
 
Copyright © 2012 IEEE. Personal use of this material is permitted. Permission from 

IEEE must be obtained for all other uses, in any current or future media, including 

reprinting/republishing this material for advertising or promotional purposes, creating 

new collective works, for resale or redistribution to servers or lists, or reuse of any 

copyrighted component of this work in other works. 



Integrated Aircraft Scheduling Problem: An Auto-Adapting Algorithm to 

Find Robust Aircraft Assignments for Large Flight Plans 
 

Torsten Reiners 

Curtin Business School, Curtin University, Perth, Aus. 

treiners@curtin.edu.au 

Julia Pahl, Michael Maroszek, Cornelius Rettig 

Institute of Information Systems, University of 

Hamburg, Germany, pahl@econ.uni-hamburg.de, 

michael@maroszek.de, rettig.cornelius@gmail.com 

 

Abstract 
The overall airline scheduling process involves 
hierarchical steps starting with the network design 

and ending with crew assignment. Aircraft routing is 

especially important with respect to timing and costs 

for an airline. In this contribution, we focus on 

aircraft routing where aircraft are assigned to flight 

legs further considering maintenance requirements. 

We developed and implemented algorithms that 

extend the aircraft routing problem (ARP) by 
including profit and robustness. The latter objective 

is important as the dependencies of flights and 

airlines increases and deviations to the original time 

plan as unexpected events like volcano eruptions or 

heavy weather-related issues are difficult to handle. 

A robust aircraft routing ensures that unforeseen 

events have less impact. The results are compared to 

current state-of-the-art solutions. We developed a test 
instance-generator to create specific problems and 

build a library for future benchmarking tests. 
 

1. Introduction  
 
The aircraft (maintenance) rotation problem is 

part of the overall airline scheduling problem [21]. It 

takes place after the fleet assignment which is 

determined according to the flight schedule where 

destinations, flight dates, and departure times are 

established based on demand assumptions [2]. The 

objective is to assign an aircraft (identified by its tail 

number) of a given fleet to a feasible sequence of 

flight legs, so that maintenance constraints are 

satisfied. Generally, the planning steps are executed 
in a hierarchical order where the solution of one sub-

problem is used as input for the subsequent problem 

[5, 16, 20, 21, 25]. 

In order to provide an idea of the planning 

constraints regarding the ARP, we first discuss the 

overall airline scheduling process as depicted in 

Figure 1. The overall process is divided into three 

parts, i.e., flight schedule generation, aircraft 

scheduling and crew scheduling all being further 

broken down into distinct planning steps.  
 

 
Figure 1. Overall airline scheduling process 

 

The first planning step is the flight schedule 

generation which generally covers a period of three 

to six months. In order to reduce complexity, cyclical 

patterns covering a day or week are constructed and 

repeated for the whole period. The flight schedule 

generation embraces network design, frequency 

assignment, and flight schedule. The network design 

considers the identification of origin-destination city 

pairs thus building the route network the airline 

wants to serve. The design is based on strategic and 
tactical decisions as well as traffic forecasts including 

demand variations. The number of flights to each 

origin-destination pair is assigned during the 

frequency assignment. Exact departure times are 

determined during the planning of flight schedules. 

The focus in this paper is set on the subsequent 

planning step aircraft scheduling including fleet 

assignment and aircraft routing with the later one 

being further subdivided in through flight assignment 

and maintenance routing. Fleet assignment 

concentrates on the assignment of aircraft types with 

respect to several aircraft characteristics, e.g., 
cruising speed, fuel consumption, capacity, and other 

time and cost relevant components such as 

maintenance requirements [15]. The minimum 

number of aircraft is determined in the fleet 

assignment. In case that a fixed time horizon is 

considered and deadhead flights (flights of aircraft 

without passengers) are excluded, the problem turns 

out to be rather easy and practical problem instances 

solvable in polynomial time using network flow 

technique [15]. Within aircraft routing, a rotation of 

an aircraft is denoted as a “sequence of aircraft 
routings that starts and ends at the same location and 

can be flown by one or more aircraft (in parallel)” 

[16]. Subsequently, the through flight assignment 

builds rotations in a way that a minimum of 

passengers have to change aircraft on connecting 



flights, i.e., to avoid passenger or baggage transfers 

to other gates or aircraft, and, thus, potential causes 

for irritations. This is done by creating flight pairs 

that are operated by the same aircraft [15]. Generally, 

the first destination airport of such flight pairs is a 

hub in a hub-and-spoke network structure. The 
maintenance routing problem addresses the 

requirement of regular maintenance checks of aircraft 

with time intervals and durations depending on the 

aircraft type [15, 16]. These checks range from simple 

visual inspections (about 30 minutes) to major 

overhauling that employs 15 − 30 days [16]. Aviation 

authorities imply regular checks whose extend 

depend on the combination of flight hours, take-off 

cycles as well as the number of landings. They are 

usually labeled alphabetically ranging from visual 

examinations of important aircraft parts (A-checks) 

continuously extending to comprehensive 
overhauling actions (D-checks). Airlines target the 

execution of maintenance checks at night. As a result, 

maintenance checks constrain rotations and their 

determination significantly.  
 

2. Literature review 
 
Despite advances in computer hardware and 

optimization theory, the airline scheduling process is 

too complex to solve all stages simultaneously with 

existing optimization technique [16]. Nevertheless, 

advances enable applications of exact solution 

approaches with high(er) solution quality [23], higher 

degree of details as well as consideration of realistic 

problem sizes. We find a large number of exact 

approaches solving combined sub-problems of airline 
scheduling that might also be joined with heuristics 

or related elements. Deterministic formulations of 

airline scheduling (sub-) problems are predominant 

that assume fixed demand data, flight and turn times 

leading to tight schedules with short turn times due to 

objectives regarding profit maximization [16]. These 

schedules are easily affected by disruptions and 

delays [3]. Therefore, research concentrates on the 

integration of flexibility, e.g., buffer times in order to 

increase reliability of flight connections [19, 31]. 

With the aim to decrease complexity, it is common 
practice to determine flight schedules and fleet 

assignment for a single day that is repeated every 

other day of the week except for weekends that 

contain a subset of the flight schedule. The same is 

valid for the ARP (daily routing model) [12, 15].  

Solution approaches to the ARP can be divided 

into those that use underlying line-of-flight (LOF) 

structures further employing heuristics to solve the 

problem and those that use mathematical 

programming formulations [15]. LOFs contain all 

flight legs of an aircraft defined in time units that 

may be given by the (first) departure airport and the 

(last) arrival airport of the assigned fleet type [16]. In 

a solution, the number of LOFs for each fleet type 

must equal the number of related available aircraft. 

Furthermore, all LOFs must contain all flights 
assigned to the specific fleet type. LOFs may be 

constructed by LIFO or FIFO rules [15, 16]. 

However, they may not contain valid routings 

regarding maintenance requirements [16]. Questions 

about the robustness of ARP are important due to 

their high impact on schedule reliability and 

relatively low impact on costs, e.g., crews or flights, 

or passenger revenues [21, 19]. Delays and 

disruptions are accounted for in [10, 12, 13]. A static 

as well as a dynamic ARP using fixed LOFs 

including maintenance for tail numbers in the static 

case and variable LOFs in the dynamic case are 
proposed by [15]. In the latter, the considered time 

horizon equals the number of aircraft. The authors 

propose a polynomial-time algorithm that generates 

LOFs and, subsequently, checks if maintenance 

stations are considered for every tail number, at most, 

every three days. They show that fixed LOFs allow 

for solving the problem in polynomial time whereas 

variable LOFs lead to an NP-complete model. 

Capacity limits of maintenance stations for C-checks 

are assumed by [15]. Four-day aircraft maintenance 

routing problems are solved in [29] using an exact 
approach in combination with heuristic; see [2, 26] 

for balanced utilization of aircraft.  

Through flight revenues and maintenance 

constraints are examined in [10] with the aim of 

finding the most profitable solution. They formulate 

the problem as an asymmetric travelling salesman 

problem with side constraints [16]. The through flight 

problem and the maintenance routing problem are 

combined by employing an Eulerian di-graph. This 

means that the in-degree at each node equals the out-

degree, so that the graph is strongly connected [15]. 

They use a time-based flight network determined 
subsequently to the fleet assignment. Maximizing 

through flight revenues is equal to finding the 

Hamilton circuit with maximal value in the related 

line graph. In case that this circuit includes long 

sequences of flights without maintenance stops, such 

sequences are cut and re-solved [10]. 

Advances in computational research allow for 

solving growing problem instances, so that parts of 

airline scheduling can be integrated to be 

simultaneously solved. Various integrated approaches 

are available; see [30] for an overview. 
 
 
 
 



3. Problem analysis and data acquisition 
 
Implementing an algorithm requires 

understanding of the problem domain and knowledge 

about the data. In this paper, we base all estimates 

and assumptions on analyzed real-world flight plans 
mainly on the freely available plans from Star 

Alliance [27], statistics from governmental 

institutions and other publications on the integrated 

aircraft scheduling and ARP. The most relevant data 

items for the considered problem and proposed 

algorithms are: 

 Flight plans including the distribution of departure 
and arrival airports, flight slots, frequency of 

flights, types of aircraft, as well as estimated 

passenger demands; 

 Airports including geographical position, IATA 
codes, capabilities of handling certain aircraft 

types, capacity, and restrictions of times for starts 

and landings; 

 Maintenance including type of maintenance 
checks, frequency, duration, and airports that can 

perform the maintenance; 

 Related cost data, i.e., average costs per flight leg, 
ground (parking), and maintenance. 

These sources are used to create a test instance 

generator and to benchmark the developed algorithms 

to real-world problems. 
 

4. Algorithm for ARP 
 
We describe the basic optimization model for the 

ARP. Solutions are calculated, among others, using 

CPLEX. We develop greedy start heuristics for the 

ARP and compare their solutions to those of the 

network flow problem. The heuristics serve later as a 

starting point for the integrated aircraft scheduling 

problem in Section 5. 
 

4.1. Mathematical model  
 
The presented model for the ARP is a network 

flow problem formulation as given in [28] which 

does not consider costs in the objective function, but 

the number of rotations. The problem is acyclic due 

to the time progression which makes it solvable in 

polynomial time [28].  
The objective function (5.1) minimizes the 

rotation count, (5.2) ensures that each flight – except 

for the start and end flights – has exactly one 

predecessor and one successor flight. Constraints 

(5.3) and (5.4) require that each flight is covered only 

once. 

 

 
 

Experiments using test instances are presented in 
4.2 and compared with the developed greedy start 

heuristic described in the following section.  
 

4.2. Greedy start heuristics 
 
The developed greedy start heuristic named 

random-start-fly-forth-back (RSFFB) algorithm is 
based on an aircraft-centered algorithm where flights 

are selected by specific aircraft. All flights of a flight 

plan are included in a list from which a newly created 

aircraft randomly chooses a flight. While selecting 

suitable flights by checking location, planned arrival 

and departure time, the aircraft is moved forward in 

time until no possible flight is left. The algorithm 

terminates when every flight is assigned to an 

aircraft. Additionally, a similar algorithm searches 

backwards for possible sequences of flights. This is 

exemplified in Figure 2. 
 

 
Figure 2. Example of the RSFFB 

 

4.3. Results and Comparison 
 
We translate the ARP given in 4.1 to an LP 

formulation in order to use the GNU linear 

programming kit (GLPK) software package, so that 

the model can be solved. Experiments are run on two 

systems using one core, respectively: (1) 2.93 GHz 

Dual-Xeon, Ubuntu x64 and (2) 1.2 GHz Core 2 

Duo, Windows 7, x86. Different real-world test 

intances are used; more details are provided in 

Section 6. Results show that the proposed heuristics 
are very competitive in terms of calculation time, 



used memory, and optimality gap in comparison to 

the optimization formulations represented by GLPK 

and CPLEX. Table 1 gives representative results. 
 

Table 1. Results for large instances 

 
 

Even though System 2 has the inferior computer 

system, the results clearly demonstrate that the 

heuristics can compete with the CPLEX solution, i.e., 

considering the time and memory to find a solution 

near optimality. Nevertheless, the results indicate that 

the ARP is too simple for current computer systems. 

Therefore, we extend the problem by a profit driven 

objective function and the consideration of 

robustness. Based on advanced experiments, we 

decide to use the RSFFB-algorithm as our starting 

point. 
 

5. Integrated aircraft scheduling problem 
 
The integrated aircraft scheduling problem is 

based on the ARP and considers profit maximization 
and increased robustness of solutions, e.g., by 

minimizing delays or cancelations in disruptive 

situations. The algorithm employed for finding 

solutions incorporates a fitness function that 

evaluates individual flights as well as whole flight 

paths taking into account certain criteria discussed in 

more details in Section 5.2. Applied validation 

criteria are the following: 

 no open flights are left; 

 each flight has to be assigned to exactly one 

aircraft; 

 assigned flights do not exceed the range of the 
aircraft;  

 the assigned flights are in chronological order 

and do not intersect or start on the arrival 

location of their respective predecessor; 

 maintenance intervals are respected. 

We consider maintenance checks according to [11] 

and allow for deadhead flights. They are generally 

not allowed in the classical ARP. Deadhead flights 

might be required to reduce the number of aircraft 

and allow for maintenance checks in case they are not 

feasible in a proposed flight sequence.  
 
 
 
 
 

5.1. Control algorithm 
 

The presented control algorithm determines a best set 

of parameters for the subsequently employed 

(parameterized) solution creation algorithm that is 

based on genetic algorithms. It consists of three core-

components (Figure 3) that are (1) a multi-process 

including an auto-adapting control algorithm, (2) a 

fitness function to evaluate and compare solutions, 
and (3) a parameterized local search for solution 

generation. It contains four parameters which are a) 

the maximum population size cp, b) the number of 

best solutions included in the next generation ct, c) 

the number of random solutions considered in the 

next generation cr in order to increase variety, and d) 

the number of unsuccessful generations before 

stopping denoted by ci. An auto-adaptation is 

performed by the control algorithm where a crossover 

implies choosing a parameter from a parent for the 

search algorithm while the mutation randomly 
applies a 0.25 change in either direction within the 

allowed range.  
 

 
 

Figure 3. Aircraft scheduling problem solver 
control algorithm guiding the solution 

creation algorithm, similar to a local search 
algorithm, using varying parameters 

 



5.2. Fitness Function 
 

The fitness of a solution is measured regarding its 

profit and robustness. The following equation 

calculates the fitness using the profit weighted by the 

robustness of the solution: 

 
with QS being the fitness of solution s, Ps the profit of 

solution s in US Dollars (USD), Rs the robustness of 

solution s expressed in %, and wr the robustness 

evaluation value. The profit Ps is calculated regarding 

different revenues and expenses given as follows: 

 
with rf denoting the (ticket) revenue of flight f in the 

set of considered flights, thus f ϵ Fs given in USD. 

Costs for operating the aircraft (eof) and landing costs 

(elf) are subtracted for flight f ϵ Fs as well as overall 

costs for parking events denoted by eg with g ϵ Gs. 

The cost for landing and parking are based on the 

Exeter International Airport’s schedule of fees and 

charges. Finally, overall costs for maintenance are 

considered and given by em for maintenance m ϵ Ms 

where Ms denotes the set of maintenance checks. The 

above mentioned ticket revenue is calculated as 
follows: 

 

 
 

In order to get an estimate on rsk, we use the average 

values given in [7] and [1] for the ticket price (USD 
340), the revenue per ticket (71.1%), and stage length 

(1813,73 km). Note that these values are average 

values and thus should be adapted in case better 

estimates or scenarios are available, e.g., if only one 

airline is involved or all flights are within a specific 

region. 

We calculate maintenance costs em as follows: 

 
where tm is the duration of the maintenance m ϵ Ms in 

seconds, BHDOCa
m the block-hour direct operating 

costs of the aircraft a that executes the flight f ϵ Fs 

measured in USD/h, and emp denoting proportions of 

maintenance cost in %. 

We integrate robustness by assuming that robustness 

is increased if the probability of propagated delays is 

reduced. Propagated delays occur when a delay 

affects departures of successor flights. A common 

solution to increase robustness is to enhance planned 

parking and thus incorporate buffer times [3, 14, 18]. 

We consider the duration for the parking time as 

“perfectly robust” that is at least as long as the 

average late flight departure delay. In contrast, 
parking time durations up to the average total flight 

departure delay are regarded not robust. Such 

integration of robustness via parking duration 

counterbalances profits due to enhanced related costs.  
 

5.3. Solution Creation Algorithm 
 
The (parameterized) solution creation algorithm is 

based on genetic algorithms and employed to 

generate solutions. It is based on different sub-

functions that interact regarding different parameters: 

 cas: the aircraft count used in sub-function  

createAircraftGroupShifted(.) 

 cag: the aircraft count for the first execution of 

createAircraftGroupGreedy(.) 

 tdg: the minimum deadhead flight waiting time for 

overall usage 

 tdf: the minimum deadhead flight waiting time for 
fillSolutionSpaces (.) 
 

Figure 4 depicts the algorithm. The functions can be 

separated in three groups: (1) functions to create 

complete and valid solutions, (2) functions to 
optimize given solutions, (3) helper functions called 

by other functions to improve and repair the solution. 

 
Figure 4. Solution creation algorithm 

 



The sub-function createAircraftGroupShifted(.) 

assigns open flights to aircraft including deadhead 

flights if no aircraft can perform the related flight; see 

Figure 5. The function tryToFly(.) checks if a given 

flight can be added to the flight path of a specific 

aircraft also allowing for deadhead flights as long as 
a given minimum deadhead flight waiting time is not 

violated. 
 

 
Figure 5. createAircraftGroupShifted(.) 
 
The solution is evenly distributed over all aircraft, 

but does not guaranteed to be valid. If open flights 

remain, the function createAircraftGroupLinear(.) is 

called to produce a valid solution by creating 

deadhead flights or new aircraft that are assigned to 

remaining open flights; see Figure 6.  

 

 
Figure 6. createAircraftGroupLinear(.) 

 
Aircraft with a low number of assigned flights are 

eliminated by the function eliminateBadPerfor-

mingAircraftGroup(.); see Figure 7. The function 

fillSolutionSpaces(.) is applied to fill left-over open 

flights into aircraft schedules; see Figure 8. This is 

followed by optimizeDeadheadFlights(.) and 

createAircraftGroupGreedy(.) with a limited amount 

of aircraft until there are no open flights left; see 

Figure 10 and Figure 11. Up to this step, maintenance 

intervals are likely to be violated, so that the 
functions eliminateBad-MaintenanceChecks(.) and 

addMissingMaintenance Checks(.) are applied to 

either remove all invalid maintenance checks or 

insert necessary maintenance actions; see Figure 9, 

Figure 12, and Figure 13 for a visualization of the 

function addMissing-Maintenance(.). 
 

 
Figure 7. eliminateBadPerforming-

AircraftGroup(.) 
 

 
Figure 8. fillSolutionSpaces(.) 

 

 
Figure 9. eliminateBadMaintenanceChecks(.) 

 



 
Figure 10. optimizeDeadheadFlights(.) 

 

 
Figure 11. createAircraftGroupGreedy(.) 

 

 
Figure 12. addMissingMaintenanceChecks(.) 

 

Unnecessary deadhead flights are removed by 
optimizeDeadheadFlights(.). As the insertion of new 

maintenance checks is likely to have moved 

scheduled flights back into open flights, create-

AircraftGroupGreedy(.) is again employed with an 

unlimited aircraft count to render the solution valid. 
 

5.4 Experiments 
 
Extensive experiments are conducted to gain an 

understanding of parameters and their calibration as 

well as to verify the quality of solutions regarding 

real-world scenarios with respect to robustness and 

profit. We present the outcome of the calibration. 

Detailed descriptions for all runs including tables and 

graphs are provided in [4]. 
 

 
Figure 13. addMissing Maintenance(.) 

 
Different parameter combinations are used for 

calibration of the control algorithm and for analyzing 

the behavior of the algorithm in order to determine 
good reference values. We replicate each parameter 

combination for each instance five times and record 

average values that give the best mixture of quality 

and runtime. The experiments indicate the following 

reference values (see Section 5.1) where the tested 

ranges are given in squared: 

 cp: 25 [15, …, 65; Step size: 5] 

 ct: 12 [8, …, 20; Step size: 2] 

 cr: 6 [2, …, 12; Step size: 2] 

 ci: 5 [1, …, 9; Step size: 2] 

These reference parameters are used, again, on eight 
instances created by a problem generator described in 

Section 6; see Table 2 for information on the instance 

structure where the names associate that the problems 

represent existing scenarios and could be applied by 

airline operators. 

 

 
Table 2. Problem instance summary (ns: 

network structure hub-and-spoke (hts) point-
to-point (ptp); d: days; f: flights; a:airports; 

h: hubs; at: aircraft types; mat: maintenance  
per aircraft type; fs: fleet size; mcf: maximum 
concurrent flights) 



All experiments are executed on an Intel Core i7-

920 processor (2.66GHz, eight virtual CPU-cores) 
running Windows 7 x64. The algorithm is given as a 

single-threaded Java implementation. Used memory 

was below 1GB in all cases.  

We analyzed the behavior of the algorithms, i.e. 

the development of the parameters cag, cas, tdg and tdf. 

Throughout all instances, we observe a quick 

increase for the solution quality which implies that 

the algorithm finds the good solutions at an early 

stage. Results in Table 3 show that the robustness is 

high with an average of 0.939 except for one case 

(AustralianTwo) with a value of 0.687. In comparison 
to problem instances AmericanDream and Down-

Under that nearly include identical numbers of flights 

and days (see Table 2), the maximum concurrent 

flights (MCF) of AustralianTwo is equivalent to 66% 

of their average MCF which indicates a plausible 

connection between flight density for individual 

aircraft and robustness. 

The algorithm prefers to serve passenger demand 

towards seat load. This can result from an 

inappropriate set of available aircraft types. The 

number of deadhead flights is rather low ranging 

from 1,05% to 14.70% except for the problem 
instance LittleFrenchConnection with 56.70% which 

further is the only instance showing a negative profit. 

In fact, alternative calculation of minimum departure 

expenses and maximum revenues employing the 

most efficient aircraft types demonstates that positive 

revenues are out of reach. Results show for this test 

instance a remarkably high percentage of deadhead 

flights (56.70%) which might explain the minor 

increase of aircraft count (10) in comparison to the 

MCF (7). The reason for this behavior might be the 

low flight density of the test instance. An increase in 
used aircraft would raise parking expenses to a 

greater extend than diminishing deadhead flight.  
 

5.5. Comparison with other Algorithms 
 
Over the last years, several authors proposed new 

algorithms to solve the combined fleet assignment 
and ARP. While robustness seems to be included in 

[22], crew pairing is often part of proposed 

algorithms [24, 17, 23]. Reported problem sizes (e.g., 
number of flights) are generally rather low with less 

than 2600 flights and less than 10 aircraft types. The 

same problem as considered in this paper is examined 

in [22] regarding a maximum size of 2558 flights and 

9 aircraft types. Our experiments include large 

instances that are solved in a reasonable time (73,000 

flights, 10 aircraft types). The suitability of the 

algorithm for such large instances results from using 

meta-heuristics. Other authors employing heuristics 

do not solve instances beyond 3,000 flights [22, 23]. 

In conclusion, the proposed algorithm is competitive 
and provides a valuable tool for airline companies 

constrained to handle large data sets, require short 

running times and positive profits to improve 

company results rather than finding (theoretical) 

optimum solutions for small data sets. 
 

6. ARP Test Instance Generator and 

Visualization Suite (ARPViS) 
 
One major contribution is the flight plan 

generator and visualization suite (ARPViS). For 

many established problems, there are libraries with 
test instances (e.g., OR-Library [6]), while libraries 

for the ARP as well as integrated aircraft scheduling 

problems are not available. Availability of such a 

library is of major interest in order to compare 

algorithms and define requirements for problem 

instances. We aim to fill this gap by creating a test 

instance generator that considers several parameters, 

viz. timeframe in days, flights per day, number of 

used airports, root network structure, connection 

density, maximum number of aircraft slots per 

airport, aircraft type count, number of maintenance 
stations per aircraft, fleet size, and maximum 

concurrent flights. We employ real-world input, if 

available, from different sources, e.g., flight plans, 

publications, and/or airline operators to create 

realistic flight plans. Nevertheless, the validity of the 

results depends on the parameter settings and requires 

individual verification. Currently, we do not consider 

Table 3. Experimental results 



different weekdays or passenger demand distributions 

aligned with real-world demand. We used the 

generator to create eight instances regarding different 

specifications as an initial set for a library; see Figure 

12 for a visualization of the flight plan Europe with 

30,000 flights and 20 airports. The instances are 
visualized using ARPViS [4], a tool that allows for 

depicting special parameters of the flight plan, e.g., 

the density of flights for specific airports, 

connections, etc. as well as the solution. The 

understanding of the flight plan is enhanced by 

underlying maps as well as interactive elements to 

project results of individual flight legs. The planer is 

further supported, e.g., regarding overall expenses 

and profits of the best solution. 

 

 
Figure 12. Flight plan and result presentation 

 

7. Conclusions 
 
Airline planners have to solve complex tasks. We 

discuss the current state-of-the-art for the (extended) 

ARP including profits, maintenance, and deadhead 

flights. We introduce an advanced algorithm to find 

robust and near optimal profitable solutions within 

real-world acceptable time intervals. We concentrate 

on the development of heuristics, thus leaving 
mathematical problem formulation to a later stage.  

The major drawback of published algorithms is 

the limited size of considered test instances and the 

time required to find a solution. With instances 

containing less than 3,000 flights, only small airlines 

might use related algorithms and software. 

Otherwise, they need to reduce the time horizon to 

consider a few days to simplify the problem together 

with maintenance constraints that might not be an 

issue anymore.  Our proposed algorithm solves test 

instances with more than 73,000 flights, more than 10 

aircraft types, and deadhead flights to improve profits 

and to consider all levels of maintenance further 
regarding robustness of solutions. Robustness is of 

major importance as it allows airlines to fulfill plans 

even if delays occur, e. g., during boarding. The 

runtime for very large instances is still below an hour 

and, therefore, applicable during the planning stage in 

order to evaluate various flight plans. A further 

substantial contribution is the presented test instance 

generator that takes real-world statistics into account 

and generates flight plans based on various 

parameters that might also be specified by the user; 

see http://iwi.econ.uni-hamburg.de/IWIWeb/Uploads/ 

Team/JP/AllFilesInternet.zip. Our intention of the 
generator and the eight instances used in this paper is 

the creation of a test instance library to allow for 

effective comparison of algorithms in the future. 

Currently, such a library does not exist. Finally, our 

visualization tool supports handling flight plans and 

interpretation of solutions. 
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