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Abstract—This paper deals with adaptive solutions to the so-  In conventional system identification problems, we have
called set-membership filtering (SMFproblem. The SMF method-  somea priori knowledge about the system to be estimated.
ology involves designing filters by imposing a deterministic con- |4 hrating this in the form of constraints in the estimation

straint on the output error sequence. A set-membership decision d lead luti h . ith th
feedback equalizer (SM-DFE) for equalization of a communica- procedure leads to solutions that are consistent with that

tions channel is derived, and connections with the minimum mean knowledge. In a more general framework of filter design,
square error (MMSE) DFE are established. Further, an adaptive constraints can be imposed in the estimation procedure if we
solution to the general SMF problem via a novel optimal bound- need assurance gbodperformance on a deterministic (point-
ing ellipsoid (OBE) algorithm called BEACON is presented. This —\icey pasis. As before, these requirements then have to be
algorithm features sparse updating, wherein it uses about 5-10% . inth - fth . fil h
of the data to update the parameter estimates without any loss iNcorporated in the design of the estimatorfilter to ensure suc
in mean-squared error performance, in comparison with the an acceptable performance. Moreover, by taking the structure
conventional recursive least-squares (RLS) algorithm. It is shown and constraints of the problem into account, it is likely
that the BEACON algorithm can also be derived as a solution t0 - that computationally attractive recursive algorithms emerge as

a certain constrained least-squares problem. Simulation results . . - o ; .
are presented for various adaptive signal processing examples possible solutions. With these motivations in mind, the authors

including estimation of a real communication channel. Further, ,haV_e recently introduced, in [3], a meth0d0|99y for the de_Sign
it is shown that the algorithm can accurately track fast time of filters that bound the worst-case error achieved by the filter.
variations ir] a nonsta_tionary envi_rc_)nment. This improvement is  This method is termesget-membership filtering (SMFnd the
a resuléI %f incorporating an explicit test t”o check if an ulpddate resulting filter is called an SM filter [3]. SMF owes its name
IS needed at every time Instant as well as an optlma ata- L s . .
dependent assignment to the updating weights whenever an (0 the so-called set-membership identification (SMI) technique
update is required. [4]-[8], which is applicable only for identifying a linear-in-
parameter plant with output corrupted by additive bounded
noise. It is straightforward to show that SMI is a special case
o ] ] ~ of the SMF problem.
T HE PROBLEM of designing a linear-in-parameter filter, The objective of an SM filter is to estimate a member

1 given knowledge of the input and the corresponding dgf 5 so-calledfeasibility set This set defines the SM filter's
sired output, is studied in this paper. Traditional methodologiggformance specification. SMF requires that this specification
include the minimum mean square error (MMSE) filters ange met for every possible input-desired output pair of data
their deterministic counterparts [the least-squares error (LS.t come from a certaindesign space Any closed-form
filters], which seek a filter by minimizing the 2-norm of theso|ytion of an SMF problem requires accurate characterization
error sequence [1]. Performance of the MMSE filters relies @} the design space over which the filter is required to meet
the accurate knowledge of the stgtlstlcs of the input and OUFQHE specification. Such a description of the design space
observations, whereas an off-line LSE procedure requirgs |4, in general, need knowledge of a functional relationship
data processing in batches, which is not computationalignyeen the input and desired outputs. In problems where such
attractive. On-line, or recursive, methods to iteratively aCh'e‘k‘?]owledge is unknown or is not accurate enough, we require
the same goals include the least-mean squares (LMS) angho| 1o estimate a point in the feasibility set in a recursive
the recursive least-squares (RLS) algorithms, which have bgghion. |t has been shown that one such method is given
studied extensively in the literature; see, e.9., [1] and [2]. y the class of optimal bounding ellipsoid (OBE) algorithms.
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n-dimensional complex Euclidean space. The problem can be

Desired Output posed as followsGiven D and a designer-specified positive
S . d real numbery, design a filter f4: C* x C — C that (linearly)
" Filter Output Error maps the pairgz, d) to the output errof
] o7 \J € suchthat | € | <Y
y=b x /
¢ 2 folz,d)=d— 6"z (1)

Fig. 1. Set-membership filtering.
wheref € C". The objective of SMF is to choose a parameter

some favorable characteristics that are unique and differdffctor ¢ such that
from traditional OBE algorithms. The BEACON algorithm le| = |fo(z.d)| <~ ¥ (z.d) € D. @)
is found to update much less frequently in comparison with G ’

the existing OBE algorithms such as the one developed Ry other words, find a parameter vector that meets the error
Dasgupta and Huang called DH-OBE [4], whereas it exhibitpecification for all input-desired output pairsfin Therefore,

better mean-squared error (MSE) performance than both Dife SMF problem can be cast in the form of the following two
OBE and the weighted RLS. This paper examines soOrp@rts:

issues regarding the updating mechanism and provides 3 pges there exist # such that

novel geometrical interpretation. Moreover, it investigates the

behavior of this algorithm when the initial conditions are sup |folz,d)| <~? (3)
incorrectly chosen in such a way that the basic premise of (&, d)eD

bounding ellipsoids fails. Surprisingly, it turns out that a If so, find a8 such that(3) is satisfied withy = 6°

certain point estimate obtained via the BEACON recursions . L
is insensitive to thesmodel violationsand some convergenceln contrast, traditional methodologies like LSE and MMSE

results also hold. It is also observed that BEACON exhibi{gtm'hm'zs thettgquaflfahd error tgltherf Itrr: a dgiermms?c orS?\L/I
very good tracking capabilities for time-varying systems. stochastic setling. The question of e existence ot an

The above features exhibited by the point estimate motive{{léer for a given specification is an important issue.

the development of a least-squares-like estimation scheme tha{{1 gen_eral, the pou_nded error speC|f|cat|on (2) can b_e met by
is constrained on the specification of bounded errors. Tl'ﬁsse'{Of filters, which is Fefe”e‘?' toas Fﬁeas'b'!'ty sef since
approach, although it is decoupled from the OBE method, y one ”.‘em.ber of th|s set 'S a vaI|d.SM fllFe'r.. Therefore,
shown to lead to the same recursions for the parameter (poi objectlvg n SMF IS 0 .estlmate this feasibility set or a
estimate as before. Moreover, it also establishes a clear | mber of it. This set is given by

between least-squares and OBE estimation paradigms.

The next section first overviews the concept of set-
membership filtering and then addresses an application for N
a special but important problem in digital communications, ={geC S |[folz, )| <~}
namely, that of channel equalization. Specifically, conditions (=)<
for the existence of théeasibility setfor a decision feedback The feasibility set is an ensemble intersection over all the
equalizer (DFE)will be derived. Relations between the sopossible input-desired output pairs that come from the design
called SM-DFE and the commonly used MMSE-DFE argpace. A few properties of this set are listed below.
studied. Section lll introduces the BEACON algorithm as « @(n, ~) is a convex set.

a recursive solution to SMF, gives an explicit formula to « ©(p ~) c @(n + m,~) for any m > 0.
compute the weights for updating, and presents some analysis ©(n,~,) c &(n,~,), wherey; < 7.

of its performance. Simulation results are also provided in. |f D, c D,, then©®,(n,~) C ©1(n,~), where
this section. The alternative recursive solution method for

SMF, via a constrained least-squares method, is developed in  @;(n,~) 2 ﬂ {0 C:|d—0"x)> <~%)
Section IV. Finally, Section V concludes the paper. (T.d)eD

O, = [ {beC:|d—¢"af <)
(x,d)eD

Il. SET-MEMBERSHIP FILTERING
. It may happen that there exists no parameter vector that can

A. Problem Formulation of SMF meet the performance criterion for a particular choiceyof

Set-membership filtering is a filtering method distinct fronrandD, as mentioned earlier. Therefore, once the design space
traditional least-squares filtering in terms of performance crités- fixed, the chance of finding a nonem@#(~, v) increases
rion [3], as depicted in Fig. 1. The objective is to design a filtevith » and~, which is intuitively well understood. In addition,
whose output error is not greater than a specified value for allarger design space leads to a smaller feasibility set. That
possible input-desired output pairs of data. In this paper, we as we increase the number of data pairs for which the
restrict our attention to linear-in-parameter filters of the forpecification is to be met, there are fewer filters that can
(1). To formalize the above idea, assume that the input, which .
) . . For a vectorz € C",||z||1 and ||z||2, denote the standard 1- and 2-
is denoted byr, and the corresponding desired outgutome s whilez”, z*, ! stand for the transpose, conjugate, and Hermitian,
from a certain design spac® c C" x C, whereC" is the respectively.
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Desired Output = Inpita where f = [f_n,, -+, fn,]7 is the vector of coefficients
Nose oupu 7‘7 eror of 'the feedforward filter, .and) = [b_l, < by, P is the _

v 2 = Dim' €. (strictly causal) feedback filter tap weight vector. Depending
rput Chane ‘! Gane! - Decision on the sampling rate, this model can be shown to encompass
2 cj R LI W a, fractionally or symbol-spaced equalizers. The veatpis the

! - o * ! regressor input to the feedforward equalizer, i.e., the vector
[ ._4“}1. besen  COMprising of the channel outputs £ [Tign,, - ,xi_Nf]T,
e — " o= which, from (5), can be written as
a
Training | z; =Cla; +v; (7
| where

Decision Feedback Equalizer

P . e s . - T —
Fig. 2. Discrete-time model of a communication system with a DFE. a; =airc, s 0okl K=D+N;

v =[VigN,, Vz‘—Nf]T-
meet the criterion. The following observation is utilized fofrhe channel convolution matri€’ is
designing an SM filter. cp 0 0

In order to determine if the feasibility se®(n,~) is

nonempty or not, it is enough to check|df — 6°Tx|? < ~2 €-D+1 ¢-D

for all (z,d) € D, where : C_pt1
go = arg min sup |fo(z,d)| 4) ¢D 0
0eC" (z,d)eD C= 0 : .
C—D
wherefy(x, d) is as defined in (1). Thati®(n, v) is nonempty

if and only if the above condition is mét the subsequent sec-
tions, the applicability of the concept of SMF is demonstrated :
for the problem of channel equalization in communications 0 0 e 0 €D /) (2K+1)x(2N;+1)
using a decision feedback equalizer structure. For a linear =
equalizer, certain sufficient and necessary conditions for tlfaddition.a;
existence of a nonempty feasibility set have been derived Hs

[11]. The set-membership decision feedback equalizer (SM- a; = [Gi_y, 5 aion, ] F.

DFE) is introduced in this paper using the DFE structure

[12] with the resulting equalizer designed according to an Let the transmitted symbols come from a constellatién
SMF criterion. Conditions for the existence of a nonempty? the case of equalization, it is intuitively appealing to fix
set of SM-DFE coefficients, and importantly, a result showiri§€ upper bound on the output error d@f;./2, where duiq
connections to the well-known MMSE-DFE are derived. It i the minimum Euclidean distance of two distinct symbols
also shown that the SM linear equalizer is a special caseftfm the constellationd. In other words, by such a design,

is the regressor vector of the previously decoded

the SM-DFE. the SM-DFE will have no decoding errors whenever the data
pairs come from the design spate
B. Set-Membership Decision Feedback Equalization In order to guarantee that the output error be bounded

bP/ some~ > 0, we need to define the design space for

To sgt up the model for chann.el equa_llzanon, ConSIde\ghlich the specification can hold. The input to the DFE can
the equivalent complex baseband discrete-time channel mode TGy

L A
[12], as depicted in Fig. 2. The channel consists of the trar represented by a concatenated ve@{or= (z; 4

mitting filter, modulator, the physical channel, the demoduldnéreas the desired outputds. From (7), it follows thatz;
tor, and the receiving filter. Lefa; }52 be the transmitted (Elepends only om; andw; if C'is assumed known. The vector

symbol sequence and;}°_ b?’tﬁé additive noise at % is_ not only _specified byr; andv; but also depends on a

the channel output. The discrete-time sampled output of tA@niinear function of the parameter vectgrandb. In order to

channel{z; }3° is given by remove this dependence and to make the analysis tractable, the
ST so-calledDFE assumptiofil2] is commonly invoked, namely,

that the previous decoded bits are correct. This implies

D
T; = Z CrQi—k + Vj (5)

k=—D dz = PT a;
where {ck},?:_D is the (finite length and sampled) channelyhere
impulse response. T
Consider a decision feedback equalizer whose outpat P = (O, sac41) Ny x v,
time 2 is given by Here, Oy, «(x+1) refers to a zero matrix of siz&, by K +1
Ny N, and Iy, <, to an identity matrix of sizeV, by N,,.
z = Z Jeiok — Z bedi—r = [Tz —bTa;  (6) The concatenated input to the DFE;) is now completely
k=—N; k=1 specified by the pair of vectows andwv,. The desired output

ON, x (K—N,))-
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satisfy (9) as thdeasible SM-DFE se®(n,~)

It should be noted that the SM-DFE feasibility set is convex
only when the DFE assumption is true, i.e., when all the
past decisions are correct. The following proposition provides
Fig. 3. Set-membership equalization criterion for a 16-QAM system. Thepnditions for the existence of a nonempty parameter set
?rglrjlisilrlrfi(tetidsysr;r?%(;f constrained to lie in a circle of radjusentered at the O(n, ). For sim_plicity of discussion, assume— that the input
symbols and noise come from a zero-mean independent and
identically distributed (i.i.d.) sequence (hence white) and that
of the equalizer can be expressedaas= ef a;, whereeo =  the noise and input symbols are uncorrelated.
[0,-++,1,---,0]" is the unit vector of dimensiof2K +1) with Proposition 1—Existence of a Feasible Set of SM-DFE Filter
a “1” in the (K + 1)st position. Therefore, the pait;,a;) Weights: Consider a linear channel model (5) and a DFE

| O(n.v) 2 () {(fe N+ pech):

| Y= dpin/2 N

: (a,w)ED

—E |a—z(f,b,a,,v)|§’y}

| = ) {7

E (a,v)ED

5 : la—(fTz—b"a)| < v,a=P" a}
[ ] i [ ] L] i ] A .

; ; wheren = 2Ny + 1 4+ N,. Further, (9) can be rewritten as

| sup |(Cf — Pb—ep)Ta+ fo]<v.  (10)

. . ] } L] (aw)CD

is equivalent to equalizer as described above. The following are true:
) <CTai + v 1) Sufficiency®@(n,~) is nonempty if the channel satisfies
x; =
’ PT i ) s s s
¢ %all(CF = P — ey + %l v (A1)

_ T
a4; =€y & . . . : .
where~z is the maximum amplitude in the constellation
As a result, the design space, which consists of the input- 4 f*) — (CH(C — PH) + (v2/423) 1) 1CHey, and
desired output pairs, can be equivalently described in terms of  4(*) — () \where H consists of the(K + 2) to

the Cartesian product space of the vecrandw; for all ¢, (K + N, + 1) rows of C. If (11) is satisfied, then
wherea; is taken fromA?*+! andv; € V2Ns*1. The setV (F©,6°)) € O(n, 7).
consists of all noise components that are bounded 2) Necessitylf ©(n,~) is nonempty, then
V2 {ve Tl <2} ®) ol (CF™ = PO —e)l3 + Ilf I <+ (12)
for some noise bound, > 0. DesigningD requires fixing of whereo, is the variance of the symbols in the constel-
the symbol constellation, the value ¢f, and the order of the lation A, £ = (CH(C — PH) + (2/02)I)"1CHey,
equalizer. Rewriting (6) for the SM-DFE, we have [13] andb™ = Hf™, whereH is as before.
(f.b,a,v) :fo e Remark 1: Similar conditions have been derived for a linear
e . ' . equalizer in [11]. It can be shown that the conditions derived
a=ra, (a,v) €D here apply to a linear equalizer as a special case since the

The dependence on the time variable has been dropped in l’near equalizer is obtained by setting the feedback weights

I d - .
equation because the equation has to hold for all possible pé)lrgthe DFE to zero. The equivalent conditions for a linear

from the design space and not just for a particular sequencee(.wallzer can be obtained by settidg = 0. Moreover, the

. : . .~ necessary condition (12) is an improvement over a similar
The aim here is to ensure that the maximum Euclidean y (12) P

. . : esult in [11] when linear equalization is considered.
distance between the transmitted and equalized outputs (be{orﬁemark 2:1f the sufficient condition (11) is met, then

decision) is upper bounded by a specified vajue 0 for all (f(s),b(S)) is & member of the feasibility set, and hence, it

the data sets that belong to the design space, i.e., is a valid SM-DFE filter. The structure of this filter is very
la —z(f,b,a,v)| <7, V(av)eD. (9) similar to that of the MMSE-DFE [12] in that the feedback
filter cancels part of the combingmbst-cursor intersymbol in-
Condition (9) requires that the equalized output remain intarference (ISIeffects [12] of the channel and the feedforward
circle of radius~ centered at the transmitted symbal as filter. The best cancellation is achieved by settivig= K. For
shown in Fig. 3 for 16-QAM signaling withy = d,;n /2. the remaining part of the discussion, we shall assiiye- K.
We define the set of all feed-forward and feedback equalizerlt turns out that the MMSE-DFE is a member of the feasible
weight vectors of lengtli2¥; + 1) and N,, respectively, that SM-DFE set of filters under some conditions. If the sufficient
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condition (11) holds withy,

Wlnmse

b

’YHlHlSe! Where

YaOv
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Oq

with o2 being the variance of the additive (Gaussian) noise,
then (b)) is the MMSE-DFE [14] and belongs to the
feasibility set.

Remark 3: The above result implies that if the sufficient
condition (11) holds, then the MMSE-DFE assures that the
equalized outputs lie within & radius of the true transmitted
symbol whenever the squared magnitude of each component
of the channel noise vector is less thgh, ... Further, if (11)
holds withy = d,;;;»/2, then the MMSE-DFE makes no errors

in decoding whenever the data comes from the design spag®. 4. Plot of sufficiency condition versug, and N; = 2 for design
of SM-DFE withy = dy,;, /2 for a 20-tap microwave radio channel with
QPSK signaling.

C. SM-DFE Design Methodology and an Example

Designing an SM-DFE filter that results in error-free equa
ization for a subset of the data sets would require testi
for condition (11) to hold withy = dp,;,/2. The LHS of
this equation depends only on the parametgrsind V; and
is denoted byg(~,,N;). There are a set of values of these
parameters that satisfy the conditig(ry,, N;) = ~. Within
this set, we would like to choose a value for the noise bound
() and order of the filter (proportional t';), which results i _
in thelargestdesign spac®. It is shown that this requirement thatzg('ygong‘) = 7 with associated cosf(l —
can be cast as the optimization of a single objective function. (o) )N+,

This goal is to maximize the probability that the data comes4) Find the value ofV; for which this cost is maximum.
from the design space. We have Intuitively, we might expecty, to be as large and/; to be as
small as possible. Smaller order filters are also highly desirable
Pro((a.v) € D) from a computational point of view.
= Prol{a € A2+1) . Prob(v € V2Vr ) To illustrate this method, consider a microwave radio chan-
— [Prok{|v|? < 73)](2/\7[—1—1). (13) nel obtained from_ actual field measurements [_16]. A symbol-
spaced equalizer is used and also the channel impulse response

The random variablé/|2 = 12 + 172 is Rayleigh distributed 1S truncated to 20 significant coefficients (i.d) = 9). A
since the real and imaginary parts of the noise compone@ESK signaling is assumed, resulting4f = 1 and dyin =
given by vr and v, respectively, are independent Gaussial 2- 1€ value ofy was set equal t@hy, /2. The signal-to-

random variables [15]. The constrained optimization probleRPiS€ ratio (SNR) at the receiver input was taken to be 20
is dB. The design procedure described above is followed with

Nuax = D = 9. The optimal values were found to be

rl])_e seen easily from Fig. 4, wheré; = 2. A practical design

ngethodology using these ideas is as follows.

1) Given a certain constellatiad, sety = dyin /2.

2) Check ifg(0,1) < ~. If not, increase the value of
until the condition is met. Fix thig to be the specified
error bound.

3) For eachN; € {1,2,---,Npyax}, find v,, such

Maximize Prol§(e,v) € D)

(1= Ry eN A Yo =049 Np=2 No=11.
For this SNR of 20 dB, the probability that the data comes
from the design space was 0.999 999 982, leading to an upper
bound on the probability of error of.8 x 10~%, which is
consistent with the results shown in Fig. 5. The probability of
error curves for different values of SNR (using the appropriate
optimal values ofy,, andN;) are plotted for both the SM and
In general, it is not easy to obtain an analytical solution to thdMSE-DFE’s in Fig. 5. It was observed that the performance
problem. In our case, since the maximum order of the filteff the SM-DFE was very similar, and almost identical, to that
is limited by the computational constraint on the designer,ad the MMSE-DFE in the range of 0-20 dB of SNR.
simple exhaustive search procedure can be used. Practicallyn many practical situations, however, the design space
the maximum value ofV; can be assumed to be of the ordefD) is not knowna priori or might be time varying. For
of half the channel impulse response length (equal to 9 é@xample, in most wireless communication systems, the channel
the example used below). Moreover, it can be shown that tblearacteristics cannot be assumed to be knawpriori,
function g(,,, N;) is approximately linear with respect tg, especially due to time variations. Adaptive equalization is then
for values in the range of interest. For each valueNof, required to mitigate the effects of ISI. Two approaches to
there is only a singley, that meets the constraint. This carformulating a recursive (adaptive) algorithm for the general

with respect ta(y,, Ny)
Subject to: g(~,, Ny)
= 7all(CF = Po) — eo)lls
+ 2l =
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Probability of Error

Observation Set
Si

Membership Set

W,

1

E

° s SNR in dB 10 13 Fig. 6. OBE procedure.

Fig. 5. Plot of probability of error for SM-DFE versus signal-to-noise ratio

(SNR). § ¢ C" is an estimate of a point i®(n,~). SMF requires
that # be such that

SMF problem that estimate a member of the feasibility set are

derived Sections Il and IV. It is shown that both approaches le2 <2 Vi=1,2,-

yield the same estimates on a pointwise basis. The first

approach is based on the concept of optimal bounding eIhpswt)q the given error bound > 0.

(or OBE) algorithms [3], which gives a set, as well as a poin The above equation combined with (14) results in a set of

estimate. The second approach employs a Ieast—squares—liﬁhe possible parameters at each instahiat are consistent

T . . : a
strategy, which is shown to give the same point eSt'mateSvﬁh the data observed at that time. Obvious(n, ) lies
the former approach.

in this so-callecbbservation-induced sétvhich is denoted by

ll. BEACON: A RECURSIVE Si) and given by

ELLIPSOIDAL BOUNDING APPROACH

An OBE algorithm called BEACON is presented first.

Explicit rules for updating as well as assignments to t b tion d i d te elliosoid in th
weighting sequence are derived. A number of results on t € above equation describes a degenerate eflipsoid in the

point estimates obtained by BEACON are established thnaqrameter space. Given observatiqag, d)j_,, we define

motivate and lead to the least-squares formulation discus§_ gmgmbersmp sev; as the intersection over tlme,. up.to and
in Section IV including the present instant, of all the observation-induced

sets. That is¥; = ni_, Sx. SinceO(n,y) C S for all
k=1,2--- 4, it follows that©®(n,~) C ¥, for all <.

_ ) . . ) . The basic idea of OBE algorithms is to outer bound the
One of the important considerations in developing real-time. jhership set at each instant by a mathematically tractable

estimation methods is that of keeping computational expen%qﬁ.psoid &,. Specifically, given an ellipsoid; ; that outer
low without compromising significantly on performance (mea-

. eboundstlfi,l, we obtain an ellipsoid; such that
sured in terms of, e.g., convergence speed and asymptotic
estimation error). The family of OBE algorithms, developed
for SMI, use outer bounding ellipsoids to capture tinee
parameter In the case of SMF, however, we do not necessarily
need to assume the existence of a true system model (that! f§is process is depicted in Fig. 6. Given an initial ellipsoid
linear-in-parameters with bounded output noise). However,§ = {6 € C": (8 — 6,)"P71(6 — 6,) < o,} with
is straightforward to show that OBE algorithms can be us&@me properly chosen initial parameter estintateand P, =
to approximate the feasibility set in the context of SMF.  pd(pt > 0),0, > 0 such thatO(n,v) C &,, the algorithm

For developing the recursions, the performance specificatiéstablishes a recursive procedure for computing the sequence
is imposed on the real-time input-desired output pairs. Thu¥,ellipsoids{&;}. The feasibility se®(n, ) lies in&;, where
the filter model takes the form &, is obtained as an outer bounding ellipsoid of the intersection

T . of &, with & _;. The recursions for the BEACON algorithm
di =0 zite Vi 14) e presented in the result below [17].

whered; € C is the desired filter output; € C is the error, Proposition 2—The Update Equation&iven the obser-
xz; € C" is the known input sequencéz;,d;) € D, and vation-induced sef; and the ellipsoid;_;, the feasibility set

S; = {9 e C*: |dz — 9T5i|2 < ’72}.

A. Recursions and Updating Mechanism

& D (gi—l n Si) oW, V.
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O(n,v) lies in &;, where OBE algorithms derived using the Fogel-Huang criterion also
A g R update selectively, this does not result in any computational
E=H{0:(0—0;-1)" Py (0—0i1) + Ai|di savings. This is so because the test for checking whether an
—0Tz|? <oyt + N} update is needed or not is itself &\n?) operation, which
—16: (6 — éi)HP‘—l(e _ éi) <o) is the same as the cqn_]pl_Jtatl_on required in carrying out the
. 1 . actual update. The, minimization strategy leads to afi(n)
P =P+ AT (15)  check for updating. With BEACON’s sparse updating prop-
0; =6;_1 + \; Pz’ 6; (16) erty, this implies significant computational savings. It is further
A 62 ) shown in this paper that by minimizing;, BEACON yields
i =0i—1— 1+ MG, + Ay 17 sequences of volume and trace measures of the ellipsoids that

. are monotone nonincreasing. This feature is not shared by DH-
for any \; > 0, where theprediction erroris ; = d; —6X ,z;, OBE, which is anothew; minimizing OBE algorithm [4].
and G; = «l' P,_ a7}, Therefore, the size of the ellipsoids generated by BEACON
The proof is on similar lines as in [4]. For a properly chosedecreases with time, even though the decrease may not be
~, P,, ando, > 0, we havgai > 0 for all 2. The centroid of optimal at every time step. For the next result and much of
the ellipsoid at each instafii can be considered to be a pointhe subsequent analysis, the following definitions are needed.
estimate at that instant if need be. In the actual implementatiorDefinition 1: Thebounding hyperplane® the observation-
of the algorithm, the matrix?;, rather than its inverse, isinduced setS; are denoted bysf, where ¢ € [0,2x), and
updated. That is given by
NP xizl P .
Pi=PF_1- # Sf ={0cC"d—0Tx; =~®) Vpe[o,2n). (19)
This update can be derived easily from the matrix inversiq
lemma [4]. Each value of\; yields a different bounding
ellipsoid. To compute\;, we adopt a measure of optimality.
similar to the one used in DH-OBE [4]. The difference betwed
DH-OBE and this approach in terms of formulation is the ‘
manner in which the previous ellipsoid is combined with the St ={0eC|d - Tx| <~}
data constraint set at the current instant. This difference results
in a simpler update checking rule and assignment to the tinferom the above construction, we ha¥e= Ug 5;5 uSin.
varying weights in our algorithm. The objective, therefore, is Definition 2: The nearest bounding hyperplarie a vector,
to minimize o; with respect to\; under the constraint that say ¢ ¢ S; at time instant denoted byN B;(¢), is
A; > 0. When the minimum ofr; occurs at\; = 0, it results

H particular, if & € R"™, then there are only two bounding
hyperplanes given bySi(“S:O) and Sﬁ:”). Moreover, the
Hterior of S; is

in no update [17]. Thediscerning updatecapability of the A ady T
proposed algorithm follows as a result. NBACQ) =877, do = L(di = Tai). (20)
The optimal value of);, denoted by\?, is obtained by
maximizing the following function: By the assignment to\;, the following result for thea
52 1 posteriori error ¢; 2 d; — @f:ci can be shown, from which
)\i{—; <7> - 1}. we obtain a geometrical interpretation to the update rule.
AL+ NG Proposition 3: The a posteriorierror given bye; is always
This yields less than or equal to the noise bound magnitude. That is
. 0,1 " ff 0i] < v . o] = {’y (<|6;]), if i is an updating instant
‘ G < 7 - 1), if 16;] > . ’ |6;] (<«), ifiis notan updating instant.

It has been noted in [5] tha#;, as a measure of opti- Geometrically, the update rule can be interpreted Be—
mality in OBE algorithms, is not a physically interpretableipdate is needed&?ti_1 €S, eIsAe, upda_téi_1 in the direction
measure of the size of the ellipsoid. The minimum volumef the vectorP, ;x; such thatd; € N'B;(8;_1).
and minimum trace criteria proposed by Fogel and Huang [9],
which was also employed in other OBE algorithms [7], [10]B
are easily interpretable optimality measures since they have
direct relation to some notion of the geometrical size of the The choice of the initial conditions, specifically that of
ellipsoid. The volume of the ellipsoid; is proportional to @, andp (where P, = pl), is treated in this section. The
det{o; P;}, and the sum of squares of the semi-axes is givénotivation for the following analysis is two fold.
by tracd o, P; }. The justification fors; minimization has been 1) It has been observed that various choices pfead to
that it is a natural bound on the Lyapunov function in the significantly different performance in DH-OBE
convergence analysis in [4] and that it bears relations to the2) A problem that may occur in tracking time-varying
volume and trace criteria asymptotically [18]. Although the parameters is that; may become negative for some

Effect of Initial Conditions and Convergence Issues
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By a certain result pertaining to robustness of the estimatesults for most known OBE algorithms along with conditions
with respect to choice of initial conditions, we can effecto guarantee point convergence to the true parameter in a
tively explain the good tracking properties of the BEACOMtochastic setting. In this paper, we analyze some convergence
algorithm. properties for the BEACON algorithm in the SMF context

In the absence of anw priori knowledge regarding the and prove asymptotic convergence of the prediction error even
parameter, the origind, = 0) forms the initial estimate under model violations. First, it is shown that if the estimate
of ©(n,~). Theoretically, the condition to be satisfied whileconverges, then in the limit a5 — oo, the estimate is a

choosinges, and p is point on theboundary of the feasibility set that is denoted
by II(n,v). That is, 8 € II(n,y) if 8 € O(n,v), and
2 < . ’ 3 )
GEZ‘EEM 1112 < o (21) |d° — 6Tx°| = ~ for some(z°,d°) € D.

. : . . . Proposition 5: Consider the sequence of estimafes
Since this cannot be implemented in practicéarge enough P d afie

o, and . are picked to start the algorithm. First, the effect of * ! there exists someV > 0 such thady € 1i(n, ), then

any arbitrary scaling ow,, keeping the produgts, constant Ay =0, €., Oy =0n V120 R R

such that (21) is satisfied, is investigated. * Assume thatt, ¢ O(n,v) and lim; .. 6; = b €
Proposition 4: Consider two realizations of the algorithm  ©(n,7). Then, 6o, € Il(n, 7). N

with different initial conditions: 1) an initial condition * Letx; be bounded, that is) < ||z;]|3 < X for all i.

0(()1)7N(1) and 2) oD = KO_(()l)7u(2) = 4W/K, for any Then, for anyo,, limsup, ., 6] < 7.

K > 0. Then, for all4, the following are true. In the special case of system identification with bounded
« The sequence of updating instants are the same. output noise (i.e., SMI), it is shown that using an overestimated
. )\5(2) _ K)\‘;(l), P2 _ Pi(l)/K' andai@) — Ko value for the noise bound in the BEACON recursions leads to a

biased estimate, assuming the estimates converge. As a degree
of confidence, convergence of the estimate to a region around
the true parameter is also shown. The SMI model assumes that

Remark 4: Forany volumg or trace minimizing the OBE al,o output noise in the system to be identified is bounded by
gorlthm, these results are trivially true. 4 minimizing OBE SOME~, tene. That is, there existéeme and", wme Such that
algorithms, however, it is not essential that the performance ’ ’
be invariant to such scaling. In fact, it has been observed that
none of the above results are true for DH-OBE.

It is possible to generalize the above result to the potentially
catastrophic case of a wrong choice @f and ;. such that ~ Proposition 6: Choose some = 7, true + &, > 0 in the
(21) is not satisfied. In such a scenario, the basic assumptfBE recursions. Further, assume the sequence of estimates
that &, is a bounding ellipsoid fails, leading to what we ternfoOnverge to somé... Then, the following are true.
as amodel violation Extending the above result shows that * 0o # 0rue, Whereby,,. is the true parameter.
the BEACON algorithm, given by (15)—(18), is robust with « limsup, ... [|fi—1 — Oiruell3 < (32 — 02)/02, where
respect to such model violations [17]. It is important to note &2 is the noise variance, and is the minimum positive
that other types of deviations in the assumed system model, in singular value of?,,,, which is the autocorrelation matrix
the form of, e.g., decision errors in a DFE, are not addressed of the (stationary) input.
in this work. We address the case when the initial ellipsoid
fails to outer bound the feasibility set, leading to a violatiog: gimulation Studies

in the assumed model that the OBE algorithms are based on. ] ) ] ) )
Specifically, we hve the following. Some simulation studies using the BEACON algorithm are

For a fixed i, the sequence of updating instants Weighgescribed, and a comparison with the traditional least-squares
(X9), and parameter estimate(s{éi} v 4) are the same for all algorithm like RLS is made. Superior tracking capabilities of
O,O” c R the BEACON algorithm for time-varying systems is demon-

Therefore, the point estimates are not affected, even sifated via an example. Simulation results for the following
o, < 0. Under model violations, the algorithm no longef@Ses are presented:
operates according to bounding ellipsoid principles. The result* identification of an eigth-order FIR filter under uniformly
suggests that the point estimate given by (15)—(18) might have distributed noise;
a more general interpretation. An alternative solution method* €stimation of an actuahicrowave radio communications
to the SMF problem, resulting from an explicit least-squares- channelwith truncated Gaussian noise;
like cost function optimization, is addressed in Section IV. ¢ tracking of a fast time-varying second-order FIR filter.

Remark 5: It is pertinent to note that although the central Minute details of the simulation are omitted for the sake
(point) estimated; is independent of the the value of, the of brevity. The results are shown in Figs. 7-10. For all cases
ellipsoidal set estimatés;) will change if o, is varied with considered, the SNR was 15 dB, and the input was taken from
i+ held constant. a binary alphabet.

Convergence issues in OBE algorithms for set-membershipThe performance of the BEACON algorithm is similar to
identification were addressed by Dasgupta and Huang in RLS for Case 1. Importantly, the number of updates was
and Nayeriet al. in [19], which established convergencearound 30 out of the total of 1000 samples. It is pertinent

« Consequentlyd”) = 8. In addition,£") and€® are
identical.

d; = etj;ue-'l"i + v, |Vi| < Yv,true Vi (22)
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Tracking of first parameter component
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to note that such performance is obtained even though the® -'©  ° w2 =00 0 o
algorithm uses very few inputs for updating. Fig. 10. Two-tap FIR filter—evolution of the ellipsoids and the central

For Case 2, it can be observed that the rate of convergeﬁ?%:'ate throutgh timetk (the 2- and y-axes represent the two components
of BEACON is slightly slower than RLS, although the final T Poameier vee on-
MSE is comparable in spite of sparse updates. The selective
updating feature is one of the main reasons for the somewk&@se 1, but the coefficients varied randomly, thus making it
slower convergence. The value pfcan be varied to trade off a time-varying system. The time variations in the parameters
between achievable performance and computational compléxe introduced by having random, but bounded, jumps at every
ity. A higher value ofy would result in fewer updates and,15 samples. It can be seen from Fig. 9 that the BEACON
consequently, a higher MSE (since the algorithm essentia#ijgorithm outperforms weighted RLS (with an exponential
stops taking inputs for updating once the prediction errdergetting factor of 0.9) in terms of tracking while using only
goes belowy in magnitude). On the other hand, a lowgr around 25 data points out of 100 for updating. This superior
leading to a more stringent error specification, would imply #acking capability is an outcome of the data-dependent choice
lower MSE at the expense of an increased number of updatek.weights as well as the selective updating mechanism.
When multiple filters need to be estimated simultaneously, the comparison with RLS, the sparse updating by BEACON
selective update feature can be used to share a small numsults in a slight loss in convergence speed in a stationary
of updating processors among many filters, leading to a saviaigvironment. On the other hand, in the presence of time
in hardware requirements [11]. The BEACON algorithm is avariations, it is this selective updating capability along with
ideal candidate for such sharing as its frequency of updatitite dependence of the weights on the prediction error that
is one of the least among the known OBE algorithms. result in the excellent tracking characteristics of BEACON.

In Case 3, for tracking time-varying parameters, identifi- Finally, Fig. 10 is a plot of the evolution of the ellipsoids
cation of a second-order FIR filter was simulated similar tirough time for the case of identifying a second-order FIR
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filter under gniform noise. Thex” denotes®,,.,.., whereas NB.(B )
“o" denotesd;. It can be seen that in just 25 samples, the
central estimate seems to converge to the true parameter and
that the associated ellipsoid shrunk to a much smaller size,
albeit not yet a point. This can be explained from the fact that
the centroid of the BEACON algorithm can also be looked
upon as the solution of a certain least-squares like problem
under the constraint of bounded errors. The robustness to
model violations of the centroid also indicates the existence
of an alternative estimation approach, which leads to the same
recursions as (15)—(17) that is not hinged upon the choice of
o,. The next section is devoted to the formulation of such a
methodology.

IV. LEAST-SQUARES FILTERING UNDER BOUNDED ERRORS

The idea here is to formulate a least-squares cost function,

given the knowledge that the errors are bounded but otherwfdg 11. Contour plot ofV;_,(¢) along with geometric representation of
. . .., updating process.
unknown. The problem of least-squares estimation with g
dead zone has been treated in [20]. We derive the least- .
squares method as a constrained optimization problem, andRemark 3: When 6,_; € &, there is no need to move
the resulting weights are shown to be optimal in the sente a new estimate ag;_; itself is the global minimum of
of satisfying the constraint at every instant. Similar algorithmis;_;(#). This results inno updateof the parameter estimate.
have been derived in [21] for the problem of model validatiomMoreover, the condition for no update is exactly the same
where the motivation is to develop least-squares estimates for BEACON, given by Proposition 3. Therefore, the
that (asymptotically or otherwise) lie in the membership seadiscerning update rule for this least-squares-type problem
Optimality issues in identification for systems with boundeid established and shown to coincide with the condition in
constraints on the error sequences are addressed in [22]. BEACON.
This estimation strategy is cast as a constrained optimization

A. Problem Formulation problem. At each instant

Assume that at timé— 1, a certain quadratic cost function is  pinimize Viea(8) = (0 — 6;_) T P=L (6 — ;1) — 0i1
constructed, given information up to and including time instant ’ ’ “ ’ ’

i — 1, that is, (xx, di, )i . Denote this function by;_,(6), _ (24)
which is defined as Subject to |d; — 67z;|* < 4. (25)
Vi 1(0) ={(6—6,) P76 —8,) — 0.} The parameter vector minimizing this problem is the new
ie1 estimate, which is denoted k.
+ ) anflyn — 0 il* — 47} Henceforth, assume thé_, ¢ S; because if it did, we
k=1 have shown that there is no update and éaa; is indeed the

=(6— éi_l)HPf_ll(H - éi_l) —o0;_1 (23) solution. Since the cost function is convex and the constraint
set is also a convex set, it is easy to establish that the solution

for some appropriately chosen weighting sequenge > o the problem (24) and (25), which is denotedéybelongs
0,k = 1,2,---,¢ — 1. The choice of the time-varying and, NBi(éi—l)- This, in turn, is given bys;;so, whered, is the
(possibly) data-dependent weights will be explained shortlyhase of the prediction errdi (see Definition 2). Therefore,
Note that the additive constants appearing in the cost functigyy phase of the posteriori error is the same as the phase
do not affect the optimization procedure. They only facilitatgf the prediction error. Recall that the above is identical to
connections to the OBE derivation. The first term in (23he result obtained in Proposition 3, which was derived using
represents the confidence on the initial guess. OBE methods. With this, the problem constraint becomes an

Consider the data set at timegiven by the pail(z;, di) € equality, rather than an inequality, as in (25).
D. The information contained by the new data, due to the

requirement of the bounded errors, is chare}cf[erizeqidby— B. The Algebraic Solution
0Tx;|> < 42 & 0 € S;. The basic idea of deriving this least- N .
squares estimator is the followingsiven the cost functign ~ Construct an auxiliary function

w__l(e) and 'Ehe obser-vz.:\ti(-)n-induced sé;,. find tAhe new Ji(0, ki) = Vi1 (8) + ri(|d; — 67 2|2 — 42)

estimate, say#;, that minimizesV;_;(6) subject tof; € S,.

In other words, the strategy is to move frofyL; to @ new wherex; is the Lagrangian multiplier. The minimizer is the
estimate to incur the least increase in the cost fundtion(#) parameter at which the normal vectors to the surfaces of
under the constraint that the new estimate has to lie in the ;(#), and the constraint function are colinear. This is
observation-induced sef;. depicted in Fig. 11.
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Proposition 7: Given data setz;, d;) and the cost function  Proposition 8: The solution to the above problem is
V;_1(9) at time ¢, the solution to the optimization problem

¢ s Yi
posed in (24) and (25) is given by &=& 1+ e (16:] =)
6. —6._, + ki P1%7 6 which results in the same recursion (after transforming back
T T T R0G, to the original coordinates) as in Proposition 7. This result
) 1 /18] can be shown as follows: Lefi — ;-1 = —ciy; /[yl
e v 1 (26)  where; is a constant such thak — &y, = (6;/16:])~. This

implies ¢; = (1/|ly;|D(1 = (v/]6:]))é;. Some rearrangement
where, as before(z; = 7 P, ,x*. and transforming back to th# space yields the above result.

Remark 7: By the above formulation, the recursive solution Ve also derive an explicit recursion for the cost function at
for the parameter estimate, the update mechanism, and e ¢, namelyV;(6), givenV;_,(¢) and the data paifz;, ;).
assignment to the time-varying weights are seen to be the sahi& Property that should be possessed by this function is that
as for the centroid in the BEACON algorithm. In additionit IS quadratic and of the same form &5 ,(¢). In addition,
the sequence of weights in the BEACON recursions given y Should be the global minimizer of this function.

{\¢} are the the same as the Lagrangian multipliers in theEffectively, the question is with regard to the assignment to

constrained optimization problefi{x¢}). It is this weighting the weighte; > 0, as in (23). Therefore

strategy that leads to the satisfaction of the constraint at each o T |2 2

instant. The direction of movement froén_l given byP,_ 1z} Vi0) = Vi () + ciflds — 67 il =7
is essentially a compromise between reaching the observatiqiiurns out that the only assignmentdg, which is consistent
induced set at each instant and incurring the least increasewgth the above formulation, is given by from (26), and this
the error surfacd’;_, (). defines the updates for the matd#% and the scalas;. Since

A geometrical solution to the same problem is presentgg know thatx¢ = \¢, these recursions are the same as (15)
next without resorting to the standard Lagrange multiplieind (17).

technique. Thus, we have formulated a least-squares type cost function
at each instant and obtained a solution constrained on the need
C. The Geometric Solution for the estimate to lie in the observation-induced set at that

Transforming the parameter space by the (invertible) matr'&Stant' The solution was found by the Lagrange multiplier

—1/2 . . L technique and by a geometrical argument. Additional con-
F;_{" results in a transformation of the ellipsoid tora rfﬁraims imposed on the model, in the form of a bound on

dimensional spheroid. That is, a transformation of the ki e error process, allowed for a discerning method to pick the

_ o2 - -
¢ =P,y "0, wheregis a vector from the transformed domain, aighting sequence in a recursive least-squares-like algorithm.

If the singular value decomposition &f_; is given byFP;_; =
U?U .t.for slome l:mtt?]ry Tr?mt)U a?d a (tj.lagog?}QmathE D. Discussions on the Optimality Measure and
of positive elements, then the transformationfy; ~ can be Tracking Properties of BEACON

looked upon as consisting of two operations—transformation ] o
by UH and then scaling b —1/2. The first results in a rotation /N @ manner independent of one another, the OBE derivation

(under norm invariance) of the axes, aligning all the semi-ax¢@s shown to coincide with the constrained least-squares
of the ellipsoid along the (new) coordinates. The next operati§i§rivation. Note that the set of all the parameters that result
amounts to normalizing the lengths of the semi-axes to unitf}, Vi-1(¢) < 0 describe am-dimensional ellipsoid in the

resulting in a spheroid in the new coordinates. parameter space. Moreover, the non-negative quaafitis
The inputs; is also transformed to, say,;, wherey, — the depth of the point of minimum df;_, (¢) (which occurs
P:f{Q:ci such that the produci”s; = ¢Ty,. By this, the at 6, ). It can also be be proved that minimizing the cost

observation-induced se$; remains unchanged. In addition,fU”CtiO” at each instant (24) reduces to the problem of finding
G; = zTP,_1z! = |ly,||2. Now, the optimization problem is &0 extremum ofs;. To show this, assume now that the

as follows: Minimize the cost function given by estimator has been partially determined by setting the gradient
with respect tod to zero. Then, recognizing the dependence
Ve(e) = ||€ — éFlH% on x;, we denote the estimate Wy«,)
5 wi P 1x]
under the constraint that the solution belongsdpgiven by O(ri) =it + m‘si'
{&:]d; — €Ty,|? < ~4%}. This problem statement is equivalent _ S _
to (24) and (25). From the above equation, by using the equatior#fer;) and

We know that the optimum solution lies on the neare§Pme tedious algebra, we obtain
bounding hyperplane téi,—l and that the solution occurs at 182
the point where the normal direction #65;($;_;) coincides  Ji(0(r:), ki) = — <Ji1 + Kiy® — (1+7—;;G)> = —0;.
with that of V°(¢). Since the contours df(¢) are spheroids, T
this amounts to moving along the direction ely; to reach Therefore, the process of obtaining an extremund,¢f) with
the nearest bounding hyperplane. respect tox;, in order to satisfy the constraint (25) and find
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the Lagrange multiplier, is the same as finding the extremymerformance and low complexity adaptive signal processing
of o; with respect tox;. Moreover, with x¢ denoting the methods are imperative.
value of k;, which achieves this extremum, it turns out that
(d*0;/dr?) > 0 for k; = k2. This implies thatx? is a
minimizer of 5;. Hence, the problem of finding the extremum
of the auxiliary cost function with respect to the Lagrange
multiplier is the same as finding the minimum of over all ~ Proposition 1—Proof:“=-:" The supremum of the LHS in
r; > 0. As pointed out earlier, the geometrical significance df0) is equal to
o; is that it defines the depth of the minimum pointg{ ¢
o ot apmen P Pomtat?) s CT - Pb- o)l +
As far as tracking is concerned, one of the singular problems
encountered in OBE algorithms is the case when the intersaed is achieved whepv,| = v, Z(v) = ¢ — £(fx), where¢
tion of S; with &_; becomes void at some time instantAt is such that/(C'f — Pb—eg)Ta) = Z£(f*v). An upper bound
such instantsg; becomes negative, and the OBE algorithman the first term in the above expression is
have to resort to certain rescue procedures so that tracking is
restored [6]. However, as has been shown in the earlier section, sup  [(Cf — Pb—eo) a| < 73l (Cf — Pb— eo)lh
o; becoming negative does not affect the updating recursions®=" "
(15)-(17), although the OBE interpretation breaks down. In thghich leads to a condition of the form (11). Since
absence of rescue procedures, other OBE estimators tend to
lose track of the parameter for abrupt and significant changes ~ Yall(Cf — Pb—eo)[lL + v Ifll1)?
in the parameter, while such is not the case with the BEACON < P[ECF — Pb—eo)|5 +Y2FI15]
algorithm, which explains the good tracking characteristics
observed. From the least-squares perspective, this fact is ebenause there exists a constansuch that|x||; < ||«[|.. By
more apparent. The only objective in that formulation is toinimizing this upper bound over allf,b), we obtain the
optimally move to the observation-induced set at the presepression forf(s) and 5,
time instant. “«<:" The necessary condition is also obtained in a similar
However, if we wish the estimator to operate according fmanner by noting that
OBE principles, a scheme using ideas from set-membership T
state estimation can be implemented for tracking, thus giv- Sup [(Cf — Pb—eo)" a| 2 0o||(Cf — Pb—eo)|l2
ing a concrete method to circumvent the need for rescue®”
mechanisms. For more details on the state estimation \éii(ﬁceE[aaH] = o21. Further, sincd|f||2 > ||f||2, we obtain
set-membership principles, see [23] and [24]. a lower bound on (10) as

APPENDIX
PROOFS OFRESULTS

aell(CF = Pb—eo)ll5 + 72 IIf113
V. CONCLUSION

This paper dealt with a filtering problem known as se@nd (f,5™) are the filters that minimize this function,
membership filtering (SMF). The formulation imposed convelgading to the necessary condition (12). u
set constraints on the filter by requiring the resulting error Proposition 3—Proof:First, if ¢ ¢ updating instants, then
sequences to be bounded in magnitude by a designer-specified 6i-1 = |ei| = || < ~. Else, from the update equation
value. Results for a special case of filtering, namely, decisié®’ ¢i, we have that the posteriorierror¢; is
feedback equalization of communication channels, was studied \egT P gt 5
in this framework. Its relation to the existing MMSE-DFE was ¢ =6 — LiFi L% e Ly
explored wherein it was shown that, in certain circumstances, 1+ X6, |6i]
the MMS_E'DFE k_Jelongs to the class of SM'DF_E filters. Ne_X(Nhere the second equality comes from the optimal assignment
a recursive algorithm called BEACON was derived accordm& X°. Thus, the phase of; is the same as that af;, and
to an optimal bounding ellipsoid criterion as an adaptive‘| ;7 which implies tha; € N'B;(6;_,). =
solution to the SMF problem. This algorithm was shown t ZProp(')sition 4—Proof:TheZ I’eSU|tZiSZE)I’OV6d by induction.
feature a highly selective update mechanism, wherein a lar Ssume thab, is the same in both the realizations. Then, all
percentage of the data (greater than 90%) was not use a equalitiesoabove are true at time= 0. Further, let thé

update the parameter estimate. Moreover, a least-squares-]| 8ve results be true at a time instamt— 1 (m > 1). Since
criterion was used to derive the same algorithm. The analyﬁls ; )

presented allowed for connections between OBE and Ieafi"[’-’1 IS independent of the _SC"_’"e f_actﬁ’r, 6"2(%'30 doeso(?)ot
squares estimation methods. The alternative formulation al %pend(gnK. Fro(rlr; (18), this mphes_ thaixm. - K)"f’
shed light on the observed insensitivity to model violation®N¢€ £m"1 = Fn"1/K by assumption. This immediately
and robust performance under time-varying conditions. T#eads to the fact thayy) = P,(,i)/:K from (15) and from
ability of the BEACON algorithm to track fast time variations(16), and it is easy to conclude théf = 65, The scaling
was demonstrated via simulations that indicate much promigko,, can also be shown similarly, which also implies that
in emerging wireless communication systems where hig]ﬁ” =&P. [ |
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Proposition 5—Proof:
« If 3N such thaty € II(n,v), then|6x 41| = |dni1 —
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Proposition 7—Proof: The gradient of the auxiliary func-

tion with respect to# gives § — 6;_1 = wOPi_1a}(d; —
0T xn41| = v since (zx41,dy41) € D. This implies 6%x;). The satisfaction of the constraint implids — 67 z;

there is no update at tim® + 1, andfy.;, = Ay. From (8i/|8:[)y. From this, we obtain

this, it follows thatfy,; = 65 for all [ > 0.

The result does not hold in the trivial case Whéne
©(n,v) (since there would be no updates at all,
f- = 6,). Otherwise, assume the contrary: L&, €
®(n,v) \ 1l(n,~). This is possible only ii N > 0 such
thatfy € C*\ O(n,v), andfyi1 € O(n,v) \ l(n,v)
[note that if Ax,; € II(n,~), then by the previous

and

kiP_17:0;

0= 91;1 +
|6l /v

From the above resultsy(8;/|5]) = di — 6Tz, = & —
(k?G,6;/16:|/7), which gives the desired result. It is straight-

result, there would be no more updates]. This implies that

forward to verify that this vector is a point of minimum.m
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belong to the feasibility set). Since theseo not belong
t0 Sy 1, |[dny1 — 6T zny1| > 7, which is not possible
because? also belongs t@(n,v) and (zn+1,dn41) €
D. Hence,b, € I(n, 7).

(1]

Assume that there is no model violation and that2l

limsup,_, |6;| < v is not true. Then, there exists an (3

e > 0 such that

limsup |6 = v +e. 27)

1—00

In other words(|8;| — ) > ¢/2 for infinitely many:. At such
instantsz, by substituting the value of? in the expression for
o; (17), we have

62

4G

(16:] = 7)?
G;

0, = 0;-1 — < 0,

where G; < G for all ¢, andG = X > 0. This, coupled

(4]

(5]

(6]

(7]

(8]

with (27), implies that for someV large enough, we have [9]

on < 0, which is not possible. However, by changing the

value of 5, by any factor does not change the sequence ﬁB]

estimates. Therefore, this result is extendible to arbiteary
[ |
Proposition 6—Proof:

(1]

* When the actual noise bound is overestimated, then there
is a feasible set of plants that result|r} < ~. This set |1

is nonempty sincé;,.. belongs to it. This is so because
|d7 - ez;ueiﬂﬂ S ’Yu,true < Y

for all (x;,d;) generated by (22). Since> 0, we know
that 6., ¢ II(n,v). However, even if the estimates
converge to a point inB(n,v), we have shown that

Proposition 5). This means thé(g<> # Grye-
Using the fact thafimsup, ., |&|*> < +? and lower

[13]

[14]

(18]

[16

they converge to the boundary of the feasibility set (frorF1

]

bounding the LHS by the expected value of the squarét®!

prediction error, the result follows after substituting the

expression fow; from (22). [ |
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