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Abstract. Group key management presents a fundamental challenge
in secure dynamic group communications. In this paper, we propose an
efficient group authenticated key agreement protocol (EGAKA), which
is designed to be fully distributed and fault-tolerant, provides efficient
dynamic group membership management, mutual authentication among
group members and is secure against both passive and active attacks.
The features of EGAKA are as follows: Firstly, EGAKA can be built
on any general two-party key exchange protocol without relying on a
particular one. EGAKA achieves scalability and robustness in heteroge-
nous environments by allowing members to use any available two-party
protocol in common and deliberately designed fault-tolerant mechanism
in dynamic membership management. Secondly, EGAKA provides ex-
tremely efficient member join services in terms of both communication
and computation costs which are constant to the group size. This is a
very useful property in the scenarios with frequent member addition.

1 Introduction

In recent years, more and more applications rely on peer-to-peer group commu-
nications. Examples include teleconferences, replicated servers, command and
control systems, and communications in ad hoc networks. Providing ubiquitous
and reliable security services is very important in these environments and is con-
sidered as an open research challenge [2, 23]. The basic requirement for secure
group communications is the availability of a common secret group key among
members. Therefore, key management, as the corner stone of most other secu-
rity services, is of the primary security concern. Key management schemes can
be classified into two flavors: centralized key distribution and distributed key
agreement. Key distribution protocols aren’t suitable for dynamic peer groups,
because of many inherent drawbacks and limitations [13]. Many key agreement
protocols in the open literature are the extensions of two-party Diffie-Hellman
(DH) key exchange protocol [2–6, 10, 13, 16, 18, 20, 21, 25, 26, 29], except for some
recently proposed protocols based on Weil pairing [17, 22]. All these protocols
fall into two different categories: One deals with static groups; while the other
deals with dynamic groups.
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1.1 Related Works

In this subsection we summarize related works on group key agreement protocol.
Most group key agreement protocols are based on generalizations of the two-
party DH key exchange protocol. These protocols usually rely on certificates not
only to perform entity authentication but also to resist active attacks such as
man-in-the-middle attack, under the assumption of the deployment of public key
infrastructure. But this may not be always true in dynamic groups formed in
the heterogeneous environments.

The following protocols focus mainly on efficiency in terms of computation
and communication costs. Burmester et al. [9] proposed a protocol which takes
only two rounds and three modular exponentiations per member to generate
a group key. However, the communication cost is significant, requiring 2n (n:
group size) broadcast messages, and this protocol is only secure against pas-
sive attacks. Steiner et al. [25] addressed dynamic membership issues in the
developing of Group Diffie-Hellman (GDH) protocol. GDH protocol is fairly
computation-intensive, requiring O(n) exponentiations, but bandwidth efficient.
A-GDH and SA-GDH were proposed by Ateniese et al. [2] based on GDH. Two
protocols are, however, proved to be vulnerable to a number of potential at-
tacks [19]. The computation and communication costs of both protocols are
high, each requiring n rounds and O(n2) exponentiations. TGDH, a tree-based
key agreement protocol proposed by Kim et al. [13], is another modified ver-
sion of GDH. TGDH combines a binary tree structure with the GDH technique
and is efficient in terms of computation as most membership changes require
O(log n) exponentiations. Note that key establishment and authentication is-
sues are not explicitly discussed in TGDH. Another protocol by Yang et al. [29]
is an ID-based authenticated group key agreement protocol. However, dynamic
membership management in this protocol is not clear. Key agreement based on
group shared password can be found in [1]. There are also some three-party key
agreement protocols based on Weil pairing [17, 22]. Many other protocols focus
mainly on the security itself. These protocols are typically of high inefficiency.
The protocol proposed by Bresson et al. [4–6] is the first provably secure one.
It is based on GDH protocols by adding authentication function. The entity
authentication is done via signatures on all the message to frustrate active at-
tacks. Katz et al. [11] proposed another provably secure protocol, which is based
on Burmester’s protocol by introducing signature operations for authentication.
Some conference key establishment protocols with security proofs can be found
in [3, 26].

This paper proposes an efficient group authenticated key agreement proto-
col (EGAKA). Except for common functionalities, EGAKA distinguishes itself
from other existing protocols as follows: Firstly, EGAKA can be built on any
two-party protocols without relying on a particular one. Therefore, EGAKA
achieves scalability and robustness in heterogenous environments by allowing
members to use any available two-party protocol in common. Secondly, EGAKA
provides extremely efficient member join service in terms of both communica-
tion and computation costs which are constant regardless of the group size. This
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is a very useful property in the scenarios with frequent member addition. The
remainder of the paper is organized as follows. We brief the notation, necessary
terminology, and some primitives in Section 2. Then in Section 3, we discuss
the goals and assumptions of EGAKA. This is followed by the description of
EGAKA in Section 4. In Section 5, we compare the complexity of EGAKA with
those of other proposed protocols. Security issues of EGAKA is then discussed
in Section 6. Finally, the conclusion is given in Section 7.

2 Notation and Primitives

The notation as used throughout the paper is shown below:

{·}K symmetric encryption algorithm using key K
h(·) one way hash function
KG group secret key
Sij shared secret by Mi and Mj , e.g. αxixj

Kij peer-to-peer session key between Mi and Mj

Bij blinded Sij , i.e., Bij = h(Sij)
d height of a key tree

Mî Mi’s sibling in the key tree
Nlj tree node j at level l
Ei the partners set of Mi

We also use the following definitions and cryptographic primitives:
Key Tree is used in the past for centralized group key distribution systems.

The logical key hierarchy (LKH) method [27, 28] is the first approach. Almost
all the later group key management protocols adopt such kind of binary key tree
structure because of its inherent efficiency. TGDH and ELK are such examples
[13, 20, 21]. The structure of key tree used in EGAKA is depicted in Figure 1.
There are 3 types of nodes: root node, leaf node and interior node. A leaf node
is also called an isolated leaf node, if his sibling is an interior node. For example,
N22 is such a node. Each leaf node is associated with a group member. Every
node in the key tree has a key pair: a secret key and the corresponding blinded
key. The secret key is shared only by the members whose corresponding nodes
belong to the subtree (if any) rooted in this node and thus for secure subgroup
communication. For example, the left node at level 1 has a secret key K135 and
a blinded key B135 = h(K135), and K135 is shared only by M1, M3 and M5.
The blinded key is for group key computing. How to securely and efficiently
assign the appropriate subset of these intermediate keys to each group member
is always the most challenging problem in the protocol design. Note that in
EGAKA, neither secret key nor the blinded key is transmitted in plaintext.

The group key is computed as: KG = K123456 = h(B135||B246);B135 =
h(K135) = h(h(B15||B3));B246 = h(K246) = h(h(B24||B6));B15 = h(K15);B3 =
h(K3);B26 = h(K26);B4 = h(K4), where || denotes message concatenation. In
the later description, we do not distinguish between group member and its cor-
responding leaf node. To simplify our subsequent description, we use the term
key-path, denoted as KP ∗i , which is a set of nodes along the path of Mi from
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itself to the root node (except for the root node). We also use the term co-path
as defined in [13], denoted as CP ∗i , which is the set of siblings of each node in the
key path of Mi. For example, the KP ∗5 and CP ∗5 of member M5 are the two sets
of nodes {N32, N21, N11} and {N31, N22, N12}, respectively. The cardinalities of
both CP ∗i and KP ∗i depend on Mi’s position in the key tree and equal to its
level. For M5 at level 3, the cardinalities of KP ∗2 and CP ∗2 are both 3. There-
fore, every member derives the group key from all the blinded keys of its co-path
nodes and its own secret share. A partner of Mi is defined as the member who
shares a peer-to-peer session key with Mi. We use Ei denote the partners set of
Mi. In Figure 1, E1 consists of M2, M3 and M5.
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Fig. 1. Notation for key tree

Two-party authenticated key agreement protocol of any kind can be used in
EGAKA, if only it provides explicit key authentication and entity authentica-
tion, perfect forward secrecy, resistance to known-key attacks. A typical protocol
is the one proposed by Ateniese et al., which is a provable secure two-party gen-
eralized DH authenticated key exchange protocol (A-DH) [2]. The security of
A-DH is directly based on the well known two-party Decisional Diffie-Hellman
(DDH) problem [25]. The A-DH is a two-round protocol and provides implicit
key authentication and entity authentication without requiring a priori knowl-
edge of the long term public key of the parties involved. And the certificates can
be piggy-backed onto existing protocol messages [2]. By adding some additional
key confirmation messages, A-DH can provide explicit key authentication in-
stead of implicit key authentication. Other qualified protocols include password
based two-party key agreements protocols such as AMP etc. [12, 14, 15].

3 Goals and Assumptions of EGAKA

In the design of EGAKA, we bear the following goals in mind. Firstly, EGAKA
should provide flexible and efficient member join/leave services in terms of com-
munication and computation costs. In particular, we emphasize on the scenarios
with frequent member additions. Such scenarios include many multicast appli-
cations. In member leave service, we focus on fault-tolerant property to achieve
robustness. Secondly, EGAKA should provide entity authentication. Every mem-
ber should be authenticated when joins the group, and thus frustrates mas-
querading and eavesdropping. The trust model in EGAKA is that any single
current member can authenticate the new members and accept them. This is
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assumed because we do not consider insider attacks as our focus is on the se-
crecy of group keys and the integrity of group membership. The latter means
the inability to spoof authenticated membership. Consequently, insider attack is
not relevant in this context since a malicious insider can always reveal the group
key or its own private key, thus allowing for fraudulent membership. Thus, by
definition, a new member is said to authenticated only if it was authenticated at
least once by any current group member. Thirdly, EGAKA should be resistant
to known-key attack, while providing forward secrecy, backward secrecy and key
independence [2, 13, 21]. In the design of EGAKA, we also address an important
principle: the protocol should be fully distributed, which means no centralized
KDC should be involved during both key establish and key update processes and
the secret keying information should only be generated, computed and transmit-
ted by group member itself. The existence of centralized third party violates the
nature of key agreement protocol and is also impractical in many scenarios [2,
13].

We assume the size of dynamic peer groups to be less than 200 (empirically),
because large groups are likely to have very frequent membership changes and
much diluted trust. The former will cause lots of overhead and the latter negates
the need for contributory group key agreement. In dynamic groups, groups are
usually formed on-the-fly, and therefore, members tend to have different de-
ployments of security primitives. And different primitives demand different as-
sumptions. For example, in order to resist man-in-the-middle-attack, both of
two parties in DH key exchange protocol must have certificates issued by some
CA to certify their public key; while in password-based key exchange protocols,
shared password must exist between the two parties. In order to adapt to these
heterogenous environments, EGAKA is designed to work with any two-party
authenticated key agreement protocol in common among groups members, that
is, group members can choose any desired two-party protocol available to use by
negotiation (e.g., either DH protocol or password based key agreement proto-
col, etc.); group key can then be established contributorily based on the chosen
protocol. Thus, the robustness and flexibility is achieved in EGAKA.

4 EGAKA Protocol

EGAKA consists of two basic sub-protocol suites: key establishment protocol
(EGAKA-KE) and key update protocol (EGAKA-KU).

4.1 EGAKA-KE

EGAKA-KE includes two phases: Phase I is to complete group entity authenti-
cation by applying any chosen two-party authenticated key agreement protocol;
Phase II is the group key generation process.

Phase I : Entity Authentication In Phase I, group members first negotiate
the two-party authenticated key agreement protocol and the key tree structure
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which are to be used in the consequent part of the protocol. This can be done
by simply using explicit message broadcast among members. In these messages,
group members can randomly poll which member to generate the key tree struc-
ture and agree on the chosen two-party protocol. The poll-chosen member then
broadcasts the tree structure to all group members; hence, every group member
could determine his own position in the key tree. In order to form the binary
key tree structure and facilitate the following group key computing process,
some members must perform authentication with up to d partners by applying
the chosen two-party protocol. For example, in Figure 3, M1’s partners are M2,
M3 and M5.

The binary tree generating process can be as follows: Two members are first
randomly chosen to join the key tree and are supposed to authenticate each
other and form one interior node. Another two members are then chosen to join
the current key tree and are supposed to perform entity authentication with the
current two members, respectively, and forms another two interior nodes. This
process repeats till the last member is chosen. An example is given in Figure 2.
Obviously, the number of partners for any specific group member ranges from
1 to d. Note that the two-party authenticated key agreement protocol executes
exactly n− 1 times.
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Fig. 2. Key tree structure generating process: an example
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Fig. 3. Results of Phase I

As mentioned above, the entity authentication is achieved by applying the
chosen two-party protocol among group members and the number of partners for
each member is according to his position in the key tree. On obtaining the tree
structure, all group members perform entity authentication with their assigned
partners simultaneously. Therefore, the two-party authenticated key agreement
protocol is simultaneously executed n − 1 times. The round number is exactly
that of the underlying two-party protocol. A set of peer-to-peer session keys
are therefore established as the execution results. Without loss of generality, we
choose A-DH as an example and show the precise procedure in Appendix. Note
that no peer-to-peer session key confirmation round is executed in Phase I; hence
only implicit peer-to-peer session key authentication and entity authentication
is provided. For the key structure in Figure 2, the execution results are depicted
in Figure 3.

Thus, at the end of Phase I, all group members are implicitly authenticated
and a set of peer-to-peer session keys are established among members. The es-
tablished peer-to-peer session keys not only assure the efficient and secure trans-
mission of keying information in protocol Phase II (i.e. act as key encryption key
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(KEK)), but also (some of them) act as secret key shares of the group members
according to the key tree.

Phase II: Group Key Generation EGAKA-KE Phase II consists of d rounds.
Every group member computes one more the secret key along its key-path each
round and finally computes the group key after d rounds. All intermediate keying
information is encrypted by symmetric cipher using peer-to-peer session keys
established in Phase I. Therefore, all the session keys are confirmed and each
group member assures its partners’ aliveness. (This is important, because no
assurance of aliveness can be exploited by many attacks [19].) The protocol
operates as follows in Figure 4.

Protocol EGAKA-KE Phase II :
Let {M1, · · · , Mn} be the set of group members. For Mi, let {N1i, N2i, ..., Nli} and
{N1î, N2î, ..., Nl̂i} denote the members of KP ∗i and CP ∗i , respectively.
Round 1 :

Mi, i ∈ [1, n] computes: KN(d−1)i
= Kîi, if Mi is at d, KN(d−1)i

= Ki, if Mi is at

d− 1, and BN(d−1)i
= h(KN(d−1)i

), where Ki is Mi’s secret share (a random nonce).

Mi, i ∈ [1, n] −→ {Mj |Mj ∈ Ei, N(d−1)i ∈ CP ∗j }: {BN(d−1)i
||Mi}Kij .

Round r (2 ≤ r < d) :
Mi, i ∈ [1, n] decrypts the received message(s) and obtains BN

l̂i
of Nl̂i ∈ CP ∗i .

and computes the key pair of N(l−1)i ∈ KP ∗i : BN(l−1)i
and KN(l−1)i

.

Mi, i ∈ [1, n] −→ {Mj |Nl̂i ∈ CP ∗j } (if any): {BN
l̂i
||Mi}KNli

.

Mi, i ∈ [1, n] −→ {Mj |Mj ∈ Ei, N(l−1)i ∈ CP ∗j } (if any):{BN(l−1)i
||Mi}Kij .

Round d :
Mi, i ∈ [1, n] decrypts the received messages. M1 and M2 obtain the blinded key
of their co-path nodes at level 1, respectively. Other members obtain the blinded
key of their co-path nodes at level 2, respectively.
M1 −→ {Mj |N12 ∈ CP ∗j }: {BN12 ||M1}KN11

;

M2 −→ {Mj |N11 ∈ CP ∗j }: {BN11 ||M2}KN12
.

Upon receiving the above message, each group member computes the group key:
KG = h(BN11 ||BN12).

Fig. 4. Protocol EGAKA-KE Phase II

Figure 5 gives an example of Phase II. In round 1, each member first com-
putes the key and blinded key of its key-path node at level 2. Then M1 sends the
keying information {B15||M1}K13 to M3, because B15’s corresponding node be-
longs to M3’s co-path and M1 and M3 share a peer-to-peer session key K13.
The same routing is followed by other members. Note that the member ID
is included in the message to strength the authentication. Therefore, at the
end of round 1, M1 obtains B37; M2 obtains B4; M3 obtains B15; M4 obtains
B26. In round 2, every member first computes the key and blinded key cor-
responding to the node in its key-path one-level-up. So M1 computes K1357

and B1357; M2 computes K246 and B246; M3 computes K1357 and B1357; M4

computes K246 and B246. Again each member sends out the keying informa-
tion. Therefore, M1 multicasts {{B37||M1}K15 , {B1357||M1}K12}; M2 multicasts
{{B4||M2}K26 , {B246||M2}K12}; M3 unicasts {B15||M3}K37 . Thus, at the end
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of round 2, M1 gets B246; M2 gets B1357; M4 gets B26; M5 gets B37; M6

gets B4; M7 gets B15. In round 3, M1 and M2 multicast the following mes-
sage: {B246||M1}K1357 , {B1357||M2}K246 , respectively. Upon receiving this mes-
sage, every member now can independently compute the group key as KG =
h(B246||B1357).
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Fig. 5. An example of key establishment process

4.2 EGAKA-KU

In order to accommodate frequently group membership changing, key agreement
protocol in dynamic groups should be flexible and fault-tolerant, and provide
efficient group re-keying process. To make our protocol concrete, throughout
this section we use A-DH [2] as the chosen underlying two-party protocol. In
A-DH, the following additional notation is used:

p, q large prime integers, q|φ(p)
G unique subgroup of Z∗p of order q
α exponential base

xi, α
xi long-term secret/public key pair of Mi

ri Mi’s secret nonce
Sij shared secret by Mi and Mj , e. g., αxixj

Member Join Protocol Again assume there are n members (M1, ..., Mn) in
the current group and a new member Mn+1 wants to join the group. Mn+1 first
broadcasts a joining request message. The message also includes his available
two-party authenticated key agreement protocols in hand. Upon receiving this
message, a sponsor Ms at level l is chosen that is responsible for authenticating
Mn+1 and the group key updating. Ms is chosen according to the following rule:
Choose an isolated leaf node if any, and the shallowest and leftmost one is the
first choice; if no such node, the shallowest and leftmost leaf node is chosen.

Next, Ms creates a new interior node and a new leaf node, and promotes
the new interior node to be the parent of both new member node and himself.
Then Ms and Mn+1 execute the chosen two-party authenticated key agreement
protocol and establish a fresh peer-to-peer session key K(n+1)s. Ms then updated
all the key pairs of its key-path. (Of course, if Ms is not an isolated leaf node,
then Ms must first obtain the updated blinded key from its sibling Mŝ before
updating all the key pairs.) Then Ms divides the whole group into l subgroups
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according to its co-path nodes. Members from each subtree rooted in the co-path
node of Ms form a subgroup. Clearly, the members of each subgroup only need
to update the blinded key corresponding to the sibling node of their subgroup
root node. Ms thus encrypts the according keying information for each subgroup
and multicasts them together. The joining protocol is depicted in Figure 6.

Member Join Protocol :
Let Mn+1 be the new member, Ms be the sponsor at level l, and Mŝ be the
sibling member of Ms if any.
Round 1:

Mn+1 broadcasts: αrn+1 ||Join||Protocol choice.
Round 2: (if any)

Mŝ unicasts Ms: {Bsŝ||Mŝ}Ksŝ .
Round 3 (2):

Ms computes the new key pair :
Ks(n+1) = αrsrn+1 , Bs(n+1) = h(Ks(n+1)).

Ms updates all blinded keys of its key-path: B1s, B2s, ..., B(l−1)s.
Ms broadcasts: {B1s||Ms}KG , {B2s||Ms}K1s , ..., {B(l−1)s||Ms}K(l−2)s

,

{Bx, Nx ∈ CP ∗s }Ks(n+1) , α
rsSs(n+1) .

Mi updates the new group key K′
G, i ∈ [1, n + 1].

Fig. 6. Member join protocol

An example is shown in Figure 7. The new member M6 wants to join the
group, so he broadcasts a join request together with a fresh αr6 . Then M3 is the
sponsor according to the key tree. So M3 first creates a new interior node and
a new leaf node for M6, and promotes the new interior node to be the parent
of both M6 and himself. After that, M6 computes: αr3Ss(n+1) ,K36, B36, B1356

(Ss(n+1) = αx6x3) and divides the group into three subgroups. Then M6 broad-
casts: {B1356||M3}KG

, {B36||M3}K135 , {B15||B24||M3}K36 , α
r3Ss(n+1) . On receiv-

ing the message, all group members can independently update the new group
key. It takes only 2 rounds to finish key updating process.
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Fig. 7. An example about member join process

Member Leave Protocol Fault-tolerance property is our main focus in the
design of member leave protocol. Again we assume there are n (n > 2) members
in the current group and Mx is going to leave the group. The sponsor Ms is
chosen as before. In order to provide forward secrecy, the leaving member is
prohibited to know the new group key afterwards. Thus, current members cease
to use any secret key known by Mx right after Mx left the group and delete
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all the peer-to-peer session keys shared with Mx. So fault-tolerance is most
important because the current member cannot use the old group key anymore.
Any delay caused by the disability of single current member (e.g., temporary
power failure, short-term drop line, out of hop range due to mobility, etc.) in
update the group key will slow down the group key update process. And this
causes group communications in trouble. Our member leave protocol solves this
problem by working with any available subgroup member without relying on a
particular one.

Member Leave Protocol :
Let Mx be the leaving member and Ms be the sponsor at level l. Let SE∗

s be the
set of members each from different subgroups, which share no session key with
Ms. Member nodes of KP ∗i and CP ∗i are denoted as {N1s, N2s, ..., N(l−1)s} and
{N1ŝ, N2ŝ, ..., N(l−1)ŝ}, respectively.
Round 1:

Ms multicasts SE∗
s : αrs ||Ms||Establish.

Round 2:
Each Mg ∈ SE∗

s unicasts to Ms: αrgSsg ||Mg;
Ms computes: Ksg = αrsrg , Mg ∈ SE∗

s ; Ms updates all the key pairs of KP ∗s .
Round 3:

Ms multicasts SE∗
s : {{BNis , Nis ∈ CP ∗g }Ksg , Mg ∈ SE∗

s}
Round 4:

Each Mg ∈ SE∗
s multicasts own subgroup: {BNis , Nis ∈ CP ∗g }KNiŝ

All members except for Mx can independently compute the updated group key.

Fig. 8. Member leave protocol

Suppose Ms is at level l. Ms first updates the key tree structure and its own
secret share and all the key pairs of its key-path. (Ms may be required to perform
a two-party authenticated key agreement protocol, if he is not an isolated leaf
node.) Then Ms divides the whole group into l − 1 subgroups according to its
co-path nodes following the same rule as in the member join protocol. At this
point, Ms checks whether he could reach all l−1 subgroups via the peer-to-peer
session keys he has. By reaching a subgroup, we mean the sponsor shares a peer-
to-peer session key with at least one subgroup member and thus can transmit
the keying information securely using the peer-to-peer session key. If so, Ms just
needs to encrypt the according keying information with the peer-to-peer session
key for each l − 1 subgroup member and multicasts them the updated keying
information. Upon receiving it, each l − 1 corresponding subgroup member can
obtain the necessary blinded key. Each of them then broadcasts this blinded
key to other subgroup members using the secret subgroup key. Otherwise, Ms

first needs to establish enough peer-to-peer session key with each of the l − 1
subgroups before transmitting the keying information. Note that any available
member could do this job without relying on a particular one, and therefore,
achieves fault-tolerance. Ms is determined by the following principles: Firstly,
Mx is not an isolated leaf node, then its sibling node must also be a leaf node.
In this case, Mx sibling will be chosen as Ms. Secondly, if Mx is an isolated leaf
node, Ms will be the shallowest leaf node in the subtree rooted in Mx’s sibling
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node. If there is more than one node, then the leftmost isolated leaf node has
the priority; otherwise, choose the leftmost leaf node.

The protocol is depicted in Figure 8 using A-DH as the underlying two-party
protocol. Totally 4 rounds are needed to update the group key. And the two-
party protocol is required to execute 0 time at least and d − 1 times at the
worst case. The upper bound of multicast operations needed in the protocol
is d + 1. It was clear that the computation cost of the member leave process
depends on both the position (level) of the leaving member in the key tree and
the number of peer-to-peer session keys possessed by the sponsor Mx. Let NK

(0 ≤ NK ≤ d − 1) be the number of peer-to-peer session keys the sponsor has.
Then the two-party authenticated protocol needs to be executed l − NK − 1
times. Obviously, l −Nk − 1 varies from 0 to d− 1.
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Fig. 9. Two examples of member leave event

Two examples of member leave event are shown in Figure 9. In Figure 9(a),
member M5 leaves the group, so M1 is the sponsor for M5’s leave event. M1 com-
putes its new secret share B1 = h(K1) = h(αr1) with a fresh random nonce r1

and B136 = h(h(B1||B36)). Then, M1 multicasts {{B1||M1}K13 , {B136||M1}K12}
to M3 and M2. Upon receiving this message, M2 and M3 obtain B136 and
B1, respectively. In turn, they each multicast it to their subgroup members:
M2 : {B136}K247 ; M3 : {B1}K36 . So, on decrypting the above message, all group
members get the required blinded key and thus can update the group key. In
Figure 9(b), M2 leaves the group, so the sponsor is M7. In this case, there ex-
ist two subgroups: (M1,M3,M5,M6) and (M4) from the view of M7. And M4

and M7 share no peer-to-peer session key with these two subgroups. So M7 first
multicasts to M1 and M4, two represents from each subgroup: αr4 to establish
two peer-to-peer session keys.

5 Complexity Analysis of EGAKA

We analyze the complexity of EGAKA by using A-DH as the underlying two-
party protocol in order to provide a clear comparison.

Table 1 compares key establishment protocol of EGAKA with many other
well known protocols. It is clearly that EGAKA and the protocol by Yang et
al. [29] both has the best performance. Only 5n − 4 exponentiations and d +
2 rounds (except for negotiation step) are needed by EGAKA-KE. Note that
protocol in [29] requires less exponentiations only because they use an ID-based
underlying two party protocol which takes 4 exponentiations per execution. And



12 Kui Ren et al.

this protocol is not verifiable contributory as pointed out before. Moreover, this
protocol provides no dynamic case and is mainly designed for static groups. On
the other hand, protocol by Bresson et al. [4] is provably secure against both
passive and active attacks, but obviously it is too computational intensive. (n2 +
4n)/2−1 exponentiations and n signatures are needed for the key establishment
protocol. At the same time, though protocol by Burmester et al. takes only two
rounds, it is very computational intensive. As pointed out before, both SA-GDH
and A-GDH are found to be flawed in [19].

Group Key rounds total total exponentiations total
Establishment messages exponentiations per member sigs

EGAKA-KE using A-DH d + 2 2(n− 2) 5n− 4 [3, 2d + 1] -
A.GDH.2 [2] n n (n2 + 4n)/2− 1 [3, 2n− 1] -
SA-GDH.2 [2] n n n2 n -
Yang et al. [29] d + 1 2(n− 2) 4n− 4 [2, 2d] -

Bresson et al. [4] n n (n2 + 4n)/2− 1 [3, 2n− 1] n
Burmester et al.[7] 2 2n n(n + 1) n + 1 n

Table 1. Key establishment protocol comparison

The member join protocol of EGAKA-KU requires exactly two broadcast op-
erations, and the two-party authenticated key agreement protocol executes only
once. Communication rounds of member join protocol are usually 2 or 3 at the
worst case. What more important and promising is all these operations are inde-
pendent from the group size. This feature allows EGAKA-KU to provide highly
efficient member join service compared with other proposed protocols. Table 2
compares different key update protocols. It is clear that EGAKA provides most
efficient member join service. Only fixed 6 exponentiations are needed, which
are constant to the group size. Comparing this result to that of TGDH using
Figure 11 (a) and (b) in [13], we can have a clearer idea about the superiority of
EGAKA in member join service. At the same time, the member leave protocol
of EGAKA-KU is less efficient, but the up-bound of the computational com-
plexity is still linear to d. Note that the group size is assumed to be less than
200, so d is less than 8. TGDH is relatively efficient in member leave process,
but TGDH provides no key establish protocol. The group key establishment is
not described in TGDH and thus the security issues of the protocol is not clear.
Again, protocol by Bresson et al. [4] is too computational intensive.

6 Security Analysis of EGAKA

We perform our security analysis in a computational complexity framework,
and full security analysis of EGAKA will be provided separately due to the
page limitation. Our attacker model distinguishes between passive and active
adversaries. Passive adversaries only eavesdrop on the group communication (in
particular they are never group members), whereas active adversaries may be
previous group members. We do not consider insider attacks as explained in
Section 3.
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We assume that a passive attacker could eavesdrop all traffic. Therefore,
the attacker does not know any keying information in the key tree, because no
keying information is transmitted in the form of plaintext. Clearly, attacks to
find the group key can be reduced to the attempt of breaking the underlying
symmetric encryption algorithm. This can be viewed as an exhaustive key space
searching, provided the symmetric encryption algorithm is secure, which takes
O(2n) operations, where n is the bit-length of the group key. The passive attacker
can’t do better by using public peer-to-peer session key establish information,
because the underlying two-party protocol is assumed to be secure.

Dynamic Case rounds total msgs total exps multicast sigs vers

EGAKA-KU using Join 2, 3 2 6 2 - -
A-DH Leave 4 [d, 2d] [0, 5d− 4] d - -

Bresson et al. [4] Join 2 2 2n 1 2 n + 1
Leave 1 1 2n 1 2 n− 2

TGDH [13] Join 2 3 3d/2 3 2 3
Leave 1 1 3d/2 1 1 1

Burmester et al.[7] Join 2 2n + 2 3 2n + 2 - -
Leave 2 2n− 2 3 2n− 2 - -

Table 2. Key update protocol comparison

An active attacker’s knowledge in our model equals to that of any former
group member or their combination. We consider the following question: can an
active attacker with such knowledge derive any new group session keys? Clearly,
the active attacker can’t know the secret key share of at least one current group
member. This member is the one who updates its secret share after the latest
leaving member. So the active attacker could not know its secret share, under the
assumption of the security of the underlying symmetric encryption algorithm. So
the active attacker cannot know the secret key of this member’s key-path under
the assumption of the intractability of one way hash function. Another way for
an active attacker to compute the new group session keys is to pretend to be a
legal party of the current group and trying to establish a peer-to-peer session
key with the leave event sponsor and thus get the keying updating information
he wants. This is prohibited by the underlying two-party protocol. Therefore,
the active attacker cannot compute the group key except for brute force attack,
whose complexity is O(2n).

EGAKA provides verifiable contributory property. Every member in EGAKA
independently computes the group key from its own secret key share and the
blinded keys of its co-path nodes obtained from others. So if group members get
wrong blinded key from others, then no common group key can be obtained. In
other word, if only EGAKA is executed properly, then the resulting group key
is verifiable contributory.

7 Conclusion

In this paper, we proposed an efficient group authenticated key agreement pro-
tocol (EGAKA), which is designed to be fully distributed, provides efficient
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dynamic group membership management, mutual authentication among group
members and is secure against both passive and active attacks. EGAKA distin-
guishes itself from other existing protocols as follows: Firstly, EGAKA provides
an efficient contributory key agreement framework which accommodates any two
party authenticated key exchange protocol. EGAKA can be built on any two-
party protocol without relying on a particular one. Therefore, EGAKA achieves
scalability and robustness in heterogenous environments by allowing members to
use any available two-party protocol in common and deliberately designed fault-
tolerant mechanism in dynamic membership management. Secondly, EGAKA is
superior to many protocols in the literature in terms of efficiency. In particular,
EGAKA provides extremely efficient member join services. Both communica-
tion and computation costs are constant to the group size. This property is very
useful in the scenarios with frequent member addition.
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Appendix: Protocol of EGAKA-KE Phase I Using A-DH

By using A-DH as the underlying two-party protocol, we depict EGAKA-KE
Phase I as below.

Protocol EGAKA-KE Phase I :
Let {M1, · · · , Mn} be a set of members wishing to establish a group key KG. Let Ei

be the set of group members that are the partners of Mi.
Round 1

Mi, i ∈ [1, n] −→ {Mj |Mj ∈ Ei, j > i}: αri .
Round 2

Mi, i ∈ [1, n] −→ {Mj |Mj ∈ Ei, j < i}: αriSij .
The resulting peer-to-peer session key is

Kij = αrirj .

Fig. 10. Protocol EGAKA-KE Phase I using A-DH


