Quantitative Compression Optical Coherence
Elastography as an Inverse Elasticity Problem

Li Dong, Philip Wijesinghe, James T. Dantuono, David D. Sampson,
Peter R.T. Munro, Brendan F. Kennedy, and Assad A. Oberai ¥

March 9, 2016

Abstract

Quantitative elasticity imaging seeks to retrieve spatial maps of
elastic moduli of tissue. Unlike strain, which is commonly imaged
in compression elastography, elastic moduli are intrinsic properties of
tissue and so this approach reconstructs images that are largely op-
erator and system independent, enabling objective, longitudinal and
multi-site diagnoses. Recently, novel quantitative elasticity imaging
approaches to compression elastography have been developed. These
methods use a calibration layer with known mechanical properties to
sense the stress at the tissue surface, which combined with strain, is
used to estimate the tissue’s elastic moduli by assuming homogeneity
in the stress field. However, this assumption is violated in mechani-
cally heterogeneous samples. We present a more general approach to
quantitative elasticity imaging that overcomes this limitation through
an efficient iterative solution of the inverse elasticity problem using
adjoint elasticity equations. We present solutions for linear elastic,
isotropic and incompressible solids; however, this method can be em-
ployed for more complex mechanical models. We retrieve the spatial
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distribution of shear modulus for a tissue simulating phantom and a
tissue sample. This is the first time, to our knowledge, that the iter-
ative solution of the inverse elasticity problem has been implemented
on experimentally acquired compression optical coherence tomography
data.

1 Introduction

It has been well established that the mechanical properties of soft tissues are
inextricably linked to the form and function of disease pathologies [1-4]. For
instance, fibrosis in liver has been observed to increase its stiffness through
increased production and decreased degradation of extracellular matrix con-
stituents [5]. During metastasis, invasive cancer cells have been reported to
reduce the stiffness of the surrounding extracellular matrix, aiding in their
own migration through healthy tissues [6,7], whilst developed tumors, such
as ductal carcinoma and fibroadenoma of the breast, have been characterized
to be up to 14 times stiffer than surrounding fatty tissue [8,9].

Knowledge of the mechanical properties can provide fundamental in-
sight into the state of disease [2,6,10]; indeed, the biomechanics approach
to identifying and characterizing disease has been emerging in the recent
literature [3]. Particularly, a family of imaging techniques, termed elast-
ography, have been developed to spatially map the mechanical properties
of tissue into images, termed elastograms, on different length scales [11-13].
Ultrasound (US) and magnetic resonance (MR) elastography have been de-
veloped for whole organ imaging, with resolutions of 100 pm and 1 mm [14],
respectively, reaching commercial success by demonstrating significant im-
provement in disease diagnosis within a clinically relevant environment, pri-
marily in characterizing breast cancer [15,16] and liver fibrosis [17]. Over
the past 15 years, optical coherence elastography (OCE), based on optical
coherence tomography (OCT), has been following the precedent set by US
and MR; however, on a finer length scale of tissue, with resolution down
to 10 pm [18,19]. OCE has demonstrated potential in a wide range of
applications, including breast cancer [20,21], ophthalmology [22, 23], and
cardiology [24-26].

US, MR and optical elastography, at their core, involve the measurement
of local displacement in tissue, which is elicited by some form of mechanical
stimulation. From the displacement, it is possible to obtain some measure
parameterizing tissue’s mechanical behavior, such as local strain [27, 28],
phase velocity [29,30], creep [31,32] or resonant vibration amplitude [24,33].
Such measurements, however, depend intrinsically upon the experimental
method and tissue geometry, and do not usually represent a one-to-one map-
ping of the tissue’s mechanical properties. Quantitative elastography uses
some form of mathematical inversion, which we will describe in this paper,
to retrieve quantitative elasticity images, i.e., quantitative maps of a sam-



ple’s intrinsic mechanical properties, which should be largely independent
from the tissue loading, geometry and boundary conditions .

This process of mathematical inversion entails solving an inverse prob-
lem. The solution of such inverse problems is the subject of a large body
of work, which we briefly introduce here before considering it in more detail
in Section 2.1. There are broadly two principal ways in which the inverse
elasticity problem can be solved: direct and iterative. The direct approach
can be employed using so-called first-order approximations such as simpli-
fied models of tissue, limiting the accuracy of recovered elastic moduli [18].
When such first-order approximations are not made, direct approachs per-
form poorly when the measured data is incomplete or noisy [34]. Iterative
approaches have been studied extensively in US and MR elastography [34];
however, few have implemented them for OCE [35, 36]. Iterative methods
allow for the inverse elasticity problem to be solved within a more general
framework, requiring fewer assumptions, at the cost of higher computational
complexity.

In this paper, we apply an iterative approach, using an adjoint method [37]
to solve the inverse elasticity problem in compression OCE, reconstructing
the shear modulus in a tissue-simulating phantom and airway tissue. Fur-
thermore, the retrieved spatial distributions of shear modulus are made ab-
solute by the use of a calibration layer of known stiffness. This is the first
time that an iterative solution of the inverse elasticity problem has been
applied in OCE using experimental, rather than synthetic [35,36] data. The
iterative approach makes fewer assumptions about the nature of mechanical
deformation than direct approaches, which will likely lead to an improve-
ment in the accuracy of reconstructed elastic moduli, and may enable more
accurate longitudinal, multi-site and inter-sample comparison.

2 Background

2.1 Quantitative elasticity imaging

Quantitative elasticity imaging refers to the measurement, or estimation, of
local intrinsic mechanical properties of a sample. The extracted properties
must be premised on a mathematical model assumed to describe the un-
derlying mechanical interactions under study. The most general model of
tissue mechanics would include, for example, viscoelasticity, poroelasticity,
anisotropy, and a nonlinear relationship between stress and strain [38, 39].
It is usually necessary, and indeed reasonable, to neglect several, application
specific properties in order to quantify one, or perhaps two, of the most sig-
nificant tissue mechanical properties, the most common of which being the
elastic moduli.

Quantitative elasticity imaging should disentangle, as far as is possible,
the elastic properties of the sample from its aggregate mechanical behavior,



which is obfuscated by the loading method, sample geometry and boundary
conditions. If performed correctly, it means that quantitative elasticity im-
ages from different samples , acquired at different sites using different imag-
ing systems, should be able to be compared quantitatively. Such techniques
allow for the development of objective methods of assessing or diagnosing
disease. They also support longitudinal studies by allowing measurements,
taken over the course of a study, to be compared. Finally, quantitative elas-
ticity imaging also reduces, or eliminates, artifacts introduced by instrument
operators.

There is a substantial body of prior work on the subject of quantitative
elasticity imaging, spanning imaging modalities such as US, MR and op-
tical. Within each modality, a variety of physical models are employed to
link applied load and measured displacement to elasticity parameters. Fur-
thermore, within a particular modality and mechanical model, a variety of
methods exist for solving the inverse elasticity problem, i.e., the retrieval of
elasticity parameters from the measured displacement. Good reviews of this
subject were published recently by Barbone and Oberai [13] and Doyley [34],
to which we direct the reader for a comprehensive treatment of this subject.
We summarise here the state of the art in order to provide the context for
the current work.

2.2 Assumed model of tissue mechanical properties

Quantitative elasticity imaging methods are differentiated by the particular
model of tissue mechanics upon which they are based. Assuming, as we
do in this case, incompressible, linear elastic, isotropic tissue, one starts
with the most general model, composed of the time varying equation of
equilibrium and constitutive relation. This assumption means that instead
of having potentially 21 independent elasticity parameters, we are left with
only one [34], with Young’s modulus, E, being related to shear modulus, p,
as ' = 3u. The principal models of tissue mechanics then differ according
to how the equation of equilibrium’s temporal dependence is treated. The
three prevailing approaches are: quasi-static (as employed in this paper),
harmonic and transient, in accordance with the principal ways in which all
partial differential equations with a temporal dependence can be analysed.
Equations (2)-(4), upon which our method is based, can be derived from the
aforementioned general equations by assuming a quasi-static loading.

2.3 First-order solutions to the inverse elasticity problem

One approach to performing quantitative elasticity imaging is to imple-
ment simplified mechanical models which are readily invertible, either al-
gebraically or numerically. These methods are often termed as first-order
approximations [34] as they allow for measured displacements to be linearly



related to elastic moduli. These models simplify the estimation of elas-
tic moduli but with the penalty of using a potentially unrealistic model,
which limits the accuracy of estimated elastic moduli in mechanically het-
erogeneous tissues possessing complex boundary conditions. A first-order
approach to quasi-static elastography has been employed by researchers us-
ing US [40], MR [41] and OCT [42]. Under this approximation, the stress
throughout a sample is assumed to be approximately constant. The strain
throughout the sample, estimated from the measured displacement field,
may, thus, be used directly in combination with Hooke’s law to obtain
Young’s modulus. This approach works well in small tissue samples pos-
sessing only weak variations in Young’s modulus [43], yet will likely break
down in general, heterogeneous cases.

First-order approximations have also been applied to harmonic elast-
ography in US [44], MR [45] and OCT [46]. One way in which a first-order
modulus retrieval can be performed is to note that plane-wavefront shear
waves propagate in homogeneous media with a velocity given by [1]:

ey = ﬂ (1)

where p is the shear modulus and p is the mass density. Thus, under the as-
sumption of plane shear propagation, which applies in a homogeneous region,
shear modulus can be accurately extracted from measured values of shear
wave velocity. This approach clearly breaks down in the presence of me-
chanical inhomogeneities and requires a priori knowledge of tissue density.
Whilst not all harmonic techniques are based on this shear wave relation-
ship, in general, they all rely on some approximation based on homogeneous
wave propagation or resonance, which limits their generality.

Transient first-order models have also been applied in US [47] and MR
[48] elastography. These methods were introduced to overcome the limited
depth penetration of shear waves. Transient elastography uses an ultrasound
transducer to remotely generate shear waves within tissue. This approach
to quantitative elasticity imaging is considered a first-order approximation
as it also uses (1) to relate shear wave velocity to shear modulus, and in
so doing assumes that the shear wave travels in a reflection-free medium.
Although schemes have been proposed to overcome this limitation [34], using
such approaches for quantitative elasticity imaging in heterogeneous tissue
still appears challenging.

First-order methods have also been applied in the field of optical elast-
ography, including in optical coherence elastography (OCE). Such a method
has recently been applied in quasi-static OCE by assuming that stress re-
mains constant throughout a sample [42]. It has been used in a transient
mode, where surface acoustic waves are generated using an air-puff [49] and
a pulsed laser [50,51]. The group velocity of the resulting surface waves was
measured using OCT [49,51]. In another approach, low-coherence interfer-



ometry was used to measure the surface wave dispersion relationship [50].
In the former two cases [49,51], Young’s modulus is retrieved from the sur-
face wave group velocity, assuming that the surface wave travels on the
boundary of an infinite half-space. In the latter case [50], a depth-resolved
estimate of Young’s modulus is obtained by analysing the dispersion rela-
tionship of the surface wave’s spectral components, by exploiting the fact
that lower frequency surface waves penetrate deeper into tissue. First-order
harmonic approaches which make use of surface wave phase velocity to
make depth-dependent estimates of Young’s modulus have also been demon-
strated [29,52]. The analytic relationship expressed in (1) has also been
exploited within the context of harmonic optical coherence elastography to
estimate Young’s modulus within tissue from the phase velocity of shear
waves [53]. Finally, we note that magnetomotively actuated optical coher-
ence elastography can also be considered a harmonic first-order quantitative
technique [54], [55]. In one example [55], tissue samples were assumed to
be in the form of cylinders fixed to a base but otherwise free. An analytic
model was then used to predict resonant modes of longitudinal vibration of
the cylinders based upon the physical (including Young’s modulus) proper-
ties of the sample. This allows a sample’s Young’s modulus to be extracted
so long as there is sufficient information about the sample’s length, radius,
density and Poisson’s ratio.

First-order methods have limited generality as a result of the approx-
imations required to obtain a readily invertible relationship between mea-
sured displacement and retrieved elasticity modulus. For example, common
amongst the previously discussed approaches, are approximations such as
assuming mechanical homogeneity or constant stress. A different approach
to solving the inverse elasticity problem is required if these, and other, as-
sumptions are not to be made. Beyond first-order approaches, and for each
temporal flavor of elastography as stated, there are two principal ways of
solving the inverse elasticity problem: direct and iterative.

2.4 Direct, general solutions of the inverse elasticity problem

Direct methods of solving the elasticity inverse problem begin with a math-
ematical statement of the direct elasticity problem and transform this into
a problem that may be solved directly for the tissue mechanical properties.
One example of a direct approach using quasi-static elastography derives a
set of coupled partial differential equations, which may be solved to yield
the shear modulus and hydrostatic pressure within tissue [56]. Although di-
rect approaches have been proposed for harmonic and transient approaches
to elastography, we will focus on quasi-static methods since this is the fo-
cus of this paper, and the limitations of direct methods are common to all
methods.

Although considerable work has been done on the use of direct inversion



methods [56-59], they are not dominant, in general as a result of some
weaknesses. The primary weakness is that these methods require accurate
measurements of all components of the displacement field within the entire
imaging plane. For example, in US elastography, accurate displacement
measurements in any direction perpendicular to the direction of propagation
of sound, are unfeasible. This limits the application of these methods.

2.5 [Iterative, general solutions of the elasticity inverse prob-
lem

An alternative to direct solution of the inverse elasticity problem is itera-
tive solution. This approach allows solutions to be obtained which rely on,
potentially, very few assumptions and approximations. Prior information,
such as the expected range of values of shear modulus, can be integrated
into the solution method. There is a considerable body of work on itera-
tive solution methods to inverse problems, which provides tools that can be
applied to the particular application of quantitative elasticity imaging [60].
Each iterative solution method is based upon a robust and realistic forward
model, i.e., one which predicts displacements based upon given mechanical
properties and applied load. The solution method iterates through can-
didate distributions of mechanical properties, ceasing when a satisfactory
match has been reached between predicted and measured displacements as
determined by an objective function such as (5), below. The main way in
which iterative methods differ from one another is by how the estimate for
mechanical properties is refined at each iteration.

Finally, we note that iterative solutions to the OCE inverse problem
have previously been proposed [35,36]. In the first paper [36] to appear,
the method of Kallel and Bertrand [61], the approximated Hessian iterative
method, was employed. The paper presents results employing only synthetic
data. The second paper to appear [35] differs significantly from the first,
most likely due to the high computational overhead of requiring to calculate
the Jacobian at each iteration. In this second work, the sample is segmented
into a small number of (say up to four) regions with each region having a
constant Young’s modulus. The second difference is that the inverse problem
is solved using a genetic algorithm, which would be a very computationally
demanding approach for general problems such as that considered in this
paper.

A classical approach to iteratively finding a solution which minimizes
a functional such as (5) is to calculate the gradient vector and the Hes-
sian matrix of (5) with respect to the spatially resolved elastic moduli, the
unknowns of the inverse problem. Naive approaches to calculating these
quantities result in an inversion method that is computationally demand-
ing. More advanced implementations [36,61,62] approximate the Hessian
and evaluate the gradient in a significantly more efficient manner, which



nonetheless increases in cost with the number of unknowns possessed by
the inverse problem. An alternative method, which calculates the Jaco-
bian of (5) by the solution of two direct problems, is known as the adjoint
method [37], which results in a significant reduction in computational com-
plexity, thus, making three-dimensional inverse problems tractable. It is this
method which is employed in this paper.

3 Methods

3.1 Computational method

Optical coherence elastography, as considered here, yields spatially resolved
measurements of tissue displacement which result from the quasi-static com-
pression loading of tissue. Displacement fields are obtained using phase-
sensitive OCT [72] and are typically measured on a plane or within a volume,
which we denote 2 in both cases. We express the measured displacement,
mathematically, at location € Q as u(x). We note, however, that in gen-
eral, only displacement components parallel to the OCT system’s optical
axis are measured, meaning that only one component of w(x), Uz, (x), is
actually measured.

The time scale of the applied deformation is chosen such that the tissue
inertia does not play a role in its mechanical response. As a result, the
equations of equilibrium reduce to

V-o=0, in £, (2)

where o is the Cauchy stress tensor and () represents the domain of the
material. We model the material as an incompressible, isotropic solid, and
assume a linear relation between stress and strain, which is reasonable since
the applied strains are small. Under these assumptions, the stress-strain
relation is given by

o = —pl + 2pe, (3)

where p is the pressure, I is the identity tensor, € = %(Vu + VauT) is the
strain tensor, u is the displacement vector, and u is the shear modulus. The
constraint of incompressibility implies that

trace(e) = 0. (4)

The forward elasticity problem may be stated as: given the shear modulus
distribution in the domain 2, and displacement/traction boundary condi-
tions on the boundary 02, determine the displacement field and the pressure
field, such that (2) and (4) are satisfied.

In the corresponding inverse problem, the displacement is known (mea-
sured), and the elastic parameter is sought. In particular, the inverse prob-
lem may be stated as: given the displacement field in €2, and displace-
ment/traction boundary conditions on the boundary 02, determine the



shear modulus such that (2) and (4) are satisfied. Note that the pressure
field is neither measured, nor is it explicitly sought. The pressure can be
determined rather simply from (3) once the shear modulus is known.

When displacement data is available on a plane (as opposed to in a
volume), a modeling choice has to be made. When the sample is relatively
free to strain in the out-of-plane direction, it is conjectured that the stress
components in this direction are small, and a state of plane-stress is assumed.
On the other hand, when the sample is confined in the out-of-plane direction
(due to boundary conditions, for example), it is conjectured that the strain
in this direction is small, and a state of plane-strain is assumed. In this
paper, due to boundary conditions at the top and bottom of the sample, the
plane-strain assumption is made.

The solution to the inverse elasticity problem in three spatial dimensions,
and in two dimensions in the plane strain configuration, is non-unique. In
particular, there is an infinite set of solutions for y that are consistent with
the measured displacement field and equations (2) and (4). Prescribing
traction data on the boundaries is equivalent to prescribing the shear mod-
ulus/pressure, and therefore, the existence of traction boundary conditions
tends to reduce the solution set size of the inverse problem. For a detailed
discussion of these topics, the reader is referred to [63-65].

The inverse problem is posed and solved as a constrained minimization
problem. In particular, we seek the shear modulus distribution that mini-
mizes the functional

1
= [ |T(u—a)*de + /«/V2+2d, 5
T 2/Q| (u )|“dx aQ |V c? dx (5)

where the predicted displacement field, u, is constrained to satisfy (2) and
(4), and the prescribed boundary conditions. Further, T' is a tensor whose
values are used to weight displacement components according to their known
or expected accuracy, « is a regularization parameter. c is a numerical pa-
rameter (¢ < |Vpu|) that ensures the regularization term, which is a smoothed
version of a total variation (TV) diminishing regularization [66], is a smooth
function of . In the examples considered in this manuscript, ¢ = 0.01.
Further, it has been verified that in the regions where p varies substantially,
¢ << |V, and that the smoothed version of the TV term closely approx-
imates the TV term.  The first integral in (5) measures the mismatch
between measured and predicted displacement, and is referred to as the
displacement mismatch term. The second term is the regularization term
added to account for the ill-posed nature of the inverse problem, i.e., small
noise in the measured displacements leads to large, unphysical variations in
the shear modulus distribution. These oscillations are suppressed by a large
value of the regularization parameter which ensures smaller total variation
in the recovered modulus distribution. It is worth noting that it does so at
the expense of increasing the displacement matching term.
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Figure 1: Flow diagram of the inverse problem solver (shaded blue) and
how it interacts with the experimental system (shaded in orange). Compu-
tation concludes when the discrepancy between the predicted and measured
displacement fields falls below a prescribed tolerance (denoted tol.).

The problem of minimizing 7 reduces to a discrete optimization problem
with nonlinear constraints once all the field variables are represented using
finite element basis functions, and the constraint equations are discretized
using the finite element method. The optimization parameters are the nodal
values of the shear modulus field. This problem is solved using a quasi-
Newton method, as depicted in Fig. 1, that builds the Hessian information
by repeatedly evaluating the gradient of m with respect to the optimization
parameters [67]. A straightforward evaluation of this gradient requires as
many solves of the forward elasticity problem as the number of parameters,
which can be very large (O(10%) for our problems). A much more efficient
approach is to derive and solve the adjoint equations for the adjoint field, and
use the adjoint and the predicted displacement fields to evaluate the gradient
vector [37,68]. Within this approach, the gradient of 7w with respect to u
can be evaluated by solving a single forward and a single adjoint problem
(which is of the same complexity as the forward problem) independent of the
number of parameters used to represent the shear modulus. Considering that
this number is O(10%), this is a significant, and necessary, computational
saving.
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3.2 Experimental setup

A fiber-based Fourier-domain OCT system was employed to perform OCE.
The imaging system is described in detail in [21], and briefly here. The
system was set up in a common-path configuration, such that the reference
signal is provided by the reflection from the interface of a 2-mm glass win-
dow and a sample situated upon it. A superluminescent diode source with
a central wavelength of 835 nm and a bandwidth of 50 nm was used to illu-
minate the sample with ~ 7.5 mW of power. The sensitivity was measured
as 102 dB for an exposure time of 36 ps, and an exposure time of 2-3 ps
was used in general. The system provides axial and lateral resolutions of
6.1 and 11 pm, respectively, assuming a sample refractive index of 1.4 [69].
This refractive index was also used, throughout this paper, to scale the ax-
ial coordinates of the measured OCT intensities and displacements to closer
match their true locations.

Compression OCE was performed by placing a sample on top of a 600-
nm thick compliant poly-dimethylsiloxane (PDMS) silicone layer of known
stiffness, which was used to constrain the solution set of the inverse prob-
lem, hereby referred to as the calibration layer. Fabrication of the layer
is described in detail in [69]. The sample-silicone assembly was situated
between a rigid plate and a glass window coupled to a piezoelectric ring ac-
tuator [27], such that the OCT beam would pass though the window, then
the silicone, and finally into the sample. To ensure even contact, the rigid
plate was used to apply 5-10% preload strain. Following the preload, the
piezoelectric actuator was used to apply step-wise micro-scale compression
to the sample-silicone assembly, and two-dimensional images were captured
sequentially, in the uncompressed and compressed (relative to the preload)
states. The actuator stroke was set between 1 and 2 pum, to ensure a high
displacement and strain sensitivity [71]. The maximum attainable displace-
ment and strain sensitivity was measured previously as 0.34 nm and 2.6 pe
(pe is microstrain, strain x107%), respectively [21]. Actuation frequency
was set below 25 Hz, which was experimentally verified to avoid any de-
tectable wave propagation. We employ phase-sensitive OCE, described in
detail in [72], in which the axial component of the displacement field, re-
sulting from the micro-scale compression, is obtained from the difference
between the angles of the polar-form complex OCT scans, corresponding to
the uncompressed and compressed tissue states. Using this approach, we
can measure axial displacement within the range +2.2 nm [21].

4 Results

In this section, we demonstrate the solution of the inverse elasticity prob-
lem for two samples: a tissue-simulating silicone phantom and a transverse
section of an equine bronchus. The silicone phantom incorporated a 830-pm
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Figure 2: Tissue-simulating silicone phantom. (a) OCT image in dB, (b)
local displacement from micro-scale actuation, (c) axial strain, where me
is milli-strain, and (d) shear modulus image, reconstructed by solving the
elasticity inverse problem. The scale bar represents 500 pm. Red dashed
lines represent the layer-tissue boundary.

wide, rectangular, stiff inclusion embedded approximately 300 pm below the
surface of a softer homogeneous matrix, following the fabrication method de-
scribed in detail in [69]. The inclusion and the matrix were experimentally
characterized using a standard bulk compression test (Instron, Norwood,
MA, USA) to possess a shear modulus of 9.3 and 1.9 kPa, respectively,
for preload applied in the experiment. The calibration layer, described in
Section 3.2, was also characterized to have a shear modulus of 1.9 kPa.
The OCT image of the already preloaded phantom is presented in Fig. 2(a),
in which we can identify the calibration layer (black) and the inclusion em-
bedded in a matrix. The displacement due to the micro-scale compression
provided by the piezoelectric actuator is presented in Fig. 2(b). It is ap-
parent how the feature distorts the otherwise uniform displacement field
gradient: the result of the contrast in stiffness metween it and the matrix.
Fig. 2(c) shows an image of the axial strain, calculated as the gradient of
axial displacement in depth [27], which constitutes a standard elastogram
that would be produced by compression OCE [21]. Although we can identify
the presence of the inclusion in the strain alone, it is evident that its relation
to the stiffness of the material is distorted by the effects of material property
heterogeneities, particularly apparent at the boundaries of the inclusion.
The axial component of the displacement data, Fig. 2(b), was used to in-
fer the spatial distribution of the shear modulus using the method described
in Section 3.2. This was achieved by setting T,,, = 1, and all other com-
ponents of T' to zero. The shear modulus is presented in Fig. 2(d). Due to
the relatively large out-of-plane extent of the phantom and the compression
plate, a state of plane strain was assumed within the imaging plane. The
OCT intensity map was used to determine the extent of the region within
this plane over which the inverse problem was solved. Specifically, points
with lower OCT intensity (and hence larger displacement noise) were dis-
carded. This led to a rectangular domain of 982 by 3,500 microns (axial by
lateral), containing 300 by 350 grid points; only this domain is presented in

12
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Figure 3: (a) Displacement matching term with respect to the regularization
parameter in the inclusion phantom; red star marker shows the selected
optimal regularization parameter used in Fig. 2(d). Shear modulus images
evaluated with regularization parameters labeled by black plus markers are
shown in (b) as under-regularized, and (c) over-regularized. Red dashed
lines represent the layer-tissue boundary.
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Fig. 2. On every boundary edge of this region the measured displacement
was prescribed as a boundary condition along the axial direction. Along
the lateral direction, zero traction was assumed on all edges except the edge
in contact with the compression plate (the top edge), where, due to the
stickiness of the contact, zero lateral displacement was enforced.

The value of the shear modulus in the calibration layer was held fixed at
unity, and the shear modulus at every other point was determined by solving
the inverse problem. This resulted in a problem with 52,150 optimization
parameters. These parameters were constrained to lie in the interval (1,20),
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Figure 4: Transverse section of an equine bronchus. (a) OCT image in dB.
M: mucosa, ASM: airway smooth muscle, and C: cartilage; (b) local displace-
ment from micro-scale actuation; (c¢) axial strain, where me is milli-strain;
and (d) shear modulus image, reconstructed by solving the elasticity inverse
problem. The scale bar represents 500 pm. Red dashed lines represent the
layer-tissue boundary.
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Figure 5: (a) Displacement matching term with respect to the regularization
parameter in tissue; red star marker shows the selected optimal regulariza-
tion parameter used in Fig. 4(d). Shear modulus images evaluated with
regularization parameters labeled by black plus markers are shown in (b) as
under-regularized, and (c) over-regularized. Red dashed lines represent the
layer-tissue boundary.

and a uniform value of unity was used as an initial guess. The quasi-Newton
algorithm used to solve the inverse problem was considered converged when-
ever the maximum number of iterations (6,000) was achieved, or the change

14



in the displacement matching term over the last 5 iterations was below a
certain tolerance. We note that the modulus distribution in Fig. 2(d) is
quantitative, and is obtained by multiplying the reconstructed modulus by
the known value of the shear modulus (1.9 kPa) in the calibration layer. We
can see that by obtaining shear modulus, we can, to a significant extent,
decouple the inclusion feature from strain artifacts. The average measured
shear modulus in the inclusion and the matrix was measured to be 10.6 and
2.2 kPa, respectively, which was within 15% of the expected values. The
upper and lower limits of the colormap in this and all modulus images in
this paper were set equal to the minimum and maximum modulus values,
respectively, within the domain.

A sweep was performed in order to determine the “optimal” value of the
regularization parameter. For every value of the regularization parameter,
an inverse problem was solved and the value of the displacement matching
term was determined. This yielded a single data point on the curve plotted
in Fig. 3(a). In these curves, we observe two asymptotes corresponding to
small and large values of the regularization parameter. The largest value of
the regularization parameter which yielded a displacement matching term
close to the lower asymptote was selected to be the optimal value by using
the L-curve [73]. This value (o« = 0.003) is indicated by the red marker in
Fig. 3, and the corresponding modulus distribution is the one displayed in
Fig. 2(d).

Maps of the reconstructed modulus at small and large values of the
regularization parameter (values marked by the black markers in Fig. 3(a))
are shown in Fig. 3(b) and (c). These clearly demonstrate the smoothing
effecton the modulus distribution of increasing the regularization term.

The OCT image of the transverse section of an equine bronchus is pre-
sented in Fig. 4(a). The lumenal side, i.e., the side facing the center of the
bronchus, faces the top in the OCT image. Three clearly identifiable tissue
types are labeled in Fig. 4(a), namely: the mucosa, airway smooth muscle
and cartilage. The features were classified with the aid of histological sec-
tions, and previously classified OCT images of airway tissue [74]. Similarly
to the phantom results, the displacement due to the micro-scale compression
is presented in Fig. 4(b), and a standard strain elastogram in Fig. 4(c). We
can see that both the mucosa and the airway smooth muscle exhibit higher
compressive strain than the cartilage, consistent with the expected greater
stiffness of the cartilage.

The axial component of the measured displacement data was used to
infer the shear modulus presented in Fig. 4(d). Further, a state of plane
strain was assumed, and the OCT image was used to determine the region
of interest (ROI) for the inverse problem. A domain of size 524 by 4,400
microns (axial by lateral), with 160 by 440 grid points, was considered, and
the same kind of boundary conditions, as for the tissue-phantom case, were
imposed. Again, only this domain is presented in Fig. 4.
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The value of the shear modulus in the calibration layer was fixed at unity,
which resulted in 26,379 optimization parameters, which were constrained
to be in the interval (0.1,100). Their initial value was set to unity, and
the convergence criterion for the algorithm was unchanged from the tissue-
phantom problem. A sweep over the regularization parameter resulted in
the curve plotted in Fig. 5(a). This curve was used to determine the opti-
mal value of the regularization parameter, @« = 0.001. The resulting shear
modulus distribution, after rescaling by the modulus in the calibration layer
(1.9 kPa), is shown in Fig. 4(d). In this figure, we can clearly observe the
cartilage as a very stiff region with a mean shear modulus of around 63 kPa.
The modulus distributions at small and large values of the regularization
parameter are shown in Fig. 5(b) and (¢). Once again, they demonstrate
the smoothing effect of the regularization term. In Fig. 5(b), we observe
highly localized regions (just below the cartilage) where the modulus at-
tains the upper bound (190 kPa). This lack of smoothness is a consequence
of a regularization parameter that is too small for the level of noise in the
measured data.

5 Discussion

In this paper, we have formulated quantitative OCE as an inverse prob-
lem. We have solved this problem as a constrained minimization problem,
wherein the objective function is a measure of the mismatch between the
measured displacement field and a predicted displacement field, which is
constrained to satisfy the equations of equilibrium in conjunction with a
constitutive model. The nodal values of the material parameter(s) (in this
paper, the shear modulus) of the constitutive model are the optimization
parameters. A gradient-based optimization algorithm is used to drive the
displacement matching term to its minima by computing iterative updates
to these parameters. To our knowledge, this work presents the first in-
stance of the application of the iterative solution of the inverse elasticity
problem to quantitative OCE of tissue and tissue-mimicking phantoms. As
discussed below, this approach has several advantages when compared with
other quantitative OCE methods.

Iterative solution of the inverse elasticity problem is consistent with com-
pletely heterogeneous stress states, which are almost always found in any
specimen with heterogeneous material properties. In contrast to this, most
other OCE methods assume that the axial stress component is homogeneous
along the axial direction. The violation of this assumption leads to artifacts
in modulus images generated using these methods. These artifacts are ab-
sent in images constructed using our approach. This can be observed in
the tissue-phantom study results by comparing the strain image in Fig. 2
(which is typically interpreted as the reciprocal of Young’s modulus) to the
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reconstructed shear modulus image in the same figure. The former displays
artifacts at the upper corners of the inclusion that are absent in the latter.

Another advantage of iteratively solving the elasticity inverse problem is
its flexibility. For example, in this paper, we have assumed that the sample
is in a state of plane-strain, because (a) the width of the sample along the
out-of-plane direction is much larger than that of the imaging plane (field
of view), and (b) the compression plate is in contact with most of the top
surface of the sample. Due to these assumptions, the out-of-plane strain
components are expected to be small. On the other hand, in a typical
ultrasound elastography application, such as breast elastography, the tissue
is unconfined and is compressed using the transducer itself. The footprint of
the transducer then only covers a small fraction of the surface of the tissue.
Consequently, there is significant strain in the direction normal to the B-
scan imaging plane, and the situation is closer to that of plane-stress. The
approach presented here allows for both plane-strain and plane-stress (and
other) scenarios by simply modifying the constitutive relation (3) in the
forward problem. The reader is referred to [75] for results obtained under
the plane-stress hypothesis.

Our approach of iteratively solving the inverse elasticity problem also
allows for flexibility in including prior information about measurement noise
and material parameter distributions. For example, in this paper, we have
independent estimates of the shear modulus of the calibration layer, and we
know that its distribution is uniform. We make use of this knowledge to fix
the modulus value in the calibration layer, and to rescale the reconstructed
modulus in order to obtain quantitative modulus images. Also, the lateral
component of displacement is unknown. We account for this by setting all
but the axial component of the tensor T" to zero. We note that in general
this tensor should be set equal to the inverse of the covariance tensor for the
noise in the displacement measurements.

The choice of the regularization term and the regularization parameter is
an area of active research in inverse problems. We have used total variation
(TV) regularization in this study because it penalizes variations in modulus
distribution without smearing out sharp variations [66]. TV is appropriate
for biomedical applications in which tissue types and/or pathologies are
distinguished by sharp boundaries, which is often the case.

The regularization parameter can dramatically alter the reconstructed
modulus results, with larger values leading to smoother distributions with
very little contrast, and smaller values leading to sharp, noise-induced arti-
facts (see Figs. 2-5). An appropriate value of this parameter can be selected
by using the L-curve (as was done in this paper) [73] or the Morozov discrep-
ancy principle [76]. In the discrepancy principle, this parameter is selected
so that the displacement mismatch term is approximately equal to the mag-
nitude of the noise in the measured displacement. Both approaches are
effective in determining an optimal parameter; however, both require mul-
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tiple solutions of the inverse problem, which is a computationally expensive
problem to solve to begin with.

The robustness of the choice for the optimal value of the regularization
parameter was tested by studying the effect of varying this value on the
reconstructions (results not shown here). When the regularization parame-
ter was increased by 50%, the reconstructed contrast in the shear modulus
for the tissue phantom decreased by about 5%; whereas, the contrast in
the equine bronchus specimen reduced by about 20%. When the regular-
ization parameter was decreased by 50%, the shear modulus contrast in the
tissue-phantom increased by 10%, and the contrast in the equine bronchus
specimen increased by about 20%. These results demonstrate that our re-
constructions are robust (to within 20%) to the choice of the regularization
parameter.

While the results presented in this paper validate the proposed approach
and the choices made therein (plane-strain, boundary conditions, etc.), we
believe that there is room for improvement in making these choices and for
extensions of this approach. In particular, our plans for future work are as
follows.

1. Solving the inverse elasticity problem on displacement data measured
in a three-dimensional volume, to generate three-dimensional modulus
images. In addition to the obvious advantage of generating volumetric
modulus images, this would eliminate the plane-strain assumption and
the inaccuracies that come with it. In fact, we have readily captured
three-dimensional volumes of displacement previously [21] for qual-
itative strain imaging; however, the challenge in the reconstruction
of three-dimensional modulus lies in addressing the computational ex-
pense of solving the inverse problem, which will invariably be increased
from more optimization parameters introduced by the additional di-
mension.

2. Measuring lateral displacement components. Including lateral dis-
placement data will make our reconstructions more robust and will
provide data for boundary conditions along the lateral direction. Al-
though phase-sensitive methods, used in this paper, provide access
to only the axial component of displacement, other methods, such
as speckle tracking [77,78], have been used to measure all displace-
ment components. Speckle tracking, natively, has a lower sensitivity
to displacement than phase-sensitive methods: however, both can in
principle be used in tandem, through incremental loading, to provide
high-sensitivity axial, and low-sensitivity lateral displacement mea-
sures. The variance can be readily accounted for by generating a
tensor T', whose components are selected in inverse proportion to the
magnitude of error in displacement measurements [27]. This accounts
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for the spatial variation of this error, as well as the differences in the
error between the axial and lateral displacement components.

3. Applying additional loads which would lead to multiple independent
displacement measurements. The inverse elasticity problem with just
one displacement field is non-unique in three dimensions and in two
dimensions under the plane-strain assumption. The uniqueness and
the robustness of this inverse problem can be improved by measuring
multiple, independent displacement fields [64,65]. One way to gen-
erate an independent field would be to compress the specimen after
rotating the compression plate a little (say 10 %) about an axis that
is perpendicular to the imaging plane.

4. Making incremental displacement measurements about significantly
pre-stressed (about 10-30 % strain) states. These displacement mea-
surements will provide information about the nonlinear elastic re-
sponse of the specimen, and in conjunction with a nonlinear hypere-
lastic constitutive model could be used to create maps of the nonlinear
elastic parameters of tissue [16,75].

5. Estimating the spatial resolution sensitivity of this approach to quan-
titative OCE. This is a challenging endeavor that is complicated by
the fact that the resolution and sensitivity of the modulus image is
determined by the resolution of the optical system, the algorithm used
to estimate displacements, the spectrum of the inverse elasticity oper-
ator, the type of regularization employed in the inverse problem, the
precise value of the regularization parameter, and all sources of noise.

6 Conclusion

We have demonstrated quantitative OCE: a method for performing quan-
titative elasticity imaging using compression OCE. This method is based
upon the iterative solution of an inverse problem with the use of the ad-
joint equations to make the method computationally feasible. We applied
the method to two examples: a tissue-mimicking phantom and an equine
bronchus sample, both of which resulted in predicted distributions of shear
modulus which were within the expected range. Although both exam-
ples were two-dimensional and within the plane-strain approximation, this
method is amenable to solving three-dimensional problems. This method,
is in fact, very general in that different types of prior information, bound-
ary conditions, and tissue mechanical models can be incorporated into it.
We anticipate that this approach to quantitative elasticity imaging will be-
come an important tool in the study of biomechanics and medical imaging
applications.
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