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Abstract—In the same way as cloud computing, Software as a 
Service (SaaS) and Content Centric Networking (CCN) triggered 
a new class of software architectures fundamentally different from 
traditional desktop software, service oriented networking (SON) 
suggests a new class of media engine technologies, which we call 
Service Oriented Interactive Media (SOIM) engines. This includes 
a new approach for game engines and more generally interactive 
media engines for entertainment, training, educational and 
dashboard applications. Porting traditional game engines and 
interactive media engines to the cloud without fundamentally 
changing the architecture, as done frequently, can enable already 
various advantages of cloud computing for such kinds of 
applications, for example simple and transparent upgrading of 
content and unified user experience on all end-user devices. This 
paper discusses a new architecture for game engines and 
interactive media engines fundamentally designed for cloud and 
SON. Main advantages of SOIM engines are significantly higher 
resource efficiency, leading to a fraction of cloud hosting costs. 
SOIM engines achieve these benefits by multi-layered data 
sharing, efficiently handling many input and output channels for 
video, audio, and 3D world synchronization, and smart user 
session and session slot management. Architecture and results of a 
prototype implementation of a SOIM engine are discussed. 

Keywords—cloud gaming; service oriented interactive media 
engines; SOIM; resource sharing; resource optimization; service 
oriented networking; remote rendering; 3D engines 

I.  INTRODUCTION 
The advent of cloud computing and ubiquitous broadband 

network access has created new prospects for delivering 
interactive software. For reasons of piracy and cost reduction, 
applications are nowadays being delivered following the 
Software-as-a-Service model. Instead of installing the entire 
application at the client, the output is streamed from the cloud-
hosted application to the client [1]. 

The transition from single-user locally running applications 
to internet based delivery models has basically triggered new 
service-oriented architectures for software development [2]. 
Cloud-based applications must handle simultaneously multiple 
application tenants. Instead of instantiating the entire application 
per user, the pay-as-you-go billing models in cloud computing 
mandates the efficient usage of compute and memory storage by 
sharing resources where possible. 

Interactive media and entertainment software face the need 
to adapt to the architectural implications that are introduced  
alongside the new infrastructure in order to optimize its use. 
Currently, it can be admitted that in the process of this 
architectural transition, the interactive media industry, in large 
part of it, is still lagging behind. Since the launch of that industry 
and mostly throughout its history, games, or in case of server-
based multi-user games, thick game clients have been single-
user applications running completely on end-user devices. These 
needs had a significant impact on the architecture of the game 
and media engines being the software which provides core 
functionalities like input handling, game simulation, AI, 
scripting, sound and rendering. Typical engine architectures 
were normally built around these single-user assumptions. For 
example, a typical game engine architecture assumes that there 
is one single active 3D world and therefore the logic handling 
assets like geometry, textures and shaders is not adequately 
prepared for these resources to be shared by different logical 
users. 

The emerging of cloud gaming drew new requirements. 
Many users should be handled by fewer instances of engines, 
thus requiring a suitable architecture of 1:n relationships of the 
engine software components. However, game engines have 
often been developed over a longer period of time and therefore 
could not be easily redesigned without having to re-implement a 
lot of features differently. Accordingly, the industry was caused 
to slow down in terms of adapting to the new demands of cloud 
gaming. As a result, most games ported to cloud platforms are 
simply running as one software instance per user, usually in a 
virtualized environment. In this respect, a new architecture for 
game and media engines supporting the required 
aforementioned 1:n relationships of components is missing. 

The transition from single-user to service oriented 
architectures is getting even more complicated because today's 
media engines are typically not only using classical object-
oriented or component case software architectures, but also have 
multiple layers of abstraction to provide user-friendly tools, up 
to pure graphical based instruments, to media designers. These 
tools abstract a lot of underlying technical details, and 
subsequently have to undergo major changes for cloud-
optimized paradigms. 
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In this paper, we share experiences of the Development 
Team at Spinor as regards the redesign of our service-oriented 
media engine (SOIM) Shark 3D. Shark 3D is a proprietary 
media engine developed by Spinor [3], utilized for the creation 
of several award-winning game titles and used daily in virtual 
studio applications of major broadcasting companies. The 
software provides an extended production-grade framework for 
creating interactive media applications like games and other 
real-time applications of movie and TV industry.  

Concerning this kind of software, the most resource-
consuming factor with regard to computation power and 
memory are the world simulation (often combined with physics 
simulation) as well as the handling of assets like 3D models and 
the rendering of the output image which must be performed on 
specific, highly parallelized hardware, the GPUs. We provide an 
overview of the challenges that occurred during our software 
transition to support cloud-based hosting. We further elaborate 
on our approaches to optimize the HW/SW resource 
consumption of multi-user applications through sharing memory 
between instances where possible. 

The paper is organized as follows: Related work is described 
in section II, whereas in section III, the workflow for creating 
scenes using graphs used by modern 3D media engines is 
illustrated. Section IV and V go more into implementation 
details to build the foundation of how sessions and session slots 
can be used to optimize resource usage implemented in Shark 
3D. Section VI provides a set of standard use cases, that can be 
entirely improved by employing the optimized techniques 
explained above. Section VII shows an overview of setups that 
implement these use cases in different ways. Some experiments 
measuring differences in memory space used were also carried 
out, the results of which are shown in section VIII. The last 
section puts forward an outlook for future development in this 
connection. 

II. RELATED WORK 
      Related work on developing cloud-native media 
applications is mostly situated in the domain of cloud gaming. 
Our discussion is classified into two categories: alternative 
developer frameworks and strategies for cloud resource 
sharing. The best known alternative development frameworks 
to Shark 3D in the gaming and media market are Unity 3D [4] 
and Unreal [5]. Unity has included cloud support for running 
multi-player servers, as well as for management and 
organization tasks, but not for rendering in the cloud.  
 
      Other related work is found in the domain of cloud resource 
sharing. PS Now is a cloud gaming service covering 
technologies of Gaikai and OnLive which were both acquired 
by Sony. [6] hints at a separation between user sessions at the 
hardware level. A full hardware stack (CPU, GPU, memory) is 
assigned to each player, although realized on the same 
motherboard. NVIDIA GRID allows for efficient capturing and 
encoding of GPU output and GPU sharing. It offers two 
approaches [7]. The first approach applies a 1:1 mapping 
between GPU and OS. Although this is more efficient than 
offering a full hardware stack per user session, there is still the 
overhead of running a separate OS instance per session. The 

second possibility is called shimming and provides isolation 
through light sandboxes on a single OS.  
 
      Hou et al. [8] have integrated NVIDIA GRID GPU in the 
open source Gaming Anywhere cloud gaming platform.  The 
main focus of the authors is to assign each VM its own GPU. 
Although the goal of the authors is identical to ours, our 
approach would allow higher optimization of resource 
consumption, especially texture memory because of 
application-level support. A similar approach is followed in [9], 
however by means of a new framework developed by the 
authors themselves. In [10], GPU memory is shared amongst 
different application instances by detecting already loaded 
content via hashing. This is performed on the driver level, 
whereas our approach implements this logic on the developer 
framework itself. This enables us to exploit not only more 
detailed information (e.g. resource comparison by file name), 
but also leverage on additional information unavailable at the 
driver level. For example, we can assign players having an 
almost identical set of resources to the same server even before 
starting the application, thus increasing the number of sharable 
resources. Another advantage of the Shark 3D approach is that 
the separation occurs in the application rather than by VM, 
resulting in the avoidance of duplication of main memory 
content for multiple instances.  

III. HIERARCHICAL NODE-BASED APPLICATION DEFINITIONS 
USING TEMPLATES 

Assets, like 3D models, textures and sounds, play a key role 
with respect to resource usage optimization as they partly 
describe a virtual world. These assets commonly have a 
relatively large memory footprint compared to the program 
logic. Hence, today’s software can possibly consume some 
hundred megabytes up to several gigabytes of hard disk space. 
On loading, such data as sounds and scripts has to be moved to 
main memory, while 3D models, textures and shaders to GPU 
memory. It might also be the case that some processing is 
required, for example textures often have to be decompressed 
and converted to  GPU compatible format before moving it to 
the GPU memory. 

In this section, we describe how Shark 3D organizes these 
assets in a tree structure and how this organization is adapted to 
cloud deployment. 

A. Graph based editing 
Typically today’s professional engines provide graphical 

tools for the designer to define the virtual world’s structure as 
graphs. In case of Shark 3D we use a tree for defining the scene 
augmented by (run time) references between nodes of different 
branches so that at runtime a directed graph is formed. These 
graphs often include nodes for physics behaviour, artificial 
intelligence, animations, visual elements and sounds. Moreover, 
like most other game engines, Shark 3D employs the concept of 
templates, which allows pre-defining parts of the graph such as 
complete characters and cars, and reusing it several times in the 
virtual world, often with the possibility of parameterizing these 
templates, e.g. by different logic scripts or models. 



B. Runtime and editing 
The runtime environment of the Shark 3D software consists 

of a very thin framework application which more or less loads 
configuration resources as well as instantiates and configures 
objects accordingly. This ensures flexibility since it  implies that 
even the “basic” functionality of a game engine like instantiating 
a renderer is not performed automatically but is rather aligned 
with these configuration resources which are generated using the 
editing tools. 

In the Shark 3D engine, the editing of scenes is done on a 
running instance of the engine by connecting it to the editing 
tools and delivering new configurations to the runtime in the 
event of changing the graph or node properties. From the 
runtime perspective there is no technical difference between 
editing and running the final application. How the graph is 
translated into runtime configurations is described later.  

Any extensions and changes in behavior necessary for 
editing (e.g. different behavior or editor camera and input) is 
defined on a higher level using either different nodes or a generic 
socket-based communication protocol. Any changes made in the 
tree or to node attributes are immediately translated into 
configuration data chunks and dynamically loaded by the 
running engine. 

IV. TRANSLATION OF DEFINITION GRAPHS INTO DESCRIPTIONS 
OF THE RUN-TIME ENGINE 

The Shark 3D node tree offers the possibility of defining 
templates which can be used anywhere in the tree. Each usage 
of a template is “inlined” during translation of the tree thus 
leading to an outcome equivalent to a repeated insertion by the 
user of all nodes inside the template. Therefore, each node in the 
tree may be available multiple times, however each time the 
context may differ depending on where the template is used. 
This results in a 1:n relationship that has to be managed. 

With this growing number of nodes, especially those used in 
(often nested) templates, it can be concluded that the translation 
time will be longer when done brute force. In order to shorten 
the duration of compiling the tree into a runtime description, 
sub-trees resulting in identical outcome are translated for once 
and reused. Nevertheless, since the outcome also depends on the 
context in which the node resides (in the sense that templates can 
be parameterized and there may be implicit references from 
nodes to direct or indirect logical ancestors in the tree), it can be 
noted that combining the 1:n relationship caused by multiple 
usage of a template is a complex task.  

Nodes may also be instantiated at runtime, for example by 
using the so-called producer node, where the whole subtree 
defined underneath it is instantiated upon sending a produce 
message to the runtime representation of the given node. This 
adds a possible 1:m relationship for each of the above mentioned 
1:n relationships. For editing and inspection purposes, the editor 
logic has to track all runtime instantiations of a node. This yields  
a two-step process of translating the node tree into run-time 
instances of engine components, as shown in Figure 1. 

 
 

Figure 1. Steps for translating definition graphs into runtime instances. 

A. Translation of the tree into a runtime description 
The translation step includes the following operations: 

 Resolving templates, which may be nested. This 
means that during tree traversal, the templates are 
“inlined” when they are used and the parameters are 
resolved. 

 Resolving implicit references of a child to a direct 
and indirect logical ancestor. 

 A parent node collecting information from direct 
children. An example is a node responsible for 
instantiating a renderer instance demanding a 
reference to all viewports defined as child nodes. 

 Creating the outcome descriptions of individual 
nodes or group of nodes based on this information. 

Towards additional optimization, it is upon primary 
compilation of the whole tree that only incremental changes are 
likely to be made.  This constitutes a rather challenging task in 
view of the fact that all the relations between the nodes (parent 
to child, child to parent, etc.) have to be taken into account when 
recompiling only parts of the tree. 

B. Loading and instantiating the runtime description in the 
runtime environment 
The run-time instantiation process involves the following 

operations: 

 Loading dynamic libraries containing the code for 
different components. 

 Instantiating and initializing of objects based on 
outcome descriptions. For each node in the tree 
normally a number of runtime objects is created. 
The initialization parameters are derived from node 
attributes defined in the editor and passed to the 
configuration files. 

 Resolving references to other objects defined by 
name in the outcome into efficient C/C++ pointers 
for direct access. 

 Instantiating engine components. 

This part of the run-time engine is implemented mainly in 
C++. Changes made in the editor are updated in the runtime by 
reloading the relevant configurations and resources. 

V. RESOURCE SHARING USING SESSIONS AND SESSION SLOTS 

A. Concept 
As already mentioned above, a naive approach of enabling 

the Shark 3D software for cloud gaming would have been to 
package the software into a VM or a container (e.g. Docker 



image) and to instantiate one image for each session. A session 
is defined in this case as a logical representation of the group of 
users who are involved in the same virtual environment. 
Normally, each running instance would only accommodate one 
session due to the fact that games were previously developed and 
ported to cloud servers as single-session applications. An 
instance started upon a user's request, simulates the game, 
renders the resulting 3D image and sends the rendered output as 
a video stream to be displayed on the user's end device. The 
user's input is sent from the client's device to the game instance 
to provide a feedback channel. 

This approach is far from being optimal with respect to the 
use of the underlying hardware resources: If multiple users are 
running the same application, chances are high that they at least 
partly access the same data, so sharing this data between users 
would optimize the overall memory footprint. There are also 
situations where computation results can be shared amongst 
multiple users, for example physics simulations in a multi-player 
game. 

The solution for this problem resides in sharing a single 
running engine instance amongst several users and handling the 
separation of different users inside the engine rather than using 
the environment like the separate VMs. The media engine 
maintains better knowledge about resource usage and how to 
optimize resource sharing compared to the VM manager. The 
game engine is also cognizant about which users are using which 
3D states and therefore which models and other assets are 
required. In turn, this can influence the distribution of users over 
the running instances. 

B. Introducing Session Slots 
To this end, Shark 3D as a service oriented interactive media 

engine allows one running instance of a service to handle 
multiple independent sessions to be used by different groups of 
users. 

The maximum number of possible sessions that can be run 
in one engine instance is limited by the amount of (virtualized) 
resources allocated to the engine. This introduces the concept of 
session slots, which explains the idea that each session started in 
the running engine occupies one of the available slots, which is 
then released when the session has been terminated. When all 
available slots are occupied, no further sessions can be started 
until another slot is released. Besides depending largely on the 
specific application, the number of available session slots is 
volatile in a sense that it relies on the resources used by the 
running sessions. It cannot therefore be predefined but must be 
reported to the cloud management software on a regular basis. 

On the other hand, this indicates that the application setup 
defines which components must be instantiated separately for 
each user. This can be implemented by using different nodes in 
the tree. This guarantees flexibility that for each application, it 
can be determined which parts are to be instantiated per user and 
which parts are to be shared.  

The component-based architecture of Shark 3D engine 
described in section IV has been modified to accommodate the 
creation of multiple-session services. Accordingly, it can be 
used by the developer to define factories for instantiating 
session-specific node graphs, which access and use shared data 

(e.g. assets). Such shared data can then be used by independent 
3D states that define the virtual worlds of the services. 

C. Implementation 
Resources possibly shared between different sessions of the 

same application can be divided into several categories as 
follows: 

 On-disk resources: these include the program files 
and assets. Shark 3D offers a number of object 
types to store different kinds of assets such as 3D 
models, textures and sounds. 

 GPU resources: such as vertex buffers which 
contain the vertices of the models and shaders. 

 CPU resources: excessive calculations especially 
for simulating physics need to be performed by the 
CPU. Additional computation power is also 
consumed to run the application logic. 

In Shark 3D, the management components for these 
resources are provided as nodes so that the resources can be 
shared by all the 3D states which are created as children of these 
nodes. 

Furthermore, it is possible to split multi-user services into 
two components: the world simulation shared amongst all users 
of the same session and rendering services which are user 
specific. 

D. Sample Node Setup for Network interconnection 
As mentioned earlier, Shark 3D provides the possibility to 

create a factory for session slots necessary to allow resource 
sharing. In the editor, these factories, known as “producers”, can 
be used to define which functional components (e.g. unique 3D 
state) must be created for each session. This mostly relates to 
relatively lightweight C++ objects in contrast to shared data such 
as textures, sounds or other assets, which can be created and 
loaded only once for use by the different sessions. 

If both the world simulation and rendering services are 
running as one service on the same machine, then only one state 
would be sufficient for a session. Otherwise for each rendering 
service performed on another machine, a new 3D state needs to 
be created and synchronized with that of the server. A new view 
must be created for each client once connected to a state. Figure 
2 shows a graph example designed in the Shark 3D editor to 
define session slots using state and network nodes. 

VI. USE CASES 
In order to set examples of session-based applications that 

can be implemented via Shark 3D, the following use cases are 
explored: 

 Single and multi-user dashboards. 

 Thin client single and multi-player games. 

A. Single and multi-user dashboards 
A dashboard is an interactive 3D environment combining a 

number of different services dynamically, based on the users’ 
requests. Therefore, it allows the user to move around and 
choose one of the services offered such as video streaming of 



real time data from various sources or chatting. The video 
streams are rendered on textures within the 3D world, which 
could be the same or different for each user even within the same 
session in case of the multi-user dashboard. To implement this, 
each user must have a unique 3D state and a view, where the 3D 
states of all the users joining the same session are synchronized 
via Shark 3D networking protocol. 

B. Thin client single and multi-player games 
This is a single or multi-player game where the rendering of 

the 3D scenes may be done on a separate server instance 
deployed on the network from where it will be sent as a video 
stream to the end user's device connected to the server. The end 
users only launch a viewer application (referred to as thin client), 
which is responsible for decompressing the video stream, 
displaying it, as well as capturing the user's input and passing it 
to the server. 

VII. TYPICAL SETUPS 
These use cases can be set up in different ways according to 

both the hardware requirements of the services to be deployed 
on the network and the users’ locations. Examples of the former 
are represented in the world simulation that requires high CPU 
power and also in the rendering services which require access to 
the GPU. Such requirements put limitations on where the service 
instances should be deployed and whether or not they can run on 
the same machine. The users’ locations on the other hand, 
determine where the rendering instances need to be deployed as 
these should be as close to the users as possible. The following 
reflects the possible scenarios whether or not the services are 
split for each of the use cases of the dashboard and the game. 

A. World simulation and rendering running on the same 
machine 
1) Single-user dashboard / game 
In this case, an instance of Shark 3D engine is instantiated, 

offering a number of session slots where each slot is equivalent 
to a new dashboard or game session comprised of a 3D state and 
a view. The rendered output is then streamed to the thin client 
running on the end user’s device. 

2) Multi-user dashboard 
A 3D state and a view are required for each user, hence is the 

consumption of one session slot per player to allow users to have 
different output streams as explained earlier. For each group of 
users sharing the same session, the 3D states must be 
synchronized via Shark 3D networking protocol. 

3) Multi-player game 
As for this use case, only one 3D state is required per game 

session to which all players of the same session are connected. 
A new view is created for each player. 

B. World simulation and rendering services running on 
different machines 
1) Single-user dashboard / game 
Considering a single-user dashboard or game where a new 

slot is accorded to each user and no synchronization between 
states is required, assigning a separate instance for a server and  

 
 

Figure 2. State and network nodes. 

another for a client consumes two session slots instead of one. 
Hence, the setup mentioned in section VII.A.1) is more efficient. 

2) Multi-user dashboard / game 
      Similar to the multi-user dashboard requirements, once the 
rendering services are running on different machines, a new 3D 
state will be required for each user in the multi-player game. 
Therefore, it can be safely admitted that the same setup is 
applicable to both, the dashboard and the game. 
 
      In this scenario, a session slot of a server instance 
containing the decisive 3D state is requested per session. 
Additionally a session slot of a client instance containing a state 
replication and a view are also created (consuming one session 
slot) for each of the players within the session. All of the clients’ 
states should be synchronized with that of the server using 
Shark 3D networking protocol. 
 

3) Multi-user dashboard / game without centralized world 
simulation 

The last scenario is a combination of the previous two 
categories where the rendering services are instantiated on 
different machines depending on the users’ distribution, while 
the world simulation is not separated from the rendering 
services. In this case, one of the 3D states created for one of the 
users will be acting as a client as well as a server by opening a 
listening port for the rest of the clients who would like to join 
the same session to connect to. The benefit of this approach is 
that it uses less number of session slots against the previous 
scenario. It also reduces the number of states that need to be 
synchronized with each other. 

VIII. RESULTS 
     To test improvements achieved by our approach, a few 
experiments were conducted. The single-user game scenario 
was employed for testing, being the one, in which normally 
separate application instances are launched, e.g. using separate 



VMs. This accounts for an ideal scenario that deems resource-
sharing as considerably beneficial. The 3D world used to make 
the measurements is the one depicted in Figure 3. The setup was 
as follows: One PC acting as server, instantiating a state and a 
view for each incoming client.  

  

Figure 3. The 3D world used for the measurements. 

     There was an additional management service written in 
Python which executed the logic normally handled by a portal 
application, i.e. processing incoming requests for new services 
from the clients and distributing them over the servers by 
returning the respective IP. At the level of our experiments, this 
service routed all client requests to the server where the 
measurements were performed.  

Two series of experiments were carried out: In the first, for 
each client, a separate instance of the Shark 3D engine was 
started to measure the base line; in the second the optimization 
was used and each client was assigned his own private session 
but within a common instance of Shark 3D. Both graphics 
memory and main memory consumption were measured for one 
to eight clients connected to the server. The results are shown in 
Figure 4. As the memory of the graphics card used was about 
4000 MB, it was able to handle up to five individual instances 
of the Shark 3D engine. It is noticeable from the graph that for 
the fifth instance, the limit of the GPU memory was being 
approached. Therefore, the consumption of memory for this 
specific instance was less than the previous ones, with respect to 
GPU memory but higher in terms of that of the CPU, resulting 
in the same total amount of memory used. Launching a sixth 
instance of the application simply failed. As for the shared 
instance, it was able to handle at least eight sessions, with 
relatively much smaller increases in both CPU and GPU 
memory usage.  

IX. CONCLUSION 
Moving existing interactive media engines to the cloud 

requires deep architectural adjustments. Key to building 
efficient software is sharing the underlying hardware resources. 
To achieve this goal, Shark 3D was adapted to accept multiple 
independent sessions running in parallel, separating different 
users and sessions inside the engine. This allows sharing the 
fundamental resources like memory and CPU power in an 
efficient manner. The tree based editing in Shark 3D enables 
software developers to edit this on a fine grained level, allowing 
adaptation to different possible architectural setups depending 

on the kind of software (multi user, single user, shared state, etc.) 
being developed.  

Further challenges not covered in this work target the 
optimal distribution of sessions amongst the running instances 
since the more resources (e.g. CPU and GPU memory) can be 
shared, the more sessions can run on a single instance. On the 
other hand, assigning a session to a running instance also has 
impact on the network round trip time depending on the specific 
location of the running instance. Finding solutions to these 
issues and optimizing them is the goal of the FP7 funded project 
FUSION, where Spinor is also contributing as an industry 
partner. The implementations mentioned before are also used in 
that project as samples and test cases. 
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Figure 4. Comparison of memory usage between individual application 
instances and shared instance offering multiple session slots.  
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