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Abstract
Cloud computing providers have recently begun to offer
high-performance virtualized flash storage and virtualized
network I/O capabilities, which have the potential to increase
application performance. Since users pay for only the re-
sources they use, these new resources have the potential to
lower overall cost. Yet achieving low cost requires choosing
the right mixture of resources, which is only possible if their
performance and scaling behavior is known.

In this paper, we present a systematic measurement of re-
cently introduced virtualized storage and network I/O within
Amazon Web Services (AWS). Our experience shows that
there are scaling limitations in clusters relying on these new
features. As a result, provisioning for a large-scale cluster
differs substantially from small-scale deployments. We de-
scribe the implications of this observation for achieving ef-
ficiency in large-scale cloud deployments. To confirm the
value of our methodology, we deploy cost-efficient, high-
performance sorting of 100 TB as a large-scale evaluation.

Categories and Subject Descriptors C.4 [Performance of
Systems]: Measurement techniques

General Terms Performance, Measurement

Keywords Cloud, I/O performance

1. Introduction
Cloud providers such as Amazon Web Services (AWS) [3],
Google Cloud Platform [9] and Microsoft Azure [4] offer
nearly instantaneous access to configurable compute and
storage resources that can grow and shrink in response to ap-
plication demands, making them ideal for supporting large-
scale data processing tasks. Yet supporting the demands of
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modern Internet sites requires not just raw scalability, but
also cost- and resource-efficient operation: it is critical to
minimize the resource budget necessary to complete a partic-
ular amount of work, or conversely to maximize the amount
of work possible given a particular resource budget.

Minimizing cloud costs requires choosing a combination
of resources tailored to a given application and workload.
There have been several measurement studies of the perfor-
mance of cloud resources [17, 20, 32], and several efforts
aimed at automatically selecting a configuration of cloud re-
sources suited to a given workload [14, 15, 34]. This is no
easy task, as the diversity within public cloud platforms has
rapidly accelerated over the past half decade. For example,
as of this writing, Amazon offers 53 different types of VMs,
differing in the number of virtual CPU cores, the amount of
memory, the type and number of local storage devices, the
availability of GPU processors, and the available bandwidth
to other VMs in the cluster. The above-mentioned provision-
ing tools have shown promise, especially for resources such
as CPU time and memory space, which can be precisely di-
vided across tenant VMs located on the same hypervisor. On
the other hand, shared resources, such as network bandwidth
and storage, have proven to be a bigger challenge [10, 33].

Recent advances in virtualized I/O, such as SR-IOV [28],
have the potential to improve efficiency by allowing virtu-
alized access to fast solid-state drives and high speed net-
working. Because users pay only for the resources they use,
greater efficiency leads to lower costs. However, choosing
the right set of resources in this environment is harder than
ever, given that the configuration space is now even larger
than before. Further, as the size of the cluster increases,
overall cluster utilization and efficiency can drop, requiring
more VMs to meet performance targets and driving up over-
all cost [7]. Thus an understanding of the scaling behavior
of virtualized cloud network and storage resources is key to
achieving cost-efficiency in any large deployment.

In this paper, we describe a systematic measurement of
the scaling properties of recently-introduced virtualized net-
work and storage resources within the AWS public cloud.
Our aim is to determine the optimal price points for con-
figuring clusters for data-intensive applications, specifically
applications that are I/O-bound. We deploy Themis [22], our



in-house implementation of MapReduce, as a case study of
I/O-bound data processing applications under a variety of ef-
ficiency and data durability assumptions. We present a large-
scale evaluation of our methodology using jobs drawn from
the annual 100 TB “GraySort” sorting competition [27].

We find that despite newly-introduced I/O virtualization
functionality, AWS clusters still have scalability limitations,
leading to larger cluster sizes than would be otherwise pre-
dicted from the performance of small numbers of nodes. We
further find that the choice of cloud resources at scale dif-
fers significantly from predicted configurations measured at
smaller scale. Thus the actual deployment cost shifts dramat-
ically from estimates based on small-scale tests.

We further show that, by measuring performance at scale,
it is possible to provision highly efficient clusters in the AWS
public cloud. As a demonstration of this point, we deploy
Themis MapReduce to an AWS cluster consisting of 100s
of nodes and 100s of terabytes of virtualized SSD storage,
and set three new world records in the GraySort competition
at very low cost. We compare our sorting results to other
record winners, and find several commonalities between the
winning entries, further supporting the results of this work.

The contributions of this paper are:

1. A systematic methodology for measuring the I/O capa-
bilities of high-performance VMs in the public cloud via
application-level benchmarks.

2. A measurement of the current AWS offerings at scale,
focusing on virtualized I/O.

3. A large-scale evaluation of cost-efficient sorting on 100s
of nodes and 100s of terabytes of data informed by this
measurement methodology.

4. Three new world records in sorting speed and cost-
efficiency based on our evaluation results.

2. Related Work
While many previous works have studied performance in the
public cloud, we note that our work is unique in that it has
the following aspects:

• We measure clusters composed of 100s of VMs
• We measure VMs offering high-performance virtualized

storage and network devices
• We measure workloads making use of 100s of terabytes

of cloud-based storage
• We use the results of our study to break several world

records in high-speed sorting.

We now discuss several related studies.
Measurement: Many have measured the public cloud’s

potential as a platform for scientific computing. Walker [32]
compared Amazon Elastic Compute Cloud (EC2) to a
state-of-the-art high-performance computing (HPC) cluster.
Mehrotra et al. [20] performed a similar study four years
later with NASA HPC workloads. Both came to the same

Type vCPU RAM Storage Net.
m1.small 1 1.7 GB 160 GB Low
m3.xlarge 4 15 GB 80 GB? High
hs1.8xlarge 16 117 GB 49 TB 10G
i2.8xlarge 32 244 GB 6.4 TB? 10G

Table 1: Four EC2 VMs with various CPU, memory, storage, and
network capabilities. Some VMs use flash(?) rather than disk.

conclusion that the network in the public cloud simply is not
fast enough for HPC workloads.

Others have have studied the impact of virtualization on
I/O resources. Wang and Ng [33] measure a wide variety
of networking performance metrics on EC2 and find signifi-
cantly more variance in EC2 than in a privately owned clus-
ter. Ghoshal et al. [10] study storage I/O and find that EC2
VMs have lower performance and higher variability than a
private cloud designed for scientific computation.

Variability in the cloud extends to CPU and memory
resources as well. Schad et al. [25] measure the variability
of a wide variety of VM resources and find that among
other things, heterogeneity in the underlying server hardware
dramatically increases performance variance. Two VMs of
the same type may run on different processor generations
with different performance profiles.

In a somewhat different line of study, Li et al. [17] mea-
sure inter-cloud variance, that is, the difference in perfor-
mance between cloud providers. They compare Amazon
EC2, Microsoft Azure, Google AppEngine and RackSpace
CloudServers across a variety of dimensions and find that
each cloud provider has its own performance profile that is
substantially different from the others, further complicating
the choice of resource configuration in the public cloud.

Configuration: One goal of measuring the cloud is op-
timal, automatic cluster configuration. Herodotou et al. [14]
describe Elasticizer, a system that profiles Hadoop MapRe-
duce jobs and picks an optimal job configuration on EC2.
Wieder et al. [34] present Conductor, a system that combines
cloud services and local servers in a single deployment.

Scheduling around deadlines in shared clusters is another
common line of work. ARIA [30] is a scheduler for Hadoop
that meets deadlines using an analytical model of MapRe-
duce to solve for the appropriate number of map and reduce
slots. Jockey [8] is a similar system for more general data-
parallel applications. Bazaar [15] translates these efforts to
the cloud by transforming the typical resource-centric cloud
API to a job-centric API whereby users request job dead-
lines rather than collections of VMs. In this model, the cloud
provider applies the job profile to an analytical model to
compute the cheapest way to meet the job’s deadline.

Scale: In the public cloud, users are often presented with
a choice of using a large number of slow, cheap VMs or a
small number of fast, expensive VMs. The choice to scale
out or scale up depends on the technology available. Michael
et al. [21] compared a scale-up SMP server to a scale-out
cluster of blades and found the scale-out configuration to



be more cost effective. Half a decade later, Appuswamy et
al. [2] revisited this question in the context of Hadoop and
found the opposite to be true: that a single scale-up server is
more cost-effective than a larger scale-out configuration.

While the relative costs of either approach change over
time, scale-out configurations must be wary of excessive
variance. Dean and Barroso [7] study tail latency in Web
services at Google and demonstrate long-tailed latency dis-
tributions in production data centers. They call developers to
build tail tolerance into their systems to avoid performance
loss. Xu et al. [38] take a pragmatic approach and develop a
system to screen for and remove outlier VMs in the long tail.

At the same time, Cockcroft [5] demonstrates how Net-
flix takes advantage of scale-up VMs on EC2 to reduce costs
while substantially simplifying cluster configuration. Cock-
croft relies on newer SSD-based VMs, indicating that avail-
able hardware drives the choice of whether to scale out or
scale up. Of course, the software must also be capable of
taking advantage of scale-up. Sevilla et al. [26] describe an
optimization to MapReduce that alleviates I/O bottlenecks
in scale-up configurations.

3. Background
We now present a brief overview of I/O resources in Amazon
Web Services (AWS) and describe our application model.

3.1 Amazon Elastic Compute Cloud
Amazon Elastic Compute Cloud (EC2) is a cloud comput-
ing service that provides access to on-demand VMs, termed
instances, at an hourly cost. There are many types of in-
stances available, each with a particular mixture of virtual
CPU cores (vCPU), memory, local storage, and network
bandwidth. Table 1 lists a few examples.

VM instances are located in availability zones, which are
placed across a variety of geographically distributed regions.
VMs within the same region are engineered to provide low-
latency and high-bandwidth network access to each other.
The cost of individual VMs varies by instance type, as well
as over time, as new hardware is deployed within AWS. In
this paper, we only consider “on-demand” pricing, repre-
senting the cost to reserve and keep instances during a given
job. Finally, although the cloud offers the abstraction of un-
limited computing and storage resources, in reality the num-
ber of resources in a given availability zone is limited. This
complicates cluster provisioning because the most econom-
ical cluster for a given job might not be available when the
user needs it. In our experience, launching even 100 VMs of
a specific type required two weeks of back and forth com-
munication with engineers within Amazon. Even then, we
were only permitted to allocate the virtual machines in a
short window of a few hours.

3.2 Virtualized I/O
Recent advances in I/O-virtualization technology have made
the cloud an attractive platform for data-intensive comput-

ing. Here we discuss three types of virtualized I/O available
in the cloud.

3.2.1 Virtualized Storage
In 2012, Amazon introduced the first EC2 VM with solid-
state storage devices. Prior to this, all EC2 VMs ran either
on disk or persistent network-attached storage. Over the next
two years, more and more VMs with SSDs became available.
By mid 2014, Amazon began highlighting its SSD offerings,
relegating the disk-based VMs to the “Previous Generation”
of VMs. Other cloud providers have followed suit in the race
for newer and faster storage technologies. Google recently
added a local SSD offering to its Compute Engine [11]
cloud. Microsoft Azure’s new G-series VMs include large
amounts of local SSD storage [4].

Because offered bandwidth is so high and access times
are so low, significant effort is required to support these de-
vices in a virtualized environment at full speed. If the hy-
pervisor spends too much time processing I/O on shared
devices, performance will suffer. Recent virtualization tech-
nologies, such as Single Root I/O Virtualization (SR-IOV),
enable providers to expose a high-speed I/O device as many
smaller, virtualized devices [28]. With SR-IOV, the hypervi-
sor is out of the data path, enabling faster guest VM access
to these devices.

3.2.2 Virtualized Network
Today, high-speed networks are common in public cloud
platforms. EC2 has offered VMs connected to a 10 Gb/s net-
work as early as 2010, although these VMs were primar-
ily targeted at scientific cluster computing. More recently,
10 Gb/s networks have been rolled out to VM types target-
ing more general workloads. While achieving maximum net-
work performance is difficult on dedicated hardware, virtu-
alization adds another level of complexity that needs to be
addressed for achieving efficiency. As in the case of stor-
age, technologies such as SR-IOV can reduce virtualization
overheads and make the most of the high speed network. In a
shared environment, SR-IOV can be used to slice the 10 Gb/s
interface so each VM receives a portion of the bandwidth. In
the case of a single guest VM, eliminating overhead makes
10 Gb/s transfer speeds possible.

Amazon offers SR-IOV through a feature called en-
hanced networking. Though not all VMs support enhanced
networking, a large portion of the newer VMs can access
the feature. These include not only the VMs that support
10 Gb/s, but also their smaller counterparts, which are likely
carved up from larger instance types using SR-IOV to effi-
ciently share a single 10 Gb/s NIC.

Enhanced networking also enables VMs to launch in a
placement group. Placement groups instruct EC2 to provi-
sion VMs strategically in the network to increase bisection
bandwidth. Given that oversubscription is common in large
data center networks [13], placement groups play an impor-
tant role in delivering high performance to the user.
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Figure 1: Themis phase 1: map() and shuffle.
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Figure 2: Themis phase 2: sort and reduce().

3.2.3 Network-Attached Storage
A third type of virtualized I/O, network-attached storage,
is a common way to implement persistent storage in cloud
environments. The local storage devices described in Sec-
tion 3.2.1 are typically erased after a VM shuts down or mi-
grates. To store persistent data, users are directed to separate
storage services, such as Amazon Simple Storage Service
(S3) or Amazon Elastic Block Store (EBS). These services
are accessed remotely by a variety of interfaces. For exam-
ple, S3 supports a RESTful API and can be accessed via
HTTP, while EBS is exposed as a standard block device. In
this work, we evaluate EBS because its interface is similar to
a local storage device, supporting unmodified applications.
To access EBS, users simply attach a volume to a running
instance. Volumes can be created with near arbitrary size and
IOPS requirements, backed either by disks or SSDs.

Achieving high performance on persistent, network-
attached storage brings its own complexities. On the back-
end, the storage service must be provisioned with enough
storage devices to suit users’ needs and also have an effi-
cient way of carving them up into volumes. Typically these
storage services are also replicated, further increasing com-
plexity. On the client’s side, the black-box nature of the stor-
age service complicates issuing optimal I/O patterns. Finally,
congestion in the network or interference from co-located
VMs can reduce performance in an unpredictable way.

3.3 Application Models
In this work, we focus on the performance of I/O-bound
jobs and deploy Themis, our in-house MapReduce [22, 24].
Themis implements MapReduce as a two pass, pipelined al-
gorithm. In its first map and shuffle pass (Figure 1), Themis
reads input data from disk into small, in-memory buffers. It
then applies the map() function to records in these buffers,
and the resulting map output, or intermediate, data is di-
vided into partitions. Unlike traditional MapReduce sys-
tems, which write intermediate data to local disk, Themis
streams intermediate data buffers over the network to remote
nodes before writing to partition files on the remote node’s
local disks. This implementation eschews traditional task-
level fault tolerance in favor of improved I/O performance.

In the second sort and reduce pass (Figure 2), Themis
reads entire intermediate partitions from local disk into
memory. It then sorts these partitions and applies the
reduce() function. Finally, the resulting records are writ-
ten to output partition files on local disk. In the rare event
that partitions do not fit in memory, a separate mechanism
handles these overly large partitions.

We now model the performance of Themis under several
assumptions about I/O efficiency and data durability.

3.3.1 2-IO
Because Themis eschews traditional task-level fault toler-
ance, it exhibits the 2-IO property [22], which states that
each record is read from and written to storage devices ex-
actly twice. In this paper, we consider data sorting as our mo-
tivating application. For external sorting, Themis achieves
the theoretical minimum number of I/O operations [1]. This
property not only makes Themis efficient, but it also yields
a very simple computational model. When we restrict our
focus to I/O-bound applications, the processing time of the
map and shuffle phase can be modeled as:

T1 = max
(

Min

Bread
,

Mout

Bnetwork
,

Mout

Bwrite

)
(1)

where Min and Mout represent the per-node map input and
output data sizes, and Bread , Bwrite, and Bnetwork represent
the per-node storage and network bandwidths. For clarity,
we have labeled these variables in Figures 1 and 2. In the
particular case of sorting, map input and output are the same,
and if we ensure that storage read and write bandwidths are
the same, we are left with:

T1 = max
(

D
Bstorage

,
D

Bnetwork

)
(2)

where D is data size to be sorted per node. Next we compute
the processing time of sort and reduce phase. Because this
phase involves only local computation, storage is the only
I/O bottleneck:

T2 = max
(

Mout

Bread
,

Rout

Bwrite

)
(3)

where Rout is the reduce output data size. Again in the case
of sort, this is equal to D, the per-node data size, so the
processing time is:

T2 =
D

Bstorage
(4)

In practice, it may not be the case that read and write
bandwidths are equal, in which case we have:

Bstorage = min(Bread ,Bwrite) (5)

Therefore the final processing time of the sort is:

T = T1 +T2 = max
(

D
Bstorage

,
D

Bnetwork

)
+

D
Bstorage

(6)

Finally, we account for the VM’s hourly cost Chourly to
compute the total dollar cost of the sort:

C =Chourly

[
max

(
D

Bstorage
,

D
Bnetwork

)
+

D
Bstorage

]
(7)
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Figure 3: Sort and reduce() with Application-Level Replication.

3.3.2 Application-Level Replication
The 2-IO model represents the upper-bound of cost-
efficiency and performance for I/O-bound jobs. In practice,
storing only one copy of the data dramatically reduces dura-
bility. We now consider the case where the application makes
a remote replica of each output file for improved durability.

We augment the sort and reduce phase with output repli-
cation as shown in Figure 3. In addition to writing output
partitions to local output disks, the system creates a replica
of each output file on a remote node’s local output disks.
This incurs an extra network transfer and disk write for each
output partition file. This online replication affects the total
processing time of the sort and reduce phase:

T2 = max
(

Mout

Bread
,

Rout

Bnetwork
,

2Rout

Bwrite

)
(8)

In the case of sort, this becomes:

T2 = max
(

D
Bread

,
D

Bnetwork
,

2D
Bwrite

)
(9)

Notice there is now an asymmetry in the storage band-
width requirements between the map and shuffle phase
(Equation 2) and the sort and reduce phase (Equa-
tion 9). This asymmetry will necessitate storage configura-
tion changes, as we will see in Section 5.2.

3.3.3 Infrastructure-Level Replication
Implementing Application-Level Replication as described in
Section 3.3.2 adds significant complexity and cost. Cloud
providers typically offer infrastructural services to reduce
the burden on application developers.

To illustrate the use of Infrastructure-Level Replication,
we consider running Themis MapReduce on Amazon EC2
using the EBS storage service described in Section 3.2.3 for
input and output data, and local disks for intermediate data
only. The time for the map and shuffle phase becomes:

T1 = max
(

Min

BreadEBS
,

Mout

Bnetwork
,

Mout

Bwrite

)
(10)

Similarly, the time for sort and reduce is:

T2 = max
(

Mout

Bread
,

Rout

BwriteEBS

)
(11)

We consider the performance and cost implications of
these three models in the sections that follow. Section 4 thor-
oughly explores the 2-IO model, while Section 5 describes a
large-scale evaluation of all three models.

3.3.4 Model Generality
While our models cover several use cases, we acknowledge
that they are specific to Themis MapReduce. We now discuss
how these models might generalize to other platforms.

Themis MapReduce derives much of its I/O-efficiency
from its pipelined implementation, which limits the amount
of extraneous I/O relative to frameworks like Hadoop [39].
MapReduce Online [6] brings pipelining to Hadoop, al-
though extra disk I/O is still required for fault tolerance. In
general, our models could be updated to handle additional
I/O operations performed by other frameworks.

In this work, we assume that I/O-intensive jobs are I/O-
bound. While compute-bound jobs are outside the scope of
this work, we posit that a new model could be constructed
from the job’s compute requirements. Such a model could
include terms for both I/O and compute time.

Our models assume zero scheduling overheads because
Themis runs one jobs at a time and one process per node per
phase of that job. In general, the models could be updated to
account for framework scheduling overheads.

Finally, many I/O-intensive applications run frameworks
that are not MapReduce. For example, computation over
large graphs may benefit from specialized frameworks [18,
19]. These frameworks will require different computational
models, but should include some similar terms for I/O-
intensive jobs and will likely benefit from the techniques de-
scribed in this work.

4. Profiling AWS Storage and Networking
We now turn our attention to choosing a cluster configuration
on EC2 for I/O-bound applications. As we will show, it is not
simply enough to know the VM specifications. The scaling
behavior of each VM must be taken into account.

To this end, we design experiments to estimate the per-
formance of I/O-bound jobs on EC2. First, we measure the
per-VM bandwidth of local storage (Section 4.2). This ap-
proximates job performance when the network is not the bot-
tleneck (Bnetwork = ∞ in our models). Next, we measure the
network performance of each VM type (Section 4.3). To-
gether, these metrics give a performance estimate that ac-
counts for either bottleneck, but assumes that network per-
formance scales perfectly. Then, we measure the actual scal-
ing behavior of the network using larger cluster sizes to re-
fine this performance estimate. Finally, we combine these
results with published hourly costs to select the most cost-
effective VM for running a large-scale 100 TB sort job under
the 2-IO model described in Section 3.3.1.

We run the analysis using two custom-built microbench-
mark tools: (1) DiskBench, which measures the overall



throughput of the storage subsystem within a single node,
and (2) NetBench, which measures network performance by
synthetically generating data without involving local stor-
age1. We describe these tools in the sections that follow.

4.1 Measurement Limitations
A common concern when conducting measurements of the
public cloud is variance. Resource sharing between cus-
tomers, either co-located on the same machine or utilizing
the same network, increases variance and makes measure-
ment more difficult. Getting a completely fair assessment
of the performance of the cloud is complicated by diur-
nal workload patterns that necessitate measuring at differ-
ent times of day. Jobs launched during business hours may
cause weekends and weekdays to see differing levels of per-
formance. Less-frequent, periodic jobs may even lead to
changes based on week of the month or month of the year.

In addition to user-created variance, the underlying in-
frastructure is constantly changing, meaning that any mea-
surement is just a snapshot of the cloud in its current state.
For example, in the time between the experiments in this pa-
per and its publication, Amazon has added 16 new instance
types to EC2, all of which can affect the performance of the
shared network. Variance can even exist between different
data centers belonging to the same provider. Different data
centers may contain I/O devices with different performance
levels, as Schad et al. [25] have shown.

While we acknowledge such variance exists, we admit
that our ability to quantify it is limited. Despite partial sup-
port from Amazon’s educational grant program, the experi-
ments in this paper totaled more than $50,000 in AWS costs,
and so we were not able to continue studying AWS in enough
detail to account for these forms of variance.

Much of this cost comes from running large-scale bench-
marks and evaluations to tease out the scaling properties of
network. Someone with more insight into the networking
properties of the cloud, e.g. the provider, might be able to
factor this into the models described in Section 3.3, elimi-
nating a large portion of the costs and freeing up resources
for in-depth variability analysis.

Finally, it is not always possible to allocate a large num-
ber of on-demand VMs. The large-scale evaluations in Sec-
tion 5 were only possible after weeks of back-and-forth com-
munication with AWS engineers. When we were finally able
to allocate the VMs, we were instructed to decommission
them after only a few hours, proving further measurement
impossible. For these reasons, a comprehensive study of
variance in the cloud is not presented in this work.

4.2 Local Storage Microbenchmarks
We begin our measurement study by profiling the local stor-
age available on each EC2 VM type with DiskBench. Be-
cause local storage devices are often faster than network-

1 Available at http://themis.sysnet.ucsd.edu
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Figure 4: The DiskBench storage microbenchmark runs locally on
a single node without involving the network.

attached storage, these measurements are typically an upper-
bound on storage performance. We revisit the choice of local
versus remote storage in Section 4.4.

4.2.1 The DiskBench Microbenchmark
DiskBench, shown in Figure 4, is a pipelined application that
reuses many of the components of Themis MapReduce (Sec-
tion 3.3). DiskBench isolates the storage subsystem from
map and shuffle phase by reading records without applying
the map() function. Records are randomly assigned to par-
titions on the same node, and are written back to local disk
without involving a network shuffle.

We configure DiskBench to use one half of the local disks
for reading and the other half for writing for VMs with more
than one disk. This configuration is typically ideal for local
storage devices, and is in fact the configuration used in our
earlier experience with high speed sorting [24]. As a result,
the bandwidths reported by DiskBench measure a read/write
workload, and in many cases are approximately half of the
bandwidth available in read-only or write-only workloads.

4.2.2 Experimental Design
We instantiate two to three VMs of each type offered
by AWS in the us-east-1a availability zone. We run
DiskBench three times on each of these clusters and com-
pute the average per-node storage bandwidth, Bstorage, mea-
sured in megabytes per second (MB/s). We run DiskBench
on multiple instances to account for natural variance in per-
formance between VMs.

4.2.3 Analysis
The results of DiskBench are shown in Figure 5. We report
the mean read/write storage bandwidth, as well as the of-
fered per-VM storage capacity. We group VMs into regions
based on cluster size needed to sort 100 TB of input data;
the rightmost region represents instance types needing fewer
than 100 VMs. The middle region represents types needing
between 100 and 1,000 VMs. Finally, the leftmost region
represents types needing more than 1,000 VMs. We high-
light these regions because provisioning large clusters is not
always possible. For example, we found that even with the
help of Amazon’s engineers, we were only able to allocate
at most 186 instances of i2.8xlarge in a single availability
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more than 100 or 1,000 instances to sort 100 TB.

zone. Furthermore, as we will show, network performance
can degrade significantly with larger clusters.

In Figure 5 we have labeled some of the more interesting
instance types. Many of these are on the upper right-hand
side of the figure and represent a candidate set of instance
types which deliver both high storage performance and host
enough local storage to meet the capacity requirements of a
100 TB sort with a small cluster. The highest performing in-
stance type in the sub-100 VM region is i2.8xlarge, which
contains eight 800 GB SSDs and offers 1.7 GB/s of simulta-
neous read/write bandwidth as measured by DiskBench. The
i2.4xlarge instance type has half the number of SSDs,
with half as much storage bandwidth as a result. Another
interesting instance type is hs1.8xlarge, which provides
the highest density of storage using HDDs instead of SSDs.
The hs1.8xlarge instance type includes 24 local HDDs
and supports 1.06 GB/s of read/write bandwidth. Because
of its high storage density, only seven instances are needed
to meet the capacity needs of a 100 TB sort operation.

Estimating the dollar cost of sorting: We next use the
results of DiskBench and the listed AWS hourly cost to pre-
dict the total dollar cost of running a 100 TB 2-IO sort using
Themis. Here, we consider only local storage performance
(Bnetwork = ∞), and apply the results from Figure 5 to Equa-
tion 7 to estimate the total cost of sorting 100 TB.

Table 2 shows a subset of these results ranked by total
sorting cost. To highlight capacity limitations, we compute
the number of VMs required to hold 300 TB, which covers
the input, intermediate, and output data for a 100 TB sort.

From Table 2, we see that c3.large is the most econom-
ical, with a per-sort cost of $28. However, each VM only
has 32 GB of storage, so 9,375 instances are required to
hold the necessary 300 TB of data. Next are the m3.large

and m3.medium instance types, with a sort cost of approx-
imately $65. Again, scaling to meet capacity requirements
is a significant challenge. In fact, it is not until the m1 in-

Instance Min. nodes Cost
required for Sort Hourly
100TB sort ($) ($/hr)

c3.large 9,375 28 0.105
m3.large 9,375 65 0.14
m3.medium 75,000 66 0.07
m1.xlarge 179 155 0.35
i2.4xlarge 94 211 3.41
i2.8xlarge 47 218 6.82
hs1.8xlarge 7 248 4.60
cr1.8xlarge 1,250 2,966 3.50

Table 2: Estimated dollar cost of sorting 100 TB on a subset of
EC2 instance types based solely on local storage performance.
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Figure 6: The NetBench network microbenchmark measures net-
work scalability and performance using synthetic input data.

stance types that clusters of O(100) nodes will suffice. The
first instance types with O(10) node cluster sizes are the
i2 types, which are built with arrays of SSDs. A 100 TB
sort can be completed with just 47 i2.8xlarge instances
at a cost of $218. For reference, the most expensive instance
type is cr1.8xlarge, a memory-optimized 32-core instance
type with two 120 GB SSDs, on which a 100 TB sort would
cost $2,966, a factor of over 100x more expensive than the
cheapest instance type. It is worth noting that two instance
types might have hourly costs that are an order of magnitude
apart, but the total cost to the user may be very similar, e.g.,
m1.xlarge and i2.4xlarge.

Summary: Measuring VM storage bandwidth provides
great insight into the total cost of a large-scale data-intensive
application. Many high-performance VM configurations can
deliver reasonable costs using a small number of nodes.

4.3 Network Microbenchmarks
Next, we measure the performance and scalability of the
AWS networking infrastructure. We focus on the subset of
instance types that have relatively high performance and
high storage capacity as measured in Section 4.2.

4.3.1 The NetBench Microbenchmark
Similar to DiskBench, NetBench (Figure 6) is a pipeline-
oriented application derived from Themis. Following the
analogy, NetBench aims to isolate the network subsystem
from the map and shuffle phase. Synthetic data records are
generated in-memory and shuffled over the network to re-
mote nodes, which simply delete the data records. NetBench
operates entirely in memory and does not touch local disk.
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Figure 7: Comparison between storage and network performance.

4.3.2 Experimental Design
We perform two experiments to measure the AWS network-
ing infrastructure. The first experiment determines the base-
line network bandwidth of each instance type. For each VM
type, we allocate a cluster of two nodes in the us-east-1a
availability zone. On each of these clusters, we run Net-
Bench three times. From these three data points, we compute
the average observed network bandwidth, Bnetwork, which we
report in the unconventional unit of megabytes per second
(MB/s) for easy comparison with the results of DiskBench.
This measurement represents the ideal scaling behavior of
the network. When available, we enable the enhanced net-
working feature and allocate nodes in a single placement
group, and we use two parallel TCP connections between
nodes to maximize the bandwidth of the high speed VMs.

Next, we quantify the network scaling behavior in a can-
didate set of VM types. For each type, we construct increas-
ingly larger clusters by allocating two VMs to get a cluster
of size two, allocating two more to get a cluster of size four,
allocating four more to get a cluster of size eight, and so
on. On each cluster, we run NetBench once and measure the
all-to-all network bandwidth observed by the slowest VM.

The largest measured cluster varies by instance type. In
many cases, limits imposed by AWS prevented larger study.
For some of the more expensive VMs, we cap the maximum
cluster size due to limited funds. We do not use placement
groups in this experiment because doing so alters the natural
scaling behavior of network and limits cluster sizes. Place-
ment groups also work best when all VMs launch at the same
time. This launch pattern is neither representative of elasti-
cally scaling applications, nor is it applicable to our exper-
iment setup. Additionally, we use a single TCP connection
between VMs because using multiple TCP connections re-
duces performance at larger cluster sizes, and we are ulti-
mately interested in the performance at scale.

4.3.3 Analysis
We show the baseline network performance of a select subset
of VMs in Figure 7. For comparison, we also show the stor-
age performance measured in Section 4.2. For many VMs,
the storage and network bandwidths are mismatched. Equa-
tion 2 (Section 3.3) suggests that we want equal amounts
of storage and network bandwidth for the map and shuffle

0 50 100 150 200 250

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Cluster Size

F
ra

c
tio

n
 o

f 
B

a
s
e

lin
e

r3.8xlarge
i2.8xlarge
cc2.8xlarge

i2.4xlarge
hi1.4xlarge
hs1.8xlarge

i2.2xlarge
i2.xlarge
m1.xlarge

Figure 8: Network performance scalability displayed as a fraction
of the baseline network performance given in Figure 7.

Observed Network Scalability
Ideal Network Scalability
Infinitely Fast Network

0

200

400

600

800

1000

1200
Observed Network Scalability
Ideal Network Scalability
Infinitely Fast Network

0

200

400

600

800

1000

1200

VM Configuration

C
os

t (
$)

i2.
8x

_P
m1.x i2.

8x i2.
x

r3.
8x

hi1
.4x

i2.
4x

i2.
2x

hs
1.8

x
cc2

.8x
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types, under various network performance assumptions.

phase of sort, but this is often not achieved. For example, the
network bandwidth of i2.8xlarge is only 63% of its mea-
sured storage bandwidth. This mismatch reduces the end-to-
end performance of an application that must use both storage
and network I/O, resulting in underutilized resources.

Figure 8 illustrates the scaling behavior of the network,
displayed as a fraction of the baseline bandwidth. This com-
parison is not perfect because the experiments were run on
different sets of VMs on different days during a two week
period and at different times of day. This perhaps explains
how m1.xlarge and hi1.4xlarge reach speeds that are
20% faster than the baseline at small cluster sizes.

However, the main takeaway is that performance de-
grades significantly as more nodes are added to the cluster.
In eight of the nine VM types measured, performance drops
below 80% of baseline during the experiment. One instance
type, cc2.8xlarge, shows consistently poor performance.
We speculate this type resides in a highly congested portion
of the network and can only achieve high performance when
placement groups are enabled.

The dollar cost of sorting revisited: Finally, we use
the results of DiskBench and NetBench to predict the total
monetary cost of running a 100 TB 2-IO sort operation on
each of the VM instance types. We apply our measurements
to Equation 7 (Section 3.3) to determine the total dollar cost.



Predicted costs are shown in Figure 9. For the selected
VMs, we show (1) the total cost assuming that the network is
not the bottleneck, (2) the cost assuming that network band-
width scales in an ideal manner, and (3) the cost based on
the observed scale-out networking performance. The results
show that the lowest-cost VM for sort is m1.xlarge, at $362
per sort followed closely by i2.8xlarge and i2.xlarge.
Interestingly, while the ideal network scalability cost of
i2.8xlarge is greater than m1.xlarge, i2.8xlarge has
better actual network scaling properties, resulting in very
similar overall dollar costs. However, the i2.8xlarge in-
stance type supports placement groups, which if employed
actually result in a lower overall cost than m1.xlarge. We
represent this configuration as i2.8x P, with an estimated
cost of $325, which is $37 cheaper than m1.xlarge.

Summary: Networking performance, particularly at
scale, must be accounted for when estimating cost. Poor
scaling performance can significantly drive up costs. Better
network isolation, e.g. placement groups, can substantially
reduce costs. In the case of sort, network isolation results in
a savings of $37, or about 10%.

4.4 Persistent Storage Microbenchmarks
We now turn our attention to network-attached storage.
While local storage typically has better performance, many
cloud deployments will want input and output data to per-
sist across VM resets and migrations. We now consider the
performance properties of Elastic Block Store (EBS), a per-
sistent network-attached storage service offered by AWS.

4.4.1 Experimental Design
To measure the performance of EBS, we allocate three
i2.4xlarge instances in us-east-1a with the enhanced
networking and EBS-optimization features enabled. At the
time of the experiment, i2.4xlarge was one of the few VM
types supporting a maximum EBS throughput of 250 MB/s.
As of this writing, Amazon offers three new instance types
with speeds of up to 500 MB/s. EBS offers three types of
storage volumes: magnetic disk, general purpose SSDs, and
IOPS-provisioned SSDs. For each type, we create and attach
eight 215 GB EBS volumes to each of the three i2.4xlarge
instances. We then run DiskBench, and vary the number of
EBS volumes used.

We configure DiskBench to run in read-only and write-
only modes, but not in the read/write mode described in
Section 4.2.1. This more closely resembles an actual EBS-
backed application, which will read input data from persis-
tent storage, process it using local per-VM storage, and then
write output data back to persistent storage. This usage pat-
tern directly corresponds to the Infrastructure-Level Repli-
cation model described in Section 3.3.3.

We run each combination of EBS volume type, number of
EBS volumes, and DiskBench mode three times on each of
the three nodes to get an average bandwidth measurement.

4.4.2 Analysis
Figures 10a and 10b show the read-only and write-only re-
sults. There are four key points. First, a single EBS vol-
ume cannot saturate the link between the VM and EBS.
Bandwidth increases as more volumes are added up to the
250 MB/s limit. Second, near-maximal read performance
can be achieved using as few as three volumes of any type.
Third, near-maximal write performance can be achieved us-
ing three SSD-based volumes. Finally, magnetic disk cannot
achieve maximal write bandwidth with even eight volumes.

We conclude that EBS-optimized VMs can achieve max-
imal speeds on SSD-based volumes. However, EBS volumes
are far slower than local, per-VM storage. For example, Fig-
ure 5 shows i2.4xlarge is capable of nearly 900 MB/s of
read/write bandwidth to its local SSDs. As such, EBS band-
width is likely to be a bottleneck for Infrastructure-Level
Replication (Equations 10 and 11) and will shift the cost
analysis quite a bit from that derived in Section 4.3.3.

Summary: Persistent storage systems built from SSDs
can deliver reasonable levels of storage performance. How-
ever, local, per-VM storage provides far higher levels of per-
formance, so persistent storage will likely be a bottleneck.

4.5 Key Takeaways
For clarity, we highlight four key takeaways:

1. DiskBench can be used to cheaply assess the storage
performance of a wide variety of VMs at a small-scale
to estimate job cost. Smaller VM types deliver low levels
of cost, but require many thousands of VMs. Larger VMs
deliver reasonable levels of cost with orders of magnitude
fewer VMs. VMs deemed too expensive can be removed
from further consideration.

2. NetBench can be used to refine this cost analysis, taking
into account network performance at both small and large
scales. Many VMs exhibit poor network scaling proper-
ties, leading to estimated costs far larger than back-of-
the-envelop calculations based on VM specifications.

3. The use of i2.8xlarge with placement groups results
in the best performance and also delivers the lowest esti-
mated sorting cost using a small number of VMs. Other
VMs, such as hs1.8xlarge, look great initially, but per-
form poorly in practice, resulting in a 3x cost-increase.

4. SSD-backed EBS volumes can deliver full performance
for applications that need enhanced data durability. How-
ever, EBS is far slower than local storage on some VMs,
and will likely be a bottleneck.

5. Evaluation
Thus far we have measured the I/O performance and scal-
ability of several cloud offerings in AWS in the context of
the 2-IO model described in Section 3.3.1. We now present
a large-scale evaluation of 2-IO, as well as the other mod-
els presented in Section 3. We consider the problem of sort-
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Figure 10: EBS performance observed by i2.4xlarge. The maximum advertised performance is shown with a dashed line.

ing 100 TB and measure the performance and cost in each
case. Each evaluation corresponds to one of a larger number
of established large-scale sorting benchmarks [27], and thus
represents a realistic problem that one might want to solve
using the public cloud.

5.1 2-IO
We evaluate the performance and cost of 2-IO by sorting a
100 TB data set that consists of one trillion 100-byte key-
value pairs. Each pair consists of a 10-byte key and a 90-
byte value. Keys are uniformly distributed across the space
of 25610 possible keys.

Experiment Setup: We allocate 178 on-demand in-
stances of i2.8xlarge in a single placement group in the
us-east-1a availability zone. We use local, per-VM SSDs
for input, intermediate, and output data sets.

Before running the sort application, we run the
DiskBench and NetBench microbenchmarks on the cluster
to get a baseline performance measurement, and also to de-
commission VMs with faulty or slow hardware. DiskBench
reports read/write storage bandwidth at 1515 MB/s for the
slowest VM, which is 87% of the bandwidth measured
in Section 4.2. NetBench yields a network bandwidth of
879 MB/s which is 81% of the baseline measured in Sec-
tion 4.3. We note that this experiment was conducted on a
different day than those in Section 4, and therefore may have
somewhat different performance characteristics.

As in Section 4.2.1 we configure Themis to use four of the
eight local SSDs for input and output files, and the remaining
four SSDs for intermediate files.

Results: The 100 TB 2-IO sort completes in 888 sec-
onds and requires $299.45. To better understand the bot-
tlenecks and limitations of this particular job, we collect
system-level performance metrics using sar, iostat, and
vnStat [29, 31]. Using these measurements, we find that
during the approximately 500 seconds required to complete
the map and shuffle phase, Themis is network-bound. Fig-
ure 11a shows the network utilization for three randomly
chosen servers as a function of time. The 10 Gb/s network is
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Figure 11: Resource usage of three VMs running the 100 TB 2-IO
sort. The bottleneck shifts from network to storage at t ≈ 500s.

almost fully utilized, and as a result, the CPU and SSDs are
only lightly utilized, as shown in Figures 11b and 11c.

The sort and reduce phase, which begins immediately af-
ter the map and shuffle phase completes, is I/O-bound by
the local SSDs. Because no network transfer occurs in this
phase, Themis can fully utilize the available storage band-
width, and Figure 11c shows that the disk write bandwidth
approaches the limitations of the underlying hardware. Mul-
tiple sorting threads allow CPU usage to increase consid-



System Cluster Sort Per-node Total
Name Size Speed Speed Cost

(TB/min) (MB/s) ($)
Themis 178 6.76 633 299.45
Hadoop 2,100 1.42 11 ?
Baidu 982 8.38 142 ?

Table 3: Our 100 TB Indy GraySort entry. Past and current record
holders are shown for comparison.

erably. However the overall system does not become CPU-
limited, as illustrated in Figure 11b.

Because the sort job is I/O-limited, the final cost
($299.45) closely resembles the estimated cost given Sec-
tion 4.3 for i2.8xlarge with placement groups ($325). We
conclude that the methodology in Section 4 can predict the
cost of I/O-bound jobs with reasonable accuracy.

Sort Benchmark: While the analysis thus far has been
focused on cost-efficiency, raw performance is also a highly-
desired feature. Our 100 TB 2-IO sort conforms to the guide-
lines of the Indy GraySort 100 TB sort benchmark [27], and
achieves an overall throughput of 6.76 TB/min. Our sort is
nearly five times faster than the prior year’s Indy GraySort
record [12] (see Table 3), while still costing less than $300.

We attribute this result to both the methodology in this
paper, and also to our Themis MapReduce framework. It is
important, however, to note that it is not simply our code-
base that yields high performance. In fact, our Indy GraySort
speed was surpassed by Baidu [16] by more than 20% using
a system derived from TritonSort [23, 24], which also ex-
hibits 2-IO. Thus the 2-IO model of computation has power-
ful implications for performance as well as cost-efficiency.

5.2 Application-Level Replication
Next we evaluate Application-Level Replication on the same
100 TB data set described in Section 5.1. We run a variant of
Themis that supports output replication as illustrated in Fig-
ure 3. This particular configuration conforms to the Daytona
GraySort benchmark specification [27].

Experiment Setup: This time we allocate 186 on-
demand instances of i2.8xlarge. As before, we launch all
instances in a single placement group. However, due to in-
sufficient capacity in us-east-1a, we use the us-east-1d
availability zone.

As alluded to in Section 3.3.2, the storage asymmetry in
Application-Level Replication necessitates a slight change
in the configuration of Themis. Here we use five of the eight
SSDs for input and output files and the remaining three for
intermediate files. This configuration more evenly balances
the storage and network requirements of the MapReduce job.

Results: The 100 TB Application-Level Replication
takes 1,378 seconds and results in a total cost of $485.56.
While a comparison between this result and the 2-IO result
in Section 5.1 is not completely fair due to different sets
of resources used in different availability zones on different

System Cluster Sort Per-node Total
Name Size Speed Speed Cost

(TB/min) (MB/s) ($)
Themis 186 4.35 390 485.56
Spark 207 4.27 344 551.36
Hadoop 2,100 1.42 11 ?

Table 4: Our 100 TB Daytona GraySort record.
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Figure 12: Bimodal elapsed times of reading 100 TB from EBS as
seen by a cluster of 326 c3.4xlarge VMs.

dates, it is nevertheless interesting to note that the improved
data durability increases the cost of the sort from $299.45
measured in Section 5.1 by $186.11, or 62%.

Sort Benchmark:The performance of our Application-
Level Replication surpassed the prior year’s record-holder
by more than 3x, as seen in Table 4, setting the 100 TB Day-
tona GraySort record. Apache Spark, run by Databricks, sub-
mitted a benchmark result [35–37] that was slightly slower
than ours, although our results are close enough to be con-
sidered a tie. However, our system is slightly more resource-
efficient, resulting in a cost savings of $66, or about 12%.

It is interesting to note that Apache Spark also ran
i2.8xlarge, given that EC2 is not a requirement in this
benchmark. At first glance, i2.8xlarge may look like an
obvious choice for an I/O-intensive job like sorting. How-
ever, the results in this work show that performance at scale
can differ substantially from initial estimates. For example,
hs1.8xlarge also appears to be an obvious choice, despite
its poor performance at scale, as shown in Section 4.

5.3 Infrastructure-Level Replication
Finally, we evaluate Infrastructure-Level Replication on the
same 100 TB data set by running the 2-IO implementation of
Themis using EBS volumes for input and output. This con-
figuration meets the specifications for the Indy and Daytona
CloudSort benchmarks [27], which measure the dollar cost
of sorting on the public cloud.

Preliminary Results: EBS changes the cost analysis in
Section 4, and our measurements suggest the cheapest VM
type is c3.4xlarge. We allocate 326 c3.4xlarge VMs
in a single placement group in the us-east-1a availability
zone and attach to each four 161 GB general purpose SSD
EBS volumes. Unfortunately, this configuration experiences
significant variance in read performance. Figure 12 shows
a probability density function of runtimes across the 1,304
EBS volumes experienced when reading 100 TB from EBS.



System Cluster Sort Per-node Total
Name Size Time Speed Cost

(s) (MB/s) ($)
Themis 330 2981 102 450.84

Table 5: Our 100 TB Indy and Daytona CloudSort record.

Approximately 95% of the nodes complete in under 1,400
seconds, but the remaining nodes take three times longer.
This long-tailed distribution makes c3.4xlarge an ineffec-
tive choice for Infrastructure-Level Replication at scale.

Experiment Setup: The next best option after
c3.4xlarge is r3.4xlarge, which is 60% more ex-
pensive and offers approximately the same projected
performance. We allocate 330 r3.4xlarge instances in
a single placement group in the us-east-1c availability
zone. We use a different zone because, as stated earlier in
this work, it is often not possible to allocate a large number
of instances in a particular zone. To each instance we attach
eight 145 GB2 general purpose EBS volumes. We use EBS
for input and output data and local SSD for intermediate
data, as suggested in Sections 3.3.3 and 4.4.

Results: We run the sort three times and report an aver-
age completion time of 2,981 seconds and an average cost
of $450.84 (Table 5). This completion time, which includes
two full rounds of I/O to EBS, is far less than the 4000
seconds required to run a single round of I/O on a com-
parably sized cluster of c3.4xlarge (Figure 12). We con-
clude that r3.4xlarge does not experience the same long-
tailed behavior. The black-box nature of EBS prohibits fur-
ther analysis, but one hypothesis is that the network connect-
ing c3.4xlarge to EBS is more congested, and thus more
variable, than that of r3.4xlarge. It may also be possible
that the us-east-1c availability zone itself experiences bet-
ter EBS performance at scale.

We note that the per-VM throughput is nearly half of the
maximum 250 MB/s throughput to EBS. This indicates that
each phase of the sort is running at near-optimal EBS speeds.
In fact, Section 4.4 pins the ideal read and write bandwidths
at 243 and 226 MB/s, respectively. This suggests an ideal
end-to-end throughput of 117 MB/s, so our sort speed is 87%
of optimal.

Sort Benchmark: These results set the world records
for both Indy and Daytona CloudSort. Although far slower
than Daytona GraySort in terms of performance, our Cloud-
Sort records actually sort 100 TB about $35, or about 8%,
cheaper with even stronger durability requirements.

6. Extending to Other Clouds
While an analysis of other cloud providers is outside the
scope of this work, it is desirable for our results to extend
to other clouds. We now briefly discuss Google Compute
Engine [11] and consider how our work might generalize.

2 Actually 135 GiB. The EBS API uses GiB (230) rather than GB.

Type vCPU RAM (GB) Cost ($/hr)
n1-standard-1 1 3.75 0.05
n1-standard-8 8 30 0.40
n1-highcpu-32 32 28.8 1.216
n1-standard-32 32 120 1.60
n1-highmem-32 32 208 2.016

Table 6: Five example Compute Engine VMs.

Compute Engine offers VMs much like EC2. As of this
writing, there are 18 VM types divided into four categories,
and we list a subset in Table 6.

VMs do not, by default, have any local storage. Persistent
disk, a service akin to EBS, is the default storage model.
Users can optionally add a limited number of local SSDs to
a VM for a price. It is not possible to add local HDDs.

Our limited experience shows that Themis, DiskBench,
and NetBench, can achieve high levels of performance at
a small-scale on a variety of VM types. Compute Engine
currently lacks an explicit network placement mechanism.
This may affect the network performance observed by a
large number of VMs, although further analysis is required
to make this claim.

7. Conclusions
High-speed flash storage and 10 Gb/s virtualized networks
supporting SR-IOV have enabled high performance data-
intensive computing on public cloud platforms, and yet
achieving efficiency remains challenging for these work-
loads. We present a systematic methodology for measuring
the I/O capabilities of high-performance VMs, and exten-
sively measure these features within EC2 using our cus-
tom microbenchmark tools, DiskBench and NetBench. We
find that expected costs rise dramatically due to poor net-
work scaling, altering the optimal choice of VM configura-
tions. By provisioning based on performance measurements
at scale, we demonstrate highly efficient sorting on EC2 and
set three new world records at very low cost.
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