundamentally
changing the architecture, as done frequently, can enable already
various advantages of cloud computing for such kinds of
applications, for example simple and transparent upgrading of
content and unified user experience on all end-user devices. This
paper discusses a new architecture for game engines and
interactive media engines fundamentally designed for cloud and
SON. Main advantages of SOIM engines are significantly higher
resource efficiency, leading to a fraction of cloud hosting costs.
SOIM engines achieve these benefits by multi-layered data
sharing, efficiently handling many input and output channels for
video, audio, and 3D world synchronization, and smart user
session and session slot management. Architecture and results of a
prototype implementation of a SOIM engine are discussed.

Keywords—cloud gaming; service oriented interactive media
engines; SOIM; resource sharing; resource optimization; service
oriented networking; remote rendering; 3D engines

I. INTRODUCTION
The advent of cloud computing and ubiquitous broadband

network access has created new prospects for delivering
interactive software. For reasons of piracy and cost reduction,
applications are nowadays being delivered following the
Software-as-a-Service model. Instead of installing the entire
application at the client, the output is streamed from the cloud-
hosted application to the client [1].

The transition from single-user locally running applications
to internet based delivery models has basically triggered new
service-oriented architectures for software development [2].
Cloud-based applications must handle simultaneously multiple
application tenants. Instead of instantiating the entire application
per user, the pay-as-you-go billing models in cloud computing
mandates the efficient usage of compute and memory storage by
sharing resources where possible.

Interactive media and entertainment software face the need
to adapt to the architectural implications that are introduced
alongside the new infrastructure in order to optimize its use.
Currently, it can be admitted that in the process of this
architectural transition, the interactive media industry, in large
part of it, is still lagging behind. Since the launch of that industry
and mostly throughout its history, games, or in case of server-
based multi-user games, thick game clients have been single-
user applications running completely on end-user devices. These
needs had a significant impact on the architecture of the game
and media engines being the software which provides core
functionalities like input handling, game simulation, AI,
scripting, sound and rendering. Typical engine architectures
were normally built around these single-user assumptions. For
example, a typical game engine architecture assumes that there
is one single active 3D world and therefore the logic handling
assets like geometry, textures and shaders is not adequately
prepared for these resources to be shared by different logical
users.

The emerging of cloud gaming drew new requirements.
Many users should be handled by fewer instances of engines,
thus requiring a suitable architecture of 1:n relationships of the
engine software components. However, game engines have
often been developed over a longer period of time and therefore
could not be easily redesigned without having to re-implement a
lot of features differently. Accordingly, the industry was caused
to slow down in terms of adapting to the new demands of cloud
gaming. As a result, most games ported to cloud platforms are
simply running as one software instance per user, usually in a
virtualized environment. In this respect, a new architecture for
game and media engines supporting the required
aforementioned 1:n relationships of components is missing.

The transition from single-user to service oriented
architectures is getting even more complicated because today's
media engines are typically not only using classical object-
oriented or component case software architectures, but also have
multiple layers of abstraction to provide user-friendly tools, up
to pure graphical based instruments, to media designers. These
tools abstract a lot of underlying technical details, and
subsequently have to undergo major changes for cloud-
optimized paradigms.

mailto:@spinor.com
mailto:pieter.simoens@intec.ugent.be

In this paper, we share experiences of the Development
Team at Spinor as regards the redesign of our service-oriented
media engine (SOIM) Shark 3D. Shark 3D is a proprietary
media engine developed by Spinor [3], utilized for the creation
of several award-winning game titles and used daily in virtual
studio applications of major broadcasting companies. The
software provides an extended production-grade framework for
creating interactive media applications like games and other
real-time applications of movie and TV industry.

Concerning this kind of software, the most resource-
consuming factor with regard to computation power and
memory are the world simulation (often combined with physics
simulation) as well as the handling of assets like 3D models and
the rendering of the output image which must be performed on
specific, highly parallelized hardware, the GPUs. We provide an
overview of the challenges that occurred during our software
transition to support cloud-based hosting. We further elaborate
on our approaches to optimize the HW/SW resource
consumption of multi-user applications through sharing memory
between instances where possible.

The paper is organized as follows: Related work is described
in section II, whereas in section III, the workflow for creating
scenes using graphs used by modern 3D media engines is
illustrated. Section IV and V go more into implementation
details to build the foundation of how sessions and session slots
can be used to optimize resource usage implemented in Shark
3D. Section VI provides a set of standard use cases, that can be
entirely improved by employing the optimized techniques
explained above. Section VII shows an overview of setups that
implement these use cases in different ways. Some experiments
measuring differences in memory space used were also carried
out, the results of which are shown in section VIII. The last
section puts forward an outlook for future development in this
connection.

II. RELATED WORK
 Related work on developing cloud-native media
applications is mostly situated in the domain of cloud gaming.
Our discussion is classified into two categories: alternative
developer frameworks and strategies for cloud resource
sharing. The best known alternative development frameworks
to Shark 3D in the gaming and media market are Unity 3D [4]
and Unreal [5]. Unity has included cloud support for running
multi-player servers, as well as for management and
organization tasks, but not for rendering in the cloud.

 Other related work is found in the domain of cloud resource
sharing. PS Now is a cloud gaming service covering
technologies of Gaikai and OnLive which were both acquired
by Sony. [6] hints at a separation between user sessions at the
hardware level. A full hardware stack (CPU, GPU, memory) is
assigned to each player, although realized on the same
motherboard. NVIDIA GRID allows for efficient capturing and
encoding of GPU output and GPU sharing. It offers two
approaches [7]. The first approach applies a 1:1 mapping
between GPU and OS. Although this is more efficient than
offering a full hardware stack per user session, there is still the
overhead of running a separate OS instance per session. The

second possibility is called shimming and provides isolation
through light sandboxes on a single OS.

 Hou et al. [8] have integrated NVIDIA GRID GPU in the
open source Gaming Anywhere cloud gaming platform. The
main focus of the authors is to assign each VM its own GPU.
Although the goal of the authors is identical to ours, our
approach would allow higher optimization of resource
consumption, especially texture memory because of
application-level support. A similar approach is followed in [9],
however by means of a new framework developed by the
authors themselves. In [10], GPU memory is shared amongst
different application instances by detecting already loaded
content via hashing. This is performed on the driver level,
whereas our approach implements this logic on the developer
framework itself. This enables us to exploit not only more
detailed information (e.g. resource comparison by file name),
but also leverage on additional information unavailable at the
driver level. For example, we can assign players having an
almost identical set of resources to the same server even before
starting the application, thus increasing the number of sharable
resources. Another advantage of the Shark 3D approach is that
the separation occurs in the application rather than by VM,
resulting in the avoidance of duplication of main memory
content for multiple instances.

III. HIERARCHICAL NODE-BASED APPLICATION DEFINITIONS
USING TEMPLATES

Assets, like 3D models, textures and sounds, play a key role
with respect to resource usage optimization as they partly
describe a virtual world. These assets commonly have a
relatively large memory footprint compared to the program
logic. Hence, today’s software can possibly consume some
hundred megabytes up to several gigabytes of hard disk space.
On loading, such data as sounds and scripts has to be moved to
main memory, while 3D models, textures and shaders to GPU
memory. It might also be the case that some processing is
required, for example textures often have to be decompressed
and converted to GPU compatible format before moving it to
the GPU memory.

In this section, we describe how Shark 3D organizes these
assets in a tree structure and how this organization is adapted to
cloud deployment.

A. Graph based editing
Typically today’s professional engines provide graphical

tools for the designer to define the virtual world’s structure as
graphs. In case of Shark 3D we use a tree for defining the scene
augmented by (run time) references between nodes of different
branches so that at runtime a directed graph is formed. These
graphs often include nodes for physics behaviour, artificial
intelligence, animations, visual elements and sounds. Moreover,
like most other game engines, Shark 3D employs the concept of
templates, which allows pre-defining parts of the graph such as
complete characters and cars, and reusing it several times in the
virtual world, often with the possibility of parameterizing these
templates, e.g. by different logic scripts or models.

B. Runtime and editing
The runtime environment of the Shark 3D software consists

of a very thin framework application which more or less loads
configuration resources as well as instantiates and configures
objects accordingly. This ensures flexibility since it implies that
even the “basic” functionality of a game engine like instantiating
a renderer is not performed automatically but is rather aligned
with these configuration resources which are generated using the
editing tools.

In the Shark 3D engine, the editing of scenes is done on a
running instance of the engine by connecting it to the editing
tools and delivering new configurations to the runtime in the
event of changing the graph or node properties. From the
runtime perspective there is no technical difference between
editing and running the final application. How the graph is
translated into runtime configurations is described later.

Any extensions and changes in behavior necessary for
editing (e.g. different behavior or editor camera and input) is
defined on a higher level using either different nodes or a generic
socket-based communication protocol. Any changes made in the
tree or to node attributes are immediately translated into
configuration data chunks and dynamically loaded by the
running engine.

IV. TRANSLATION OF DEFINITION GRAPHS INTO DESCRIPTIONS
OF THE RUN-TIME ENGINE

The Shark 3D node tree offers the possibility of defining
templates which can be used anywhere in the tree. Each usage
of a template is “inlined” during translation of the tree thus
leading to an outcome equivalent to a repeated insertion by the
user of all nodes inside the template. Therefore, each node in the
tree may be available multiple times, however each time the
context may differ depending on where the template is used.
This results in a 1:n relationship that has to be managed.

With this growing number of nodes, especially those used in
(often nested) templates, it can be concluded that the translation
time will be longer when done brute force. In order to shorten
the duration of compiling the tree into a runtime description,
sub-trees resulting in identical outcome are translated for once
and reused. Nevertheless, since the outcome also depends on the
context in which the node resides (in the sense that templates can
be parameterized and there may be implicit references from
nodes to direct or indirect logical ancestors in the tree), it can be
noted that combining the 1:n relationship caused by multiple
usage of a template is a complex task.

Nodes may also be instantiated at runtime, for example by
using the so-called producer node, where the whole subtree
defined underneath it is instantiated upon sending a produce
message to the runtime representation of the given node. This
adds a possible 1:m relationship for each of the above mentioned
1:n relationships. For editing and inspection purposes, the editor
logic has to track all runtime instantiations of a node. This yields
a two-step process of translating the node tree into run-time
instances of engine components, as shown in Figure 1.

Figure 1. Steps for translating definition graphs into runtime instances.

A. Translation of the tree into a runtime description
The translation step includes the following operations:

 Resolving templates, which may be nested. This
means that during tree traversal, the templates are
“inlined” when they are used and the parameters are
resolved.

 Resolving implicit references of a child to a direct
and indirect logical ancestor.

 A parent node collecting information from direct
children. An example is a node responsible for
instantiating a renderer instance demanding a
reference to all viewports defined as child nodes.

 Creating the outcome descriptions of individual
nodes or group of nodes based on this information.

Towards additional optimization, it is upon primary
compilation of the whole tree that only incremental changes are
likely to be made. This constitutes a rather challenging task in
view of the fact that all the relations between the nodes (parent
to child, child to parent, etc.) have to be taken into account when
recompiling only parts of the tree.

B. Loading and instantiating the runtime description in the
runtime environment
The run-time instantiation process involves the following

operations:

 Loading dynamic libraries containing the code for
different components.

 Instantiating and initializing of objects based on
outcome descriptions. For each node in the tree
normally a number of runtime objects is created.
The initialization parameters are derived from node
attributes defined in the editor and passed to the
configuration files.

 Resolving references to other objects defined by
name in the outcome into efficient C/C++ pointers
for direct access.

 Instantiating engine components.

This part of the run-time engine is implemented mainly in
C++. Changes made in the editor are updated in the runtime by
reloading the relevant configurations and resources.

V. RESOURCE SHARING USING SESSIONS AND SESSION SLOTS

A. Concept
As already mentioned above, a naive approach of enabling

the Shark 3D software for cloud gaming would have been to
package the software into a VM or a container (e.g. Docker

image) and to instantiate one image for each session. A session
is defined in this case as a logical representation of the group of
users who are involved in the same virtual environment.
Normally, each running instance would only accommodate one
session due to the fact that games were previously developed and
ported to cloud servers as single-session applications. An
instance started upon a user's request, simulates the game,
renders the resulting 3D image and sends the rendered output as
a video stream to be displayed on the user's end device. The
user's input is sent from the client's device to the game instance
to provide a feedback channel.

This approach is far from being optimal with respect to the
use of the underlying hardware resources: If multiple users are
running the same application, chances are high that they at least
partly access the same data, so sharing this data between users
would optimize the overall memory footprint. There are also
situations where computation results can be shared amongst
multiple users, for example physics simulations in a multi-player
game.

The solution for this problem resides in sharing a single
running engine instance amongst several users and handling the
separation of different users inside the engine rather than using
the environment like the separate VMs. The media engine
maintains better knowledge about resource usage and how to
optimize resource sharing compared to the VM manager. The
game engine is also cognizant about which users are using which
3D states and therefore which models and other assets are
required. In turn, this can influence the distribution of users over
the running instances.

B. Introducing Session Slots
To this end, Shark 3D as a service oriented interactive media

engine allows one running instance of a service to handle
multiple independent sessions to be used by different groups of
users.

The maximum number of possible sessions that can be run
in one engine instance is limited by the amount of (virtualized)
resources allocated to the engine. This introduces the concept of
session slots, which explains the idea that each session started in
the running engine occupies one of the available slots, which is
then released when the session has been terminated. When all
available slots are occupied, no further sessions can be started
until another slot is released. Besides depending largely on the
specific application, the number of available session slots is
volatile in a sense that it relies on the resources used by the
running sessions. It cannot therefore be predefined but must be
reported to the cloud management software on a regular basis.

On the other hand, this indicates that the application setup
defines which components must be instantiated separately for
each user. This can be implemented by using different nodes in
the tree. This guarantees flexibility that for each application, it
can be determined which parts are to be instantiated per user and
which parts are to be shared.

The component-based architecture of Shark 3D engine
described in section IV has been modified to accommodate the
creation of multiple-session services. Accordingly, it can be
used by the developer to define factories for instantiating
session-specific node graphs, which access and use shared data

(e.g. assets). Such shared data can then be used by independent
3D states that define the virtual worlds of the services.

C. Implementation
Resources possibly shared between different sessions of the

same application can be divided into several categories as
follows:

 On-disk resources: these include the program files
and assets. Shark 3D offers a number of object
types to store different kinds of assets such as 3D
models, textures and sounds.

 GPU resources: such as vertex buffers which
contain the vertices of the models and shaders.

 CPU resources: excessive calculations especially
for simulating physics need to be performed by the
CPU. Additional computation power is also
consumed to run the application logic.

In Shark 3D, the management components for these
resources are provided as nodes so that the resources can be
shared by all the 3D states which are created as children of these
nodes.

Furthermore, it is possible to split multi-user services into
two components: the world simulation shared amongst all users
of the same session and rendering services which are user
specific.

D. Sample Node Setup for Network interconnection
As mentioned earlier, Shark 3D provides the possibility to

create a factory for session slots necessary to allow resource
sharing. In the editor, these factories, known as “producers”, can
be used to define which functional components (e.g. unique 3D
state) must be created for each session. This mostly relates to
relatively lightweight C++ objects in contrast to shared data such
as textures, sounds or other assets, which can be created and
loaded only once for use by the different sessions.

If both the world simulation and rendering services are
running as one service on the same machine, then only one state
would be sufficient for a session. Otherwise for each rendering
service performed on another machine, a new 3D state needs to
be created and synchronized with that of the server. A new view
must be created for each client once connected to a state. Figure
2 shows a graph example designed in the Shark 3D editor to
define session slots using state and network nodes.

VI. USE CASES
In order to set examples of session-based applications that

can be implemented via Shark 3D, the following use cases are
explored:

 Single and multi-user dashboards.

 Thin client single and multi-player games.

A. Single and multi-user dashboards
A dashboard is an interactive 3D environment combining a

number of different services dynamically, based on the users’
requests. Therefore, it allows the user to move around and
choose one of the services offered such as video streaming of

real time data from various sources or chatting. The video
streams are rendered on textures within the 3D world, which
could be the same or different for each user even within the same
session in case of the multi-user dashboard. To implement this,
each user must have a unique 3D state and a view, where the 3D
states of all the users joining the same session are synchronized
via Shark 3D networking protocol.

B. Thin client single and multi-player games
This is a single or multi-player game where the rendering of

the 3D scenes may be done on a separate server instance
deployed on the network from where it will be sent as a video
stream to the end user's device connected to the server. The end
users only launch a viewer application (referred to as thin client),
which is responsible for decompressing the video stream,
displaying it, as well as capturing the user's input and passing it
to the server.

VII. TYPICAL SETUPS
These use cases can be set up in different ways according to

both the hardware requirements of the services to be deployed
on the network and the users’ locations. Examples of the former
are represented in the world simulation that requires high CPU
power and also in the rendering services which require access to
the GPU. Such requirements put limitations on where the service
instances should be deployed and whether or not they can run on
the same machine. The users’ locations on the other hand,
determine where the rendering instances need to be deployed as
these should be as close to the users as possible. The following
reflects the possible scenarios whether or not the services are
split for each of the use cases of the dashboard and the game.

A. World simulation and rendering running on the same
machine
1) Single-user dashboard / game
In this case, an instance of Shark 3D engine is instantiated,

offering a number of session slots where each slot is equivalent
to a new dashboard or game session comprised of a 3D state and
a view. The rendered output is then streamed to the thin client
running on the end user’s device.

2) Multi-user dashboard
A 3D state and a view are required for each user, hence is the

consumption of one session slot per player to allow users to have
different output streams as explained earlier. For each group of
users sharing the same session, the 3D states must be
synchronized via Shark 3D networking protocol.

3) Multi-player game
As for this use case, only one 3D state is required per game

session to which all players of the same session are connected.
A new view is created for each player.

B. World simulation and rendering services running on
different machines
1) Single-user dashboard / game
Considering a single-user dashboard or game where a new

slot is accorded to each user and no synchronization between
states is required, assigning a separate instance for a server and

Figure 2. State and network nodes.

another for a client consumes two session slots instead of one.
Hence, the setup mentioned in section VII.A.1) is more efficient.

2) Multi-user dashboard / game
 Similar to the multi-user dashboard requirements, once the
rendering services are running on different machines, a new 3D
state will be required for each user in the multi-player game.
Therefore, it can be safely admitted that the same setup is
applicable to both, the dashboard and the game.

 In this scenario, a session slot of a server instance
containing the decisive 3D state is requested per session.
Additionally a session slot of a client instance containing a state
replication and a view are also created (consuming one session
slot) for each of the players within the session. All of the clients’
states should be synchronized with that of the server using
Shark 3D networking protocol.

3) Multi-user dashboard / game without centralized world
simulation

The last scenario is a combination of the previous two
categories where the rendering services are instantiated on
different machines depending on the users’ distribution, while
the world simulation is not separated from the rendering
services. In this case, one of the 3D states created for one of the
users will be acting as a client as well as a server by opening a
listening port for the rest of the clients who would like to join
the same session to connect to. The benefit of this approach is
that it uses less number of session slots against the previous
scenario. It also reduces the number of states that need to be
synchronized with each other.

VIII. RESULTS
 To test improvements achieved by our approach, a few
experiments were conducted. The single-user game scenario
was employed for testing, being the one, in which normally
separate application instances are launched, e.g. using separate

VMs. This accounts for an ideal scenario that deems resource-
sharing as considerably beneficial. The 3D world used to make
the measurements is the one depicted in Figure 3. The setup was
as follows: One PC acting as server, instantiating a state and a
view for each incoming client.

Figure 3. The 3D world used for the measurements.

 There was an additional management service written in
Python which executed the logic normally handled by a portal
application, i.e. processing incoming requests for new services
from the clients and distributing them over the servers by
returning the respective IP. At the level of our experiments, this
service routed all client requests to the server where the
measurements were performed.

Two series of experiments were carried out: In the first, for
each client, a separate instance of the Shark 3D engine was
started to measure the base line; in the second the optimization
was used and each client was assigned his own private session
but within a common instance of Shark 3D. Both graphics
memory and main memory consumption were measured for one
to eight clients connected to the server. The results are shown in
Figure 4. As the memory of the graphics card used was about
4000 MB, it was able to handle up to five individual instances
of the Shark 3D engine. It is noticeable from the graph that for
the fifth instance, the limit of the GPU memory was being
approached. Therefore, the consumption of memory for this
specific instance was less than the previous ones, with respect to
GPU memory but higher in terms of that of the CPU, resulting
in the same total amount of memory used. Launching a sixth
instance of the application simply failed. As for the shared
instance, it was able to handle at least eight sessions, with
relatively much smaller increases in both CPU and GPU
memory usage.

IX. CONCLUSION
Moving existing interactive media engines to the cloud

requires deep architectural adjustments. Key to building
efficient software is sharing the underlying hardware resources.
To achieve this goal, Shark 3D was adapted to accept multiple
independent sessions running in parallel, separating different
users and sessions inside the engine. This allows sharing the
fundamental resources like memory and CPU power in an
efficient manner. The tree based editing in Shark 3D enables
software developers to edit this on a fine grained level, allowing
adaptation to different possible architectural setups depending

on the kind of software (multi user, single user, shared state, etc.)
being developed.

Further challenges not covered in this work target the
optimal distribution of sessions amongst the running instances
since the more resources (e.g. CPU and GPU memory) can be
shared, the more sessions can run on a single instance. On the
other hand, assigning a session to a running instance also has
impact on the network round trip time depending on the specific
location of the running instance. Finding solutions to these
issues and optimizing them is the goal of the FP7 funded project
FUSION, where Spinor is also contributing as an industry
partner. The implementations mentioned before are also used in
that project as samples and test cases.
[1] P. Simoens, F. De Turck, B. Dhoedt, and P. Demeester. “Remote display

solutions for mobile cloud computing”, Computer, vol. 8, 2011
[2] W. Cai, M. Chen, and V. Leung, “Toward gaming as a service”, Internet

Computing, IEEE, vol. 18(3), 2014
[3] Shark 3D – Spinor GmbH, http://www.spinor.com
[4] Unity – Game Engine, https://unity3d.com
[5] Unreal Engine, https://www.unrealengine.com
[6] Extremetech - http://www.extremetech.com/gaming/175005-sonys-

playstation-now-uses-custom-designed-hardware-with-eight-ps3s-on-a-
single-motherboard

[7] F. Diard, “Cloud Gaming with Nvidia Grid Technologies”, GDC 2014
[8] Q. Huo, C. Qiu, K. Mu, et al. “A Cloud Gaming System Based on

NVIDIA GRID GPU”. In Distributed Computing and Applications to
Business,Engineering and Science (DCABES), 2014 13th Intl.
Symposium on, IEEE, 2014

[9] R. Shea, D. Fu, J. Liu, “Rhizome: utilizing the public cloud to provide 3D
gaming infrastructure”. Proceedings of the 6th ACM Multimedia Systems
Conference, ACM 2015.

[10] X. Wu, Y. Xia, N. Jing, et al. “CGSharing: Efficient content sharing in
GPU-based cloud gaming”. In Low Power Electronics and Design
(ISLPED), 2015 IEEE/ACM International Symposium on, IEEE, 2015

Figure 4. Comparison of memory usage between individual application
instances and shared instance offering multiple session slots.

1 2 3 4 5 6 7 8
0

1000

2000

3000

4000

5000

6000

7000

Total, individual
instances

Total, shared
instance

GPU, individual
instances

GPU, shared
instance

CPU, individual
instances

CPU, shared
instance

Clients

M
em

or
y [

M
B]

http://www.spinor.com
https://unity3d.com
https://www.unrealengine.com
http://www.extremetech.com/gaming/175005-sonys-

