

Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating

new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

Integrated Aircraft Scheduling Problem: An Auto-Adapting Algorithm to

Find Robust Aircraft Assignments for Large Flight Plans

Torsten Reiners

Curtin Business School, Curtin University, Perth, Aus.

treiners@curtin.edu.au

Julia Pahl, Michael Maroszek, Cornelius Rettig

Institute of Information Systems, University of

Hamburg, Germany, pahl@econ.uni-hamburg.de,

michael@maroszek.de, rettig.cornelius@gmail.com

Abstract
The overall airline scheduling process involves
hierarchical steps starting with the network design

and ending with crew assignment. Aircraft routing is

especially important with respect to timing and costs

for an airline. In this contribution, we focus on

aircraft routing where aircraft are assigned to flight

legs further considering maintenance requirements.

We developed and implemented algorithms that

extend the aircraft routing problem (ARP) by
including profit and robustness. The latter objective

is important as the dependencies of flights and

airlines increases and deviations to the original time

plan as unexpected events like volcano eruptions or

heavy weather-related issues are difficult to handle.

A robust aircraft routing ensures that unforeseen

events have less impact. The results are compared to

current state-of-the-art solutions. We developed a test
instance-generator to create specific problems and

build a library for future benchmarking tests.

1. Introduction

The aircraft (maintenance) rotation problem is

part of the overall airline scheduling problem [21]. It

takes place after the fleet assignment which is

determined according to the flight schedule where

destinations, flight dates, and departure times are

established based on demand assumptions [2]. The

objective is to assign an aircraft (identified by its tail

number) of a given fleet to a feasible sequence of

flight legs, so that maintenance constraints are

satisfied. Generally, the planning steps are executed
in a hierarchical order where the solution of one sub-

problem is used as input for the subsequent problem

[5, 16, 20, 21, 25].

In order to provide an idea of the planning

constraints regarding the ARP, we first discuss the

overall airline scheduling process as depicted in

Figure 1. The overall process is divided into three

parts, i.e., flight schedule generation, aircraft

scheduling and crew scheduling all being further

broken down into distinct planning steps.

Figure 1. Overall airline scheduling process

The first planning step is the flight schedule

generation which generally covers a period of three

to six months. In order to reduce complexity, cyclical

patterns covering a day or week are constructed and

repeated for the whole period. The flight schedule

generation embraces network design, frequency

assignment, and flight schedule. The network design

considers the identification of origin-destination city

pairs thus building the route network the airline

wants to serve. The design is based on strategic and
tactical decisions as well as traffic forecasts including

demand variations. The number of flights to each

origin-destination pair is assigned during the

frequency assignment. Exact departure times are

determined during the planning of flight schedules.

The focus in this paper is set on the subsequent

planning step aircraft scheduling including fleet

assignment and aircraft routing with the later one

being further subdivided in through flight assignment

and maintenance routing. Fleet assignment

concentrates on the assignment of aircraft types with

respect to several aircraft characteristics, e.g.,
cruising speed, fuel consumption, capacity, and other

time and cost relevant components such as

maintenance requirements [15]. The minimum

number of aircraft is determined in the fleet

assignment. In case that a fixed time horizon is

considered and deadhead flights (flights of aircraft

without passengers) are excluded, the problem turns

out to be rather easy and practical problem instances

solvable in polynomial time using network flow

technique [15]. Within aircraft routing, a rotation of

an aircraft is denoted as a “sequence of aircraft
routings that starts and ends at the same location and

can be flown by one or more aircraft (in parallel)”

[16]. Subsequently, the through flight assignment

builds rotations in a way that a minimum of

passengers have to change aircraft on connecting

flights, i.e., to avoid passenger or baggage transfers

to other gates or aircraft, and, thus, potential causes

for irritations. This is done by creating flight pairs

that are operated by the same aircraft [15]. Generally,

the first destination airport of such flight pairs is a

hub in a hub-and-spoke network structure. The
maintenance routing problem addresses the

requirement of regular maintenance checks of aircraft

with time intervals and durations depending on the

aircraft type [15, 16]. These checks range from simple

visual inspections (about 30 minutes) to major

overhauling that employs 15 − 30 days [16]. Aviation

authorities imply regular checks whose extend

depend on the combination of flight hours, take-off

cycles as well as the number of landings. They are

usually labeled alphabetically ranging from visual

examinations of important aircraft parts (A-checks)

continuously extending to comprehensive
overhauling actions (D-checks). Airlines target the

execution of maintenance checks at night. As a result,

maintenance checks constrain rotations and their

determination significantly.

2. Literature review

Despite advances in computer hardware and

optimization theory, the airline scheduling process is

too complex to solve all stages simultaneously with

existing optimization technique [16]. Nevertheless,

advances enable applications of exact solution

approaches with high(er) solution quality [23], higher

degree of details as well as consideration of realistic

problem sizes. We find a large number of exact

approaches solving combined sub-problems of airline
scheduling that might also be joined with heuristics

or related elements. Deterministic formulations of

airline scheduling (sub-) problems are predominant

that assume fixed demand data, flight and turn times

leading to tight schedules with short turn times due to

objectives regarding profit maximization [16]. These

schedules are easily affected by disruptions and

delays [3]. Therefore, research concentrates on the

integration of flexibility, e.g., buffer times in order to

increase reliability of flight connections [19, 31].

With the aim to decrease complexity, it is common
practice to determine flight schedules and fleet

assignment for a single day that is repeated every

other day of the week except for weekends that

contain a subset of the flight schedule. The same is

valid for the ARP (daily routing model) [12, 15].

Solution approaches to the ARP can be divided

into those that use underlying line-of-flight (LOF)

structures further employing heuristics to solve the

problem and those that use mathematical

programming formulations [15]. LOFs contain all

flight legs of an aircraft defined in time units that

may be given by the (first) departure airport and the

(last) arrival airport of the assigned fleet type [16]. In

a solution, the number of LOFs for each fleet type

must equal the number of related available aircraft.

Furthermore, all LOFs must contain all flights
assigned to the specific fleet type. LOFs may be

constructed by LIFO or FIFO rules [15, 16].

However, they may not contain valid routings

regarding maintenance requirements [16]. Questions

about the robustness of ARP are important due to

their high impact on schedule reliability and

relatively low impact on costs, e.g., crews or flights,

or passenger revenues [21, 19]. Delays and

disruptions are accounted for in [10, 12, 13]. A static

as well as a dynamic ARP using fixed LOFs

including maintenance for tail numbers in the static

case and variable LOFs in the dynamic case are
proposed by [15]. In the latter, the considered time

horizon equals the number of aircraft. The authors

propose a polynomial-time algorithm that generates

LOFs and, subsequently, checks if maintenance

stations are considered for every tail number, at most,

every three days. They show that fixed LOFs allow

for solving the problem in polynomial time whereas

variable LOFs lead to an NP-complete model.

Capacity limits of maintenance stations for C-checks

are assumed by [15]. Four-day aircraft maintenance

routing problems are solved in [29] using an exact
approach in combination with heuristic; see [2, 26]

for balanced utilization of aircraft.

Through flight revenues and maintenance

constraints are examined in [10] with the aim of

finding the most profitable solution. They formulate

the problem as an asymmetric travelling salesman

problem with side constraints [16]. The through flight

problem and the maintenance routing problem are

combined by employing an Eulerian di-graph. This

means that the in-degree at each node equals the out-

degree, so that the graph is strongly connected [15].

They use a time-based flight network determined
subsequently to the fleet assignment. Maximizing

through flight revenues is equal to finding the

Hamilton circuit with maximal value in the related

line graph. In case that this circuit includes long

sequences of flights without maintenance stops, such

sequences are cut and re-solved [10].

Advances in computational research allow for

solving growing problem instances, so that parts of

airline scheduling can be integrated to be

simultaneously solved. Various integrated approaches

are available; see [30] for an overview.

3. Problem analysis and data acquisition

Implementing an algorithm requires

understanding of the problem domain and knowledge

about the data. In this paper, we base all estimates

and assumptions on analyzed real-world flight plans
mainly on the freely available plans from Star

Alliance [27], statistics from governmental

institutions and other publications on the integrated

aircraft scheduling and ARP. The most relevant data

items for the considered problem and proposed

algorithms are:

 Flight plans including the distribution of departure
and arrival airports, flight slots, frequency of

flights, types of aircraft, as well as estimated

passenger demands;

 Airports including geographical position, IATA
codes, capabilities of handling certain aircraft

types, capacity, and restrictions of times for starts

and landings;

 Maintenance including type of maintenance
checks, frequency, duration, and airports that can

perform the maintenance;

 Related cost data, i.e., average costs per flight leg,
ground (parking), and maintenance.

These sources are used to create a test instance

generator and to benchmark the developed algorithms

to real-world problems.

4. Algorithm for ARP

We describe the basic optimization model for the

ARP. Solutions are calculated, among others, using

CPLEX. We develop greedy start heuristics for the

ARP and compare their solutions to those of the

network flow problem. The heuristics serve later as a

starting point for the integrated aircraft scheduling

problem in Section 5.

4.1. Mathematical model

The presented model for the ARP is a network

flow problem formulation as given in [28] which

does not consider costs in the objective function, but

the number of rotations. The problem is acyclic due

to the time progression which makes it solvable in

polynomial time [28].
The objective function (5.1) minimizes the

rotation count, (5.2) ensures that each flight – except

for the start and end flights – has exactly one

predecessor and one successor flight. Constraints

(5.3) and (5.4) require that each flight is covered only

once.

Experiments using test instances are presented in
4.2 and compared with the developed greedy start

heuristic described in the following section.

4.2. Greedy start heuristics

The developed greedy start heuristic named

random-start-fly-forth-back (RSFFB) algorithm is
based on an aircraft-centered algorithm where flights

are selected by specific aircraft. All flights of a flight

plan are included in a list from which a newly created

aircraft randomly chooses a flight. While selecting

suitable flights by checking location, planned arrival

and departure time, the aircraft is moved forward in

time until no possible flight is left. The algorithm

terminates when every flight is assigned to an

aircraft. Additionally, a similar algorithm searches

backwards for possible sequences of flights. This is

exemplified in Figure 2.

Figure 2. Example of the RSFFB

4.3. Results and Comparison

We translate the ARP given in 4.1 to an LP

formulation in order to use the GNU linear

programming kit (GLPK) software package, so that

the model can be solved. Experiments are run on two

systems using one core, respectively: (1) 2.93 GHz

Dual-Xeon, Ubuntu x64 and (2) 1.2 GHz Core 2

Duo, Windows 7, x86. Different real-world test

intances are used; more details are provided in

Section 6. Results show that the proposed heuristics
are very competitive in terms of calculation time,

used memory, and optimality gap in comparison to

the optimization formulations represented by GLPK

and CPLEX. Table 1 gives representative results.

Table 1. Results for large instances

Even though System 2 has the inferior computer

system, the results clearly demonstrate that the

heuristics can compete with the CPLEX solution, i.e.,

considering the time and memory to find a solution

near optimality. Nevertheless, the results indicate that

the ARP is too simple for current computer systems.

Therefore, we extend the problem by a profit driven

objective function and the consideration of

robustness. Based on advanced experiments, we

decide to use the RSFFB-algorithm as our starting

point.

5. Integrated aircraft scheduling problem

The integrated aircraft scheduling problem is

based on the ARP and considers profit maximization
and increased robustness of solutions, e.g., by

minimizing delays or cancelations in disruptive

situations. The algorithm employed for finding

solutions incorporates a fitness function that

evaluates individual flights as well as whole flight

paths taking into account certain criteria discussed in

more details in Section 5.2. Applied validation

criteria are the following:

 no open flights are left;

 each flight has to be assigned to exactly one

aircraft;

 assigned flights do not exceed the range of the
aircraft;

 the assigned flights are in chronological order

and do not intersect or start on the arrival

location of their respective predecessor;

 maintenance intervals are respected.

We consider maintenance checks according to [11]

and allow for deadhead flights. They are generally

not allowed in the classical ARP. Deadhead flights

might be required to reduce the number of aircraft

and allow for maintenance checks in case they are not

feasible in a proposed flight sequence.

5.1. Control algorithm

The presented control algorithm determines a best set

of parameters for the subsequently employed

(parameterized) solution creation algorithm that is

based on genetic algorithms. It consists of three core-

components (Figure 3) that are (1) a multi-process

including an auto-adapting control algorithm, (2) a

fitness function to evaluate and compare solutions,
and (3) a parameterized local search for solution

generation. It contains four parameters which are a)

the maximum population size cp, b) the number of

best solutions included in the next generation ct, c)

the number of random solutions considered in the

next generation cr in order to increase variety, and d)

the number of unsuccessful generations before

stopping denoted by ci. An auto-adaptation is

performed by the control algorithm where a crossover

implies choosing a parameter from a parent for the

search algorithm while the mutation randomly
applies a 0.25 change in either direction within the

allowed range.

Figure 3. Aircraft scheduling problem solver
control algorithm guiding the solution

creation algorithm, similar to a local search
algorithm, using varying parameters

5.2. Fitness Function

The fitness of a solution is measured regarding its

profit and robustness. The following equation

calculates the fitness using the profit weighted by the

robustness of the solution:

with QS being the fitness of solution s, Ps the profit of

solution s in US Dollars (USD), Rs the robustness of

solution s expressed in %, and wr the robustness

evaluation value. The profit Ps is calculated regarding

different revenues and expenses given as follows:

with rf denoting the (ticket) revenue of flight f in the

set of considered flights, thus f ϵ Fs given in USD.

Costs for operating the aircraft (eof) and landing costs

(elf) are subtracted for flight f ϵ Fs as well as overall

costs for parking events denoted by eg with g ϵ Gs.

The cost for landing and parking are based on the

Exeter International Airport’s schedule of fees and

charges. Finally, overall costs for maintenance are

considered and given by em for maintenance m ϵ Ms

where Ms denotes the set of maintenance checks. The

above mentioned ticket revenue is calculated as
follows:

In order to get an estimate on rsk, we use the average

values given in [7] and [1] for the ticket price (USD
340), the revenue per ticket (71.1%), and stage length

(1813,73 km). Note that these values are average

values and thus should be adapted in case better

estimates or scenarios are available, e.g., if only one

airline is involved or all flights are within a specific

region.

We calculate maintenance costs em as follows:

where tm is the duration of the maintenance m ϵ Ms in

seconds, BHDOCa
m the block-hour direct operating

costs of the aircraft a that executes the flight f ϵ Fs

measured in USD/h, and emp denoting proportions of

maintenance cost in %.

We integrate robustness by assuming that robustness

is increased if the probability of propagated delays is

reduced. Propagated delays occur when a delay

affects departures of successor flights. A common

solution to increase robustness is to enhance planned

parking and thus incorporate buffer times [3, 14, 18].

We consider the duration for the parking time as

“perfectly robust” that is at least as long as the

average late flight departure delay. In contrast,
parking time durations up to the average total flight

departure delay are regarded not robust. Such

integration of robustness via parking duration

counterbalances profits due to enhanced related costs.

5.3. Solution Creation Algorithm

The (parameterized) solution creation algorithm is

based on genetic algorithms and employed to

generate solutions. It is based on different sub-

functions that interact regarding different parameters:

 cas: the aircraft count used in sub-function

createAircraftGroupShifted(.)

 cag: the aircraft count for the first execution of

createAircraftGroupGreedy(.)

 tdg: the minimum deadhead flight waiting time for

overall usage

 tdf: the minimum deadhead flight waiting time for
fillSolutionSpaces (.)

Figure 4 depicts the algorithm. The functions can be

separated in three groups: (1) functions to create

complete and valid solutions, (2) functions to
optimize given solutions, (3) helper functions called

by other functions to improve and repair the solution.

Figure 4. Solution creation algorithm

The sub-function createAircraftGroupShifted(.)

assigns open flights to aircraft including deadhead

flights if no aircraft can perform the related flight; see

Figure 5. The function tryToFly(.) checks if a given

flight can be added to the flight path of a specific

aircraft also allowing for deadhead flights as long as
a given minimum deadhead flight waiting time is not

violated.

Figure 5. createAircraftGroupShifted(.)

The solution is evenly distributed over all aircraft,

but does not guaranteed to be valid. If open flights

remain, the function createAircraftGroupLinear(.) is

called to produce a valid solution by creating

deadhead flights or new aircraft that are assigned to

remaining open flights; see Figure 6.

Figure 6. createAircraftGroupLinear(.)

Aircraft with a low number of assigned flights are

eliminated by the function eliminateBadPerfor-

mingAircraftGroup(.); see Figure 7. The function

fillSolutionSpaces(.) is applied to fill left-over open

flights into aircraft schedules; see Figure 8. This is

followed by optimizeDeadheadFlights(.) and

createAircraftGroupGreedy(.) with a limited amount

of aircraft until there are no open flights left; see

Figure 10 and Figure 11. Up to this step, maintenance

intervals are likely to be violated, so that the
functions eliminateBad-MaintenanceChecks(.) and

addMissingMaintenance Checks(.) are applied to

either remove all invalid maintenance checks or

insert necessary maintenance actions; see Figure 9,

Figure 12, and Figure 13 for a visualization of the

function addMissing-Maintenance(.).

Figure 7. eliminateBadPerforming-

AircraftGroup(.)

Figure 8. fillSolutionSpaces(.)

Figure 9. eliminateBadMaintenanceChecks(.)

Figure 10. optimizeDeadheadFlights(.)

Figure 11. createAircraftGroupGreedy(.)

Figure 12. addMissingMaintenanceChecks(.)

Unnecessary deadhead flights are removed by
optimizeDeadheadFlights(.). As the insertion of new

maintenance checks is likely to have moved

scheduled flights back into open flights, create-

AircraftGroupGreedy(.) is again employed with an

unlimited aircraft count to render the solution valid.

5.4 Experiments

Extensive experiments are conducted to gain an

understanding of parameters and their calibration as

well as to verify the quality of solutions regarding

real-world scenarios with respect to robustness and

profit. We present the outcome of the calibration.

Detailed descriptions for all runs including tables and

graphs are provided in [4].

Figure 13. addMissing Maintenance(.)

Different parameter combinations are used for

calibration of the control algorithm and for analyzing

the behavior of the algorithm in order to determine
good reference values. We replicate each parameter

combination for each instance five times and record

average values that give the best mixture of quality

and runtime. The experiments indicate the following

reference values (see Section 5.1) where the tested

ranges are given in squared:

 cp: 25 [15, …, 65; Step size: 5]

 ct: 12 [8, …, 20; Step size: 2]

 cr: 6 [2, …, 12; Step size: 2]

 ci: 5 [1, …, 9; Step size: 2]

These reference parameters are used, again, on eight
instances created by a problem generator described in

Section 6; see Table 2 for information on the instance

structure where the names associate that the problems

represent existing scenarios and could be applied by

airline operators.

Table 2. Problem instance summary (ns:

network structure hub-and-spoke (hts) point-
to-point (ptp); d: days; f: flights; a:airports;

h: hubs; at: aircraft types; mat: maintenance
per aircraft type; fs: fleet size; mcf: maximum
concurrent flights)

All experiments are executed on an Intel Core i7-

920 processor (2.66GHz, eight virtual CPU-cores)
running Windows 7 x64. The algorithm is given as a

single-threaded Java implementation. Used memory

was below 1GB in all cases.

We analyzed the behavior of the algorithms, i.e.

the development of the parameters cag, cas, tdg and tdf.

Throughout all instances, we observe a quick

increase for the solution quality which implies that

the algorithm finds the good solutions at an early

stage. Results in Table 3 show that the robustness is

high with an average of 0.939 except for one case

(AustralianTwo) with a value of 0.687. In comparison
to problem instances AmericanDream and Down-

Under that nearly include identical numbers of flights

and days (see Table 2), the maximum concurrent

flights (MCF) of AustralianTwo is equivalent to 66%

of their average MCF which indicates a plausible

connection between flight density for individual

aircraft and robustness.

The algorithm prefers to serve passenger demand

towards seat load. This can result from an

inappropriate set of available aircraft types. The

number of deadhead flights is rather low ranging

from 1,05% to 14.70% except for the problem
instance LittleFrenchConnection with 56.70% which

further is the only instance showing a negative profit.

In fact, alternative calculation of minimum departure

expenses and maximum revenues employing the

most efficient aircraft types demonstates that positive

revenues are out of reach. Results show for this test

instance a remarkably high percentage of deadhead

flights (56.70%) which might explain the minor

increase of aircraft count (10) in comparison to the

MCF (7). The reason for this behavior might be the

low flight density of the test instance. An increase in
used aircraft would raise parking expenses to a

greater extend than diminishing deadhead flight.

5.5. Comparison with other Algorithms

Over the last years, several authors proposed new

algorithms to solve the combined fleet assignment
and ARP. While robustness seems to be included in

[22], crew pairing is often part of proposed

algorithms [24, 17, 23]. Reported problem sizes (e.g.,
number of flights) are generally rather low with less

than 2600 flights and less than 10 aircraft types. The

same problem as considered in this paper is examined

in [22] regarding a maximum size of 2558 flights and

9 aircraft types. Our experiments include large

instances that are solved in a reasonable time (73,000

flights, 10 aircraft types). The suitability of the

algorithm for such large instances results from using

meta-heuristics. Other authors employing heuristics

do not solve instances beyond 3,000 flights [22, 23].

In conclusion, the proposed algorithm is competitive
and provides a valuable tool for airline companies

constrained to handle large data sets, require short

running times and positive profits to improve

company results rather than finding (theoretical)

optimum solutions for small data sets.

6. ARP Test Instance Generator and

Visualization Suite (ARPViS)

One major contribution is the flight plan

generator and visualization suite (ARPViS). For

many established problems, there are libraries with
test instances (e.g., OR-Library [6]), while libraries

for the ARP as well as integrated aircraft scheduling

problems are not available. Availability of such a

library is of major interest in order to compare

algorithms and define requirements for problem

instances. We aim to fill this gap by creating a test

instance generator that considers several parameters,

viz. timeframe in days, flights per day, number of

used airports, root network structure, connection

density, maximum number of aircraft slots per

airport, aircraft type count, number of maintenance
stations per aircraft, fleet size, and maximum

concurrent flights. We employ real-world input, if

available, from different sources, e.g., flight plans,

publications, and/or airline operators to create

realistic flight plans. Nevertheless, the validity of the

results depends on the parameter settings and requires

individual verification. Currently, we do not consider

Table 3. Experimental results

different weekdays or passenger demand distributions

aligned with real-world demand. We used the

generator to create eight instances regarding different

specifications as an initial set for a library; see Figure

12 for a visualization of the flight plan Europe with

30,000 flights and 20 airports. The instances are
visualized using ARPViS [4], a tool that allows for

depicting special parameters of the flight plan, e.g.,

the density of flights for specific airports,

connections, etc. as well as the solution. The

understanding of the flight plan is enhanced by

underlying maps as well as interactive elements to

project results of individual flight legs. The planer is

further supported, e.g., regarding overall expenses

and profits of the best solution.

Figure 12. Flight plan and result presentation

7. Conclusions

Airline planners have to solve complex tasks. We

discuss the current state-of-the-art for the (extended)

ARP including profits, maintenance, and deadhead

flights. We introduce an advanced algorithm to find

robust and near optimal profitable solutions within

real-world acceptable time intervals. We concentrate

on the development of heuristics, thus leaving
mathematical problem formulation to a later stage.

The major drawback of published algorithms is

the limited size of considered test instances and the

time required to find a solution. With instances

containing less than 3,000 flights, only small airlines

might use related algorithms and software.

Otherwise, they need to reduce the time horizon to

consider a few days to simplify the problem together

with maintenance constraints that might not be an

issue anymore. Our proposed algorithm solves test

instances with more than 73,000 flights, more than 10

aircraft types, and deadhead flights to improve profits

and to consider all levels of maintenance further
regarding robustness of solutions. Robustness is of

major importance as it allows airlines to fulfill plans

even if delays occur, e. g., during boarding. The

runtime for very large instances is still below an hour

and, therefore, applicable during the planning stage in

order to evaluate various flight plans. A further

substantial contribution is the presented test instance

generator that takes real-world statistics into account

and generates flight plans based on various

parameters that might also be specified by the user;

see http://iwi.econ.uni-hamburg.de/IWIWeb/Uploads/

Team/JP/AllFilesInternet.zip. Our intention of the
generator and the eight instances used in this paper is

the creation of a test instance library to allow for

effective comparison of algorithms in the future.

Currently, such a library does not exist. Finally, our

visualization tool supports handling flight plans and

interpretation of solutions.

8. References

 [1] Airline Data Project, Massachusetts Institute of
Technology. Average Stage Length Flown of Total
Operating Fleet. Website, December 2009. URL
http://web.mit.edu/airlinedata/www/2009%2012%20Month

%20Documents/Aircraft%20and%20Related/Total%20Flee
t/Average%20Stage%20Length%20Flown%20of%20Total
%20Operating%20Fleet.htm. visited on January 20th 2011.

[2] H. M. Afsar, M.-L. Espinouse, and B. Penz. Buidling
flight planning for an airline company under maintenance
constraints. Journal of Quality in Maintenance Engineering,
15(4):430-443, 2009

[3] S. Ahmad-Beygi, A. Cohn, and M. Lapp. Decreasing
Airline Delay Propagation By Re-Allocating Scheduled
Slack. IIE Transactions, 42(7):478-489, 2010.

[4] T. Reiners, J. Pahl, M. Maroszek, C. Rettig.
Optimization and Heuristics for Aircraft Planning and
Scheduling: Survey and Implementation. Technical Report.
https://iwi.econ.uni-hamburg.de/IWIWeb/Default.aspx?

tabid=174, visited on August 26th 2011.

[5] C. Barnhart, N. L. Boland, L. W. Clarke, E. L. Johnson,
G. L. Nemhauser, and R. G. Shenot. Flight string models
for aircraft fleeting and routing. Transportation Science,
32(3): 208-220, 1998.

[6] J. E. Beasley. OR-Library: Distributing test problems

by electronic mail. Journal of Operational Research
Society, 41:1069-1072, 1990.

http://iwi.econ.uni-hamburg.de/IWIWeb/Uploads/%20Team/JP/AllFilesInternet.zip
http://iwi.econ.uni-hamburg.de/IWIWeb/Uploads/%20Team/JP/AllFilesInternet.zip

[7] Bureau of Transportation Statistics, U.S. Department of
Transportation. 3rd-Quarter 2010, Domestic Air Fares Rose
10.7% from 3rd Quarter 2009. Press Release, 2/2/2011

[8] Bureau of Transportation Statistics, U.S. Department of

Transportation. Average delay for the Newark International
Airport and Continental Airlines between 01.01.2010 and
01.01.2011. Website (generated), March 2011b. URL
http://transtats.bts.gov/. visited on March 26th 2011.

[9] Bureau of Transportation Statistics, U.S. Department of
Transportation. On-Time Arrival Performance – National
(January, 2011). Website (generated), March 2011c. URL

http://transtats.bts.gov/. visited on March 26th 2011.

[10] L. Clarke, E. Johnson, G. Nemhauser, and Z. Zhu. The
aircraft rotation problem. Annals of Operations Research,
69:33-46, 1997.

[11] A. J. Cook and G. Tanner. Innovative Cooperative
Actions of R&D in EUROCONTROL Programme CARE

INO III: Dynamic Cost Indexing: Aircraft maintenance
marginal delay costs. Monograph, Transport Studies
Group, University of Westminster, London, 2008.

[12] G. Desaulniers, J. Desrosiers, Y. Dumas, M. M.
Solomon, and F. Soumis. Daily aircraft routing and
scheduling. Management Science, 43(6):841-855, 1997b.

[13] S. Dozic, M. Kalic, O. Babic, and M. Cangalovic.
Heuristic approach to the airline schedule disturbances
problem: multi�eet case. In J. Blazewicz, M. Drozdowski,
G. Kendall, and B. McCollum, editors, Proceedings of the
4th Multidisciplinary International Scheduling Conference:
Theory and Applications (MISTA 2009), 10-12 Aug 2009,
Dublin, Ireland, 311-320, 2009.

[14] M. Dunbar, G. Froyland, and C.-L. Wu. Robust

Airline Schedule Planning: Minimizing Propagated Delay
in an Integrated Routing and Crew Framework.
Optimization Online, 2010.

[15] R. Gopalan and K.T. Talluri. The aircraft maintenance
routing problem. Operations Research, 46(2):260-271,
1998.

[16] T. Grosche. Computational Intelligence in Integrated
Airline Scheduling. PhD thesis, University of Mannheim,
2009.

[17] I. Ioachim, J. Desrosiers, F. Soumis, and N. Belanger.
Fleet assignment and routing with schedule synchronization
constraints. EJOR, 119(1): 75-90, 1999.

[18] S. Lan, J.-P. Clarke, and C. Barnhart. Planning for
Robust Airline Operations: Optimizing Aircraft Routings
and Flight Departure Times to Minimize Passenger
Disruptions. Transportation Science, 40(1):15-28, February
2006.

[19] S. Lan, J.-P. Clarke, and C. Barnhart. Planning for
robust airline operations: Optimizing aircraft routings and
flight departure times to minimize passenger disruptions.
Transportation Science, 40(1):15-28, 2006.

[20] M. Lohatepanont and C. Barnhart. Airline Schedule
Planning: Integrated Models and Algorithms for Schedule
Design and Fleet Assignment. Transportation Science,
38(1): 19-32, 2004

[21] L. Marla and C. Barnhart. Robust optimization:
Lessons learned from aircraft routing, submitted to
Transportation Science, Internet Source:

http://www.mit.edu/ lavanya/, 2009.

[22] J. M. Rosenberger, E. L. Johnson, and G. L.
Nemhauser. A Robust Fleet-Assignment Model with Hub
Isolation and Short Cycles. Transportation Science, 38:357-
368, 2004.

[23] R. A. Rushmeier and S. A. Kontogiorgis. Advances in

the optimization of airline fleed assignment. Transportation
Science, 31(2):159-169, 1997.

[24] R. Sandhu and D. Klabjan. Integrated Airline Fleeting
and Crew-Pairing Decisions. Operations Research,
55(3):439-456, 2007.

[25] A. Sarac, R. Batta, and C. M. Rump. A branch-and-

price approach for operational aircraft maintenance routing.
EJOR, 175(3):1850-1869, 2006.

[26] C. Sriram and A. Haghani. An optimization model for
aircraft maintenance scheduling and re-assignment.
Transportation Research Part A: Policy and Practice,
37(1):29-48, January 2003

[27] Star Alliance Services GmbH. Timetable January 1st

2011, March 20th 2011. Website, January 2011. URL
http://www.staralliance.com/assets/doc/en/services/tools-
and-downloads/pdf/StarAlliance.pdf. Visited on January
20th 2011.

[28] L. Suhl and T. Mellouli, Optimierungssysteme:
Modelle, Verfahren, Software, Anwendungen, Springer,
Berlin, 2009.

[29] K. T. Talluri. The four-day aircraft maintenance
routing problem. Transportation Science, 32(1):43-53,
1998.

[30] O. Weide. Robust and Integrated Airline Scheduling.
PhD thesis, Department of Engineering Science, School of
Engineering, University of Auckland, New Zealand, 2009.

[31] C.-L. Wu. Improving airline network robustness and
operational reliability by sequential optimization
algorithms. Networks and Spatial Economics, 6(3-4):235-
251, 2006.

