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Abstract—This paper deals with adaptive solutions to the so-
called set-membership filtering (SMF)problem. The SMF method-
ology involves designing filters by imposing a deterministic con-
straint on the output error sequence. A set-membership decision
feedback equalizer (SM-DFE) for equalization of a communica-
tions channel is derived, and connections with the minimum mean
square error (MMSE) DFE are established. Further, an adaptive
solution to the general SMF problem via a novel optimal bound-
ing ellipsoid (OBE) algorithm called BEACON is presented. This
algorithm features sparse updating, wherein it uses about 5–10%
of the data to update the parameter estimates without any loss
in mean-squared error performance, in comparison with the
conventional recursive least-squares (RLS) algorithm. It is shown
that the BEACON algorithm can also be derived as a solution to
a certain constrained least-squares problem. Simulation results
are presented for various adaptive signal processing examples,
including estimation of a real communication channel. Further,
it is shown that the algorithm can accurately track fast time
variations in a nonstationary environment. This improvement is
a result of incorporating an explicit test to check if an update
is needed at every time instant as well as an optimal data-
dependent assignment to the updating weights whenever an
update is required.

I. INTRODUCTION

T HE PROBLEM of designing a linear-in-parameter filter,
given knowledge of the input and the corresponding de-

sired output, is studied in this paper. Traditional methodologies
include the minimum mean square error (MMSE) filters and
their deterministic counterparts [the least-squares error (LSE)
filters], which seek a filter by minimizing the 2-norm of the
error sequence [1]. Performance of the MMSE filters relies on
the accurate knowledge of the statistics of the input and output
observations, whereas an off-line LSE procedure requires
data processing in batches, which is not computationally
attractive. On-line, or recursive, methods to iteratively achieve
the same goals include the least-mean squares (LMS) and
the recursive least-squares (RLS) algorithms, which have been
studied extensively in the literature; see, e.g., [1] and [2].
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In conventional system identification problems, we have
somea priori knowledge about the system to be estimated.
Incorporating this in the form of constraints in the estimation
procedure leads to solutions that are consistent with that
knowledge. In a more general framework of filter design,
constraints can be imposed in the estimation procedure if we
need assurance ofgoodperformance on a deterministic (point-
wise) basis. As before, these requirements then have to be
incorporated in the design of the estimator/filter to ensure such
an acceptable performance. Moreover, by taking the structure
and constraints of the problem into account, it is likely
that computationally attractive recursive algorithms emerge as
possible solutions. With these motivations in mind, the authors
have recently introduced, in [3], a methodology for the design
of filters that bound the worst-case error achieved by the filter.
This method is termedset-membership filtering (SMF), and the
resulting filter is called an SM filter [3]. SMF owes its name
to the so-called set-membership identification (SMI) technique
[4]–[8], which is applicable only for identifying a linear-in-
parameter plant with output corrupted by additive bounded
noise. It is straightforward to show that SMI is a special case
of the SMF problem.

The objective of an SM filter is to estimate a member
of a so-calledfeasibility set. This set defines the SM filter’s
performance specification. SMF requires that this specification
be met for every possible input-desired output pair of data
that come from a certaindesign space. Any closed-form
solution of an SMF problem requires accurate characterization
of the design space over which the filter is required to meet
the specification. Such a description of the design space
would, in general, need knowledge of a functional relationship
between the input and desired outputs. In problems where such
knowledge is unknown or is not accurate enough, we require
a tool to estimate a point in the feasibility set in a recursive
fashion. It has been shown that one such method is given
by the class of optimal bounding ellipsoid (OBE) algorithms.
These algorithms were originally developed for SMI [9] and
have gained much attention in the past decade [7], [8], [10]
due to some of their attractive features. Among others, the
OBE algorithms employ adiscerning updaterule, i.e., they
use the data selectively in updating the parameter estimates.

In this paper, we present a novel OBE algorithm called
the Bounding Ellipsoidal Adaptive CONstrained least-squares
(BEACON) algorithm, which shares many of the desirable fea-
tures exhibited by the various OBE algorithms [5] developed
to date. In addition, however, the proposed algorithm features
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Fig. 1. Set-membership filtering.

some favorable characteristics that are unique and different
from traditional OBE algorithms. The BEACON algorithm
is found to update much less frequently in comparison with
the existing OBE algorithms such as the one developed by
Dasgupta and Huang called DH-OBE [4], whereas it exhibits
better mean-squared error (MSE) performance than both DH-
OBE and the weighted RLS. This paper examines some
issues regarding the updating mechanism and provides a
novel geometrical interpretation. Moreover, it investigates the
behavior of this algorithm when the initial conditions are
incorrectly chosen in such a way that the basic premise of
bounding ellipsoids fails. Surprisingly, it turns out that a
certain point estimate obtained via the BEACON recursions
is insensitive to thesemodel violations, and some convergence
results also hold. It is also observed that BEACON exhibits
very good tracking capabilities for time-varying systems.

The above features exhibited by the point estimate motivate
the development of a least-squares-like estimation scheme that
is constrained on the specification of bounded errors. This
approach, although it is decoupled from the OBE method, is
shown to lead to the same recursions for the parameter (point)
estimate as before. Moreover, it also establishes a clear link
between least-squares and OBE estimation paradigms.

The next section first overviews the concept of set-
membership filtering and then addresses an application for
a special but important problem in digital communications,
namely, that of channel equalization. Specifically, conditions
for the existence of thefeasibility setfor a decision feedback
equalizer (DFE)will be derived. Relations between the so-
called SM-DFE and the commonly used MMSE-DFE are
studied. Section III introduces the BEACON algorithm as
a recursive solution to SMF, gives an explicit formula to
compute the weights for updating, and presents some analysis
of its performance. Simulation results are also provided in
this section. The alternative recursive solution method for
SMF, via a constrained least-squares method, is developed in
Section IV. Finally, Section V concludes the paper.

II. SET-MEMBERSHIP FILTERING

A. Problem Formulation of SMF

Set-membership filtering is a filtering method distinct from
traditional least-squares filtering in terms of performance crite-
rion [3], as depicted in Fig. 1. The objective is to design a filter
whose output error is not greater than a specified value for all
possible input-desired output pairs of data. In this paper, we
restrict our attention to linear-in-parameter filters of the form
(1). To formalize the above idea, assume that the input, which
is denoted by , and the corresponding desired outputcome
from a certain design space C C, whereC is the

-dimensional complex Euclidean space. The problem can be
posed as follows:Given and a designer-specified positive
real number , design a filter, C C C that (linearly)
maps the pairs to the output error1

(1)

where C The objective of SMF is to choose a parameter
vector such that

(2)

In other words, find a parameter vector that meets the error
specification for all input-desired output pairs in Therefore,
the SMF problem can be cast in the form of the following two
parts:

• Does there exist a such that

(3)

• If so, find a such that(3) is satisfied with

In contrast, traditional methodologies like LSE and MMSE
minimize the squared error either in a deterministic or a
stochastic setting. The question of the existence of an SM
filter for a given specification is an important issue.

In general, the bounded error specification (2) can be met by
a setof filters, which is referred to as thefeasibility set, since
any one member of this set is a valid SM filter. Therefore,
the objective in SMF is to estimate this feasibility set or a
member of it. This set is given by

C

C

The feasibility set is an ensemble intersection over all the
possible input-desired output pairs that come from the design
space. A few properties of this set are listed below.

• is a convex set.
• for any
• , where
• If , then , where

C

It may happen that there exists no parameter vector that can
meet the performance criterion for a particular choice of
and , as mentioned earlier. Therefore, once the design space
is fixed, the chance of finding a nonempty increases
with and , which is intuitively well understood. In addition,
a larger design space leads to a smaller feasibility set. That
is, as we increase the number of data pairs for which the
specification is to be met, there are fewer filters that can

1For a vectorxxx 2 Cn; kxxxk1 and kxxxk2, denote the standard 1- and 2-
norms whilexxxT ; xxx

�
; xxx
H stand for the transpose, conjugate, and Hermitian,

respectively.
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Fig. 2. Discrete-time model of a communication system with a DFE.

meet the criterion. The following observation is utilized for
designing an SM filter.

In order to determine if the feasibility set is
nonempty or not, it is enough to check if
for all , where

arg
C

(4)

where is as defined in (1). That is, is nonempty
if and only if the above condition is met.In the subsequent sec-
tions, the applicability of the concept of SMF is demonstrated
for the problem of channel equalization in communications
using a decision feedback equalizer structure. For a linear
equalizer, certain sufficient and necessary conditions for the
existence of a nonempty feasibility set have been derived in
[11]. The set-membership decision feedback equalizer (SM-
DFE) is introduced in this paper using the DFE structure
[12] with the resulting equalizer designed according to an
SMF criterion. Conditions for the existence of a nonempty
set of SM-DFE coefficients, and importantly, a result showing
connections to the well-known MMSE-DFE are derived. It is
also shown that the SM linear equalizer is a special case of
the SM-DFE.

B. Set-Membership Decision Feedback Equalization

To set up the model for channel equalization, consider
the equivalent complex baseband discrete-time channel model
[12], as depicted in Fig. 2. The channel consists of the trans-
mitting filter, modulator, the physical channel, the demodula-
tor, and the receiving filter. Let be the transmitted
symbol sequence and be the additive noise at
the channel output. The discrete-time sampled output of the
channel is given by

(5)

where is the (finite length and sampled) channel
impulse response.

Consider a decision feedback equalizer whose outputat
time is given by

(6)

where is the vector of coefficients
of the feedforward filter, and is the
(strictly causal) feedback filter tap weight vector. Depending
on the sampling rate, this model can be shown to encompass
fractionally or symbol-spaced equalizers. The vectoris the
regressor input to the feedforward equalizer, i.e., the vector

comprising of the channel outputs ,
which, from (5), can be written as

(7)

where

The channel convolution matrix is

...
...

...
.. .

. . .
.. .

. . .
...

.. .
. . .

...

In addition, is the regressor vector of the previously decoded
bits

Let the transmitted symbols come from a constellation
In the case of equalization, it is intuitively appealing to fix
the upper bound on the output error at , where
is the minimum Euclidean distance of two distinct symbols
from the constellation In other words, by such a design,
the SM-DFE will have no decoding errors whenever the data
pairs come from the design space

In order to guarantee that the output error be bounded
by some , we need to define the design space for
which the specification can hold. The input to the DFE can
be represented by a concatenated vector ,
whereas the desired output is From (7), it follows that
depends only on and if is assumed known. The vector

is not only specified by and but also depends on a
nonlinear function of the parameter vectorsand In order to
remove this dependence and to make the analysis tractable, the
so-calledDFE assumption[12] is commonly invoked, namely,
that the previous decoded bits are correct. This implies

where

Here, refers to a zero matrix of size by
and to an identity matrix of size by

The concatenated input to the DFE is now completely
specified by the pair of vectors and The desired output
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Fig. 3. Set-membership equalization criterion for a 16-QAM system. The
equalized symbol is constrained to lie in a circle of radius
 centered at the
transmitted symbol.

of the equalizer can be expressed as , where
is the unit vector of dimension with

a “1” in the st position. Therefore, the pair
is equivalent to

As a result, the design space, which consists of the input-
desired output pairs, can be equivalently described in terms of
the Cartesian product space of the vectorsand for all ,
where is taken from and The set
consists of all noise components that are bounded

C (8)

for some noise bound Designing requires fixing of
the symbol constellation, the value of, and the order of the
equalizer. Rewriting (6) for the SM-DFE, we have [13]

The dependence on the time variable has been dropped in this
equation because the equation has to hold for all possible pairs
from the design space and not just for a particular sequence.

The aim here is to ensure that the maximum Euclidean
distance between the transmitted and equalized outputs (before
decision) is upper bounded by a specified value for all
the data sets that belong to the design space, i.e.,

(9)

Condition (9) requires that the equalized output remain in a
circle of radius centered at the transmitted symbol, as
shown in Fig. 3 for 16-QAM signaling with

We define the set of all feed-forward and feedback equalizer
weight vectors of length and , respectively, that

satisfy (9) as thefeasible SM-DFE set

C C

where Further, (9) can be rewritten as

(10)

It should be noted that the SM-DFE feasibility set is convex
only when the DFE assumption is true, i.e., when all the
past decisions are correct. The following proposition provides
conditions for the existence of a nonempty parameter set

For simplicity of discussion, assume that the input
symbols and noise come from a zero-mean independent and
identically distributed (i.i.d.) sequence (hence white) and that
the noise and input symbols are uncorrelated.

Proposition 1—Existence of a Feasible Set of SM-DFE Filter
Weights: Consider a linear channel model (5) and a DFE
equalizer as described above. The following are true:

1) Sufficiency: is nonempty if the channel satisfies

(11)

where is the maximum amplitude in the constellation
and

, where consists of the to
rows of If (11) is satisfied, then

2) Necessity:If is nonempty, then

(12)

where is the variance of the symbols in the constel-
lation ,
and , where is as before.

Remark 1: Similar conditions have been derived for a linear
equalizer in [11]. It can be shown that the conditions derived
here apply to a linear equalizer as a special case since the
linear equalizer is obtained by setting the feedback weights
of the DFE to zero. The equivalent conditions for a linear
equalizer can be obtained by setting Moreover, the
necessary condition (12) is an improvement over a similar
result in [11] when linear equalization is considered.

Remark 2: If the sufficient condition (11) is met, then
is a member of the feasibility set, and hence, it

is a valid SM-DFE filter. The structure of this filter is very
similar to that of the MMSE-DFE [12] in that the feedback
filter cancels part of the combinedpost-cursor intersymbol in-
terference (ISI)effects [12] of the channel and the feedforward
filter. The best cancellation is achieved by setting For
the remaining part of the discussion, we shall assume

It turns out that the MMSE-DFE is a member of the feasible
SM-DFE set of filters under some conditions. If the sufficient
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condition (11) holds with , where

with being the variance of the additive (Gaussian) noise,
then is the MMSE-DFE [14] and belongs to the
feasibility set.

Remark 3: The above result implies that if the sufficient
condition (11) holds, then the MMSE-DFE assures that the
equalized outputs lie within a radius of the true transmitted
symbol whenever the squared magnitude of each component
of the channel noise vector is less than Further, if (11)
holds with , then the MMSE-DFE makes no errors
in decoding whenever the data comes from the design space.

C. SM-DFE Design Methodology and an Example

Designing an SM-DFE filter that results in error-free equal-
ization for a subset of the data sets would require testing
for condition (11) to hold with The LHS of
this equation depends only on the parametersand and
is denoted by There are a set of values of these
parameters that satisfy the condition Within
this set, we would like to choose a value for the noise bound

and order of the filter (proportional to ), which results
in the largestdesign space It is shown that this requirement
can be cast as the optimization of a single objective function.
This goal is to maximize the probability that the data comes
from the design space. We have

Prob

Prob Prob

Prob (13)

The random variable is Rayleigh distributed
since the real and imaginary parts of the noise component,
given by and , respectively, are independent Gaussian
random variables [15]. The constrained optimization problem
is

Maximize Prob

with respect to

Subject to:

In general, it is not easy to obtain an analytical solution to this
problem. In our case, since the maximum order of the filter
is limited by the computational constraint on the designer, a
simple exhaustive search procedure can be used. Practically,
the maximum value of can be assumed to be of the order
of half the channel impulse response length (equal to 9 in
the example used below). Moreover, it can be shown that the
function is approximately linear with respect to
for values in the range of interest. For each value of,
there is only a single that meets the constraint. This can

Fig. 4. Plot of sufficiency condition versus
� and Nf = 2 for design
of SM-DFE with 
 = dmin=2 for a 20-tap microwave radio channel with
QPSK signaling.

be seen easily from Fig. 4, where A practical design
methodology using these ideas is as follows.

1) Given a certain constellation, set
2) Check if If not, increase the value of

until the condition is met. Fix this to be the specified
error bound.

3) For each , find such
that with associated cost

4) Find the value of for which this cost is maximum.

Intuitively, we might expect to be as large and to be as
small as possible. Smaller order filters are also highly desirable
from a computational point of view.

To illustrate this method, consider a microwave radio chan-
nel obtained from actual field measurements [16]. A symbol-
spaced equalizer is used and also the channel impulse response
is truncated to 20 significant coefficients (i.e., ). A
QPSK signaling is assumed, resulting in and

The value of was set equal to The signal-to-
noise ratio (SNR) at the receiver input was taken to be 20
dB. The design procedure described above is followed with

The optimal values were found to be

For this SNR of 20 dB, the probability that the data comes
from the design space was 0.999 999 982, leading to an upper
bound on the probability of error of , which is
consistent with the results shown in Fig. 5. The probability of
error curves for different values of SNR (using the appropriate
optimal values of and ) are plotted for both the SM and
MMSE-DFE’s in Fig. 5. It was observed that the performance
of the SM-DFE was very similar, and almost identical, to that
of the MMSE-DFE in the range of 0–20 dB of SNR.

In many practical situations, however, the design space
is not known a priori or might be time varying. For

example, in most wireless communication systems, the channel
characteristics cannot be assumed to be knowna priori,
especially due to time variations. Adaptive equalization is then
required to mitigate the effects of ISI. Two approaches to
formulating a recursive (adaptive) algorithm for the general
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Fig. 5. Plot of probability of error for SM-DFE versus signal-to-noise ratio
(SNR).

SMF problem that estimate a member of the feasibility set are
derived Sections III and IV. It is shown that both approaches
yield the same estimates on a pointwise basis. The first
approach is based on the concept of optimal bounding ellipsoid
(or OBE) algorithms [9], which gives a set, as well as a point
estimate. The second approach employs a least-squares-like
strategy, which is shown to give the same point estimates as
the former approach.

III. B EACON: A RECURSIVE

ELLIPSOIDAL BOUNDING APPROACH

An OBE algorithm called BEACON is presented first.
Explicit rules for updating as well as assignments to the
weighting sequence are derived. A number of results on the
point estimates obtained by BEACON are established that
motivate and lead to the least-squares formulation discussed
in Section IV.

A. Recursions and Updating Mechanism

One of the important considerations in developing real-time
estimation methods is that of keeping computational expenses
low without compromising significantly on performance (mea-
sured in terms of, e.g., convergence speed and asymptotic
estimation error). The family of OBE algorithms, developed
for SMI, use outer bounding ellipsoids to capture thetrue
parameter. In the case of SMF, however, we do not necessarily
need to assume the existence of a true system model (that is,
linear-in-parameters with bounded output noise). However, it
is straightforward to show that OBE algorithms can be used
to approximate the feasibility set in the context of SMF.

For developing the recursions, the performance specification
is imposed on the real-time input-desired output pairs. Thus,
the filter model takes the form

(14)

where C is the desired filter output, C is the error,
C is the known input sequence, and

Fig. 6. OBE procedure.

C is an estimate of a point in SMF requires
that be such that

for the given error bound
The above equation combined with (14) results in a set of

all the possible parameters at each instantthat are consistent
with the data observed at that time. Obviously, lies
in this so-calledobservation-induced set(which is denoted by

and given by

C

The above equation describes a degenerate ellipsoid in the
parameter space. Given observations , we define
themembership set as the intersection over time, up to and
including the present instant, of all the observation-induced
sets. That is, Since for all

, it follows that for all
The basic idea of OBE algorithms is to outer bound the

membership set at each instant by a mathematically tractable
ellipsoid Specifically, given an ellipsoid that outer
bounds , we obtain an ellipsoid such that

This process is depicted in Fig. 6. Given an initial ellipsoid
C with

some properly chosen initial parameter estimateand
such that , the algorithm

establishes a recursive procedure for computing the sequence
of ellipsoids The feasibility set lies in , where

is obtained as an outer bounding ellipsoid of the intersection
of with The recursions for the BEACON algorithm
are presented in the result below [17].

Proposition 2—The Update Equations:Given the obser-
vation-induced set and the ellipsoid , the feasibility set
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lies in , where

(15)

(16)

(17)

for any , where theprediction erroris ,
and

The proof is on similar lines as in [4]. For a properly chosen
and , we have for all The centroid of

the ellipsoid at each instant can be considered to be a point
estimate at that instant if need be. In the actual implementation
of the algorithm, the matrix , rather than its inverse, is
updated. That is

This update can be derived easily from the matrix inversion
lemma [4]. Each value of yields a different bounding
ellipsoid. To compute , we adopt a measure of optimality
similar to the one used in DH-OBE [4]. The difference between
DH-OBE and this approach in terms of formulation is the
manner in which the previous ellipsoid is combined with the
data constraint set at the current instant. This difference results
in a simpler update checking rule and assignment to the time-
varying weights in our algorithm. The objective, therefore, is
to minimize with respect to under the constraint that

When the minimum of occurs at , it results
in no update [17]. Thediscerning updatecapability of the
proposed algorithm follows as a result.

The optimal value of , denoted by , is obtained by
maximizing the following function:

This yields

if

if (18)

It has been noted in [5] that , as a measure of opti-
mality in OBE algorithms, is not a physically interpretable
measure of the size of the ellipsoid. The minimum volume
and minimum trace criteria proposed by Fogel and Huang [9],
which was also employed in other OBE algorithms [7], [10],
are easily interpretable optimality measures since they have
direct relation to some notion of the geometrical size of the
ellipsoid. The volume of the ellipsoid is proportional to
det , and the sum of squares of the semi-axes is given
by trace The justification for minimization has been
that it is a natural bound on the Lyapunov function in the
convergence analysis in [4] and that it bears relations to the
volume and trace criteria asymptotically [18]. Although the

OBE algorithms derived using the Fogel–Huang criterion also
update selectively, this does not result in any computational
savings. This is so because the test for checking whether an
update is needed or not is itself an operation, which
is the same as the computation required in carrying out the
actual update. The minimization strategy leads to an
check for updating. With BEACON’s sparse updating prop-
erty, this implies significant computational savings. It is further
shown in this paper that by minimizing , BEACON yields
sequences of volume and trace measures of the ellipsoids that
are monotone nonincreasing. This feature is not shared by DH-
OBE, which is another minimizing OBE algorithm [4].
Therefore, the size of the ellipsoids generated by BEACON
decreases with time, even though the decrease may not be
optimal at every time step. For the next result and much of
the subsequent analysis, the following definitions are needed.

Definition 1: Thebounding hyperplanesto the observation-
induced set are denoted by , where , and
given by

C (19)

In particular, if , then there are only two bounding
hyperplanes given by and Moreover, the
interior of is

C

From the above construction, we have
Definition 2: Thenearest bounding hyperplaneto a vector,

say at time instant denoted by , is

(20)

By the assignment to , the following result for thea

posteriori error can be shown, from which
we obtain a geometrical interpretation to the update rule.

Proposition 3: The a posteriorierror given by is always
less than or equal to the noise boundin magnitude. That is

if is an updating instant
if is not an updating instant.

Geometrically, the update rule can be interpreted as—No
update is needed if else, update in the direction
of the vector such that

B. Effect of Initial Conditions and Convergence Issues

The choice of the initial conditions, specifically that of
and (where ), is treated in this section. The

motivation for the following analysis is two fold.

1) It has been observed that various choices oflead to
significantly different performance in DH-OBE

2) A problem that may occur in tracking time-varying
parameters is that may become negative for some
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By a certain result pertaining to robustness of the estimates
with respect to choice of initial conditions, we can effec-
tively explain the good tracking properties of the BEACON
algorithm.

In the absence of anya priori knowledge regarding the
parameter, the origin forms the initial estimate
of Theoretically, the condition to be satisfied while
choosing and is

(21)

Since this cannot be implemented in practice, alarge enough
and are picked to start the algorithm. First, the effect of

any arbitrary scaling on , keeping the product constant
such that (21) is satisfied, is investigated.

Proposition 4: Consider two realizations of the algorithm
with different initial conditions: 1) an initial condition

and 2) for any
Then, for all , the following are true.

• The sequence of updating instants are the same.
• , and
• Consequently, In addition, and are

identical.

Remark 4: For any volume or trace minimizing the OBE al-
gorithm, these results are trivially true. In minimizing OBE
algorithms, however, it is not essential that the performance
be invariant to such scaling. In fact, it has been observed that
none of the above results are true for DH-OBE.

It is possible to generalize the above result to the potentially
catastrophic case of a wrong choice of and such that
(21) is not satisfied. In such a scenario, the basic assumption
that is a bounding ellipsoid fails, leading to what we term
as amodel violation. Extending the above result shows that
the BEACON algorithm, given by (15)–(18), is robust with
respect to such model violations [17]. It is important to note
that other types of deviations in the assumed system model, in
the form of, e.g., decision errors in a DFE, are not addressed
in this work. We address the case when the initial ellipsoid
fails to outer bound the feasibility set, leading to a violation
in the assumed model that the OBE algorithms are based on.
Specifically, we hve the following.

For a fixed , the sequence of updating instants, weights
, and parameter estimates are the same for all

Therefore, the point estimates are not affected, even if
Under model violations, the algorithm no longer

operates according to bounding ellipsoid principles. The result
suggests that the point estimate given by (15)–(18) might have
a more general interpretation. An alternative solution method
to the SMF problem, resulting from an explicit least-squares-
like cost function optimization, is addressed in Section IV.

Remark 5: It is pertinent to note that although the central
(point) estimate is independent of the the value of, the
ellipsoidal set estimate will change if is varied with

held constant.
Convergence issues in OBE algorithms for set-membership

identification were addressed by Dasgupta and Huang in [4]
and Nayeri et al. in [19], which established convergence

results for most known OBE algorithms along with conditions
to guarantee point convergence to the true parameter in a
stochastic setting. In this paper, we analyze some convergence
properties for the BEACON algorithm in the SMF context
and prove asymptotic convergence of the prediction error even
under model violations. First, it is shown that if the estimate
converges, then in the limit as , the estimate is a
point on theboundaryof the feasibility set that is denoted
by That is, if , and

for some
Proposition 5: Consider the sequence of estimates.

• If there exists some such that , then
, i.e.,

• Assume that and
Then,

• Let be bounded, that is, for all
Then, for any , .

In the special case of system identification with bounded
output noise (i.e., SMI), it is shown that using an overestimated
value for the noise bound in the BEACON recursions leads to a
biased estimate, assuming the estimates converge. As a degree
of confidence, convergence of the estimate to a region around
the true parameter is also shown. The SMI model assumes that
the output noise in the system to be identified is bounded by
some That is, there exists and such that

(22)

Proposition 6: Choose some in the
OBE recursions. Further, assume the sequence of estimates
converge to some Then, the following are true.

• , where is the true parameter.
• , where

is the noise variance, and is the minimum positive
singular value of , which is the autocorrelation matrix
of the (stationary) input.

C. Simulation Studies

Some simulation studies using the BEACON algorithm are
described, and a comparison with the traditional least-squares
algorithm like RLS is made. Superior tracking capabilities of
the BEACON algorithm for time-varying systems is demon-
strated via an example. Simulation results for the following
cases are presented:

• identification of an eigth-order FIR filter under uniformly
distributed noise;

• estimation of an actualmicrowave radio communications
channelwith truncated Gaussian noise;

• tracking of a fast time-varying second-order FIR filter.

Minute details of the simulation are omitted for the sake
of brevity. The results are shown in Figs. 7–10. For all cases
considered, the SNR was 15 dB, and the input was taken from
a binary alphabet.

The performance of the BEACON algorithm is similar to
RLS for Case 1. Importantly, the number of updates was
around 30 out of the total of 1000 samples. It is pertinent
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Fig. 7. Plot of mean squared prediction error for estimation of an eight-tap
FIR filter with uniform noise.

Fig. 8. Estimation of a microwave radio channel.

to note that such performance is obtained even though the
algorithm uses very few inputs for updating.

For Case 2, it can be observed that the rate of convergence
of BEACON is slightly slower than RLS, although the final
MSE is comparable in spite of sparse updates. The selective
updating feature is one of the main reasons for the somewhat
slower convergence. The value ofcan be varied to trade off
between achievable performance and computational complex-
ity. A higher value of would result in fewer updates and,
consequently, a higher MSE (since the algorithm essentially
stops taking inputs for updating once the prediction error
goes below in magnitude). On the other hand, a lower,
leading to a more stringent error specification, would imply a
lower MSE at the expense of an increased number of updates.
When multiple filters need to be estimated simultaneously, the
selective update feature can be used to share a small number
of updating processors among many filters, leading to a saving
in hardware requirements [11]. The BEACON algorithm is an
ideal candidate for such sharing as its frequency of updating
is one of the least among the known OBE algorithms.

In Case 3, for tracking time-varying parameters, identifi-
cation of a second-order FIR filter was simulated similar to

Fig. 9. Tracking performance comparison.

Fig. 10. Two-tap FIR filter—evolution of the ellipsoids and the central
estimate through time,k (the x- and y-axes represent the two components
of the parameter vector).

Case 1, but the coefficients varied randomly, thus making it
a time-varying system. The time variations in the parameters
are introduced by having random, but bounded, jumps at every
15 samples. It can be seen from Fig. 9 that the BEACON
algorithm outperforms weighted RLS (with an exponential
forgetting factor of 0.9) in terms of tracking while using only
around 25 data points out of 100 for updating. This superior
tracking capability is an outcome of the data-dependent choice
of weights as well as the selective updating mechanism.
In comparison with RLS, the sparse updating by BEACON
results in a slight loss in convergence speed in a stationary
environment. On the other hand, in the presence of time
variations, it is this selective updating capability along with
the dependence of the weights on the prediction error that
result in the excellent tracking characteristics of BEACON.

Finally, Fig. 10 is a plot of the evolution of the ellipsoids
through time for the case of identifying a second-order FIR
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filter under uniform noise. The “” denotes , whereas
“ ” denotes It can be seen that in just 25 samples, the
central estimate seems to converge to the true parameter and
that the associated ellipsoid shrunk to a much smaller size,
albeit not yet a point. This can be explained from the fact that
the centroid of the BEACON algorithm can also be looked
upon as the solution of a certain least-squares like problem
under the constraint of bounded errors. The robustness to
model violations of the centroid also indicates the existence
of an alternative estimation approach, which leads to the same
recursions as (15)–(17) that is not hinged upon the choice of

The next section is devoted to the formulation of such a
methodology.

IV. L EAST-SQUARES FILTERING UNDER BOUNDED ERRORS

The idea here is to formulate a least-squares cost function,
given the knowledge that the errors are bounded but otherwise
unknown. The problem of least-squares estimation with a
dead zone has been treated in [20]. We derive the least-
squares method as a constrained optimization problem, and
the resulting weights are shown to be optimal in the sense
of satisfying the constraint at every instant. Similar algorithms
have been derived in [21] for the problem of model validation,
where the motivation is to develop least-squares estimates
that (asymptotically or otherwise) lie in the membership set.
Optimality issues in identification for systems with bounded
constraints on the error sequences are addressed in [22].

A. Problem Formulation

Assume that at time , a certain quadratic cost function is
constructed, given information up to and including time instant

, that is, Denote this function by ,
which is defined as

(23)

for some appropriately chosen weighting sequence
The choice of the time-varying and

(possibly) data-dependent weights will be explained shortly.
Note that the additive constants appearing in the cost function
do not affect the optimization procedure. They only facilitate
connections to the OBE derivation. The first term in (23)
represents the confidence on the initial guess.

Consider the data set at timegiven by the pair
The information contained by the new data, due to the

requirement of the bounded errors, is characterized by
The basic idea of deriving this least-

squares estimator is the following.Given the cost function,
and the observation-induced set, find the new

estimate, say, , that minimizes subject to
In other words, the strategy is to move from to a new
estimate to incur the least increase in the cost function
under the constraint that the new estimate has to lie in the
observation-induced set

Fig. 11. Contour plot ofVi�1(�) along with geometric representation of
updating process.

Remark 3: When , there is no need to move
to a new estimate as itself is the global minimum of

This results inno updateof the parameter estimate.
Moreover, the condition for no update is exactly the same
as for BEACON, given by Proposition 3. Therefore, the
discerning update rule for this least-squares-type problem
is established and shown to coincide with the condition in
BEACON.

This estimation strategy is cast as a constrained optimization
problem. At each instant

Minimize

(24)

Subject to (25)

The parameter vector minimizing this problem is the new
estimate, which is denoted by

Henceforth, assume that because if it did, we
have shown that there is no update and that is indeed the
solution. Since the cost function is convex and the constraint
set is also a convex set, it is easy to establish that the solution
to the problem (24) and (25), which is denoted by, belongs
to This, in turn, is given by , where is the
phase of the prediction error (see Definition 2). Therefore,
the phase of thea posteriori error is the same as the phase
of the prediction error. Recall that the above is identical to
the result obtained in Proposition 3, which was derived using
OBE methods. With this, the problem constraint becomes an
equality, rather than an inequality, as in (25).

B. The Algebraic Solution

Construct an auxiliary function

where is the Lagrangian multiplier. The minimizer is the
parameter at which the normal vectors to the surfaces of

, and the constraint function are colinear. This is
depicted in Fig. 11.
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Proposition 7: Given data set and the cost function
at time , the solution to the optimization problem

posed in (24) and (25) is given by

(26)

where, as before,
Remark 7: By the above formulation, the recursive solution

for the parameter estimate, the update mechanism, and the
assignment to the time-varying weights are seen to be the same
as for the centroid in the BEACON algorithm. In addition,
the sequence of weights in the BEACON recursions given by

are the the same as the Lagrangian multipliers in the
constrained optimization problem It is this weighting
strategy that leads to the satisfaction of the constraint at each
instant. The direction of movement from given by
is essentially a compromise between reaching the observation-
induced set at each instant and incurring the least increase on
the error surface

A geometrical solution to the same problem is presented
next without resorting to the standard Lagrange multiplier
technique.

C. The Geometric Solution

Transforming the parameter space by the (invertible) matrix
results in a transformation of the ellipsoid to a-

dimensional spheroid. That is, a transformation of the kind
, where is a vector from the transformed domain.

If the singular value decomposition of is given by
for some unitary matrix and a diagonal matrix

of positive elements, then the transformation by can be
looked upon as consisting of two operations—transformation
by and then scaling by The first results in a rotation
(under norm invariance) of the axes, aligning all the semi-axes
of the ellipsoid along the (new) coordinates. The next operation
amounts to normalizing the lengths of the semi-axes to unity,
resulting in a spheroid in the new coordinates.

The input is also transformed to, say, , where
such that the product By this, the

observation-induced set remains unchanged. In addition,
. Now, the optimization problem is

as follows:Minimize the cost function given by

under the constraint that the solution belongs togiven by
This problem statement is equivalent

to (24) and (25).
We know that the optimum solution lies on the nearest

bounding hyperplane to and that the solution occurs at
the point where the normal direction to coincides
with that of Since the contours of are spheroids,
this amounts to moving along the direction of to reach
the nearest bounding hyperplane.

Proposition 8: The solution to the above problem is

which results in the same recursion (after transforming back
to the original coordinates) as in Proposition 7. This result
can be shown as follows: Let ,
where is a constant such that This
implies Some rearrangement
and transforming back to thespace yields the above result.

We also derive an explicit recursion for the cost function at
time , namely , given and the data pair
The property that should be possessed by this function is that
it is quadratic and of the same form as In addition,

should be the global minimizer of this function.
Effectively, the question is with regard to the assignment to

the weight , as in (23). Therefore

It turns out that the only assignment to, which is consistent
with the above formulation, is given by from (26), and this
defines the updates for the matrix and the scalar Since
we know that , these recursions are the same as (15)
and (17).

Thus, we have formulated a least-squares type cost function
at each instant and obtained a solution constrained on the need
for the estimate to lie in the observation-induced set at that
instant. The solution was found by the Lagrange multiplier
technique and by a geometrical argument. Additional con-
straints imposed on the model, in the form of a bound on
the error process, allowed for a discerning method to pick the
weighting sequence in a recursive least-squares-like algorithm.

D. Discussions on the Optimality Measure and
Tracking Properties of BEACON

In a manner independent of one another, the OBE derivation
was shown to coincide with the constrained least-squares
derivation. Note that the set of all the parameters that result
in describe an -dimensional ellipsoid in the
parameter space. Moreover, the non-negative quantityis
the depth of the point of minimum of (which occurs
at ). It can also be be proved that minimizing the cost
function at each instant (24) reduces to the problem of finding
an extremum of To show this, assume now that the
estimator has been partially determined by setting the gradient
with respect to to zero. Then, recognizing the dependence
on , we denote the estimate by

From the above equation, by using the equation for and
some tedious algebra, we obtain

Therefore, the process of obtaining an extremum of with
respect to , in order to satisfy the constraint (25) and find
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the Lagrange multiplier, is the same as finding the extremum
of with respect to Moreover, with denoting the
value of , which achieves this extremum, it turns out that

for This implies that is a
minimizer of Hence, the problem of finding the extremum
of the auxiliary cost function with respect to the Lagrange
multiplier is the same as finding the minimum of over all

As pointed out earlier, the geometrical significance of
is that it defines the depth of the minimum point of

below the -space.
As far as tracking is concerned, one of the singular problems

encountered in OBE algorithms is the case when the intersec-
tion of with becomes void at some time instantAt
such instants, becomes negative, and the OBE algorithms
have to resort to certain rescue procedures so that tracking is
restored [6]. However, as has been shown in the earlier section,

becoming negative does not affect the updating recursions
(15)–(17), although the OBE interpretation breaks down. In the
absence of rescue procedures, other OBE estimators tend to
lose track of the parameter for abrupt and significant changes
in the parameter, while such is not the case with the BEACON
algorithm, which explains the good tracking characteristics
observed. From the least-squares perspective, this fact is even
more apparent. The only objective in that formulation is to
optimally move to the observation-induced set at the present
time instant.

However, if we wish the estimator to operate according to
OBE principles, a scheme using ideas from set-membership
state estimation can be implemented for tracking, thus giv-
ing a concrete method to circumvent the need for rescue
mechanisms. For more details on the state estimation via
set-membership principles, see [23] and [24].

V. CONCLUSION

This paper dealt with a filtering problem known as set-
membership filtering (SMF). The formulation imposed convex
set constraints on the filter by requiring the resulting error
sequences to be bounded in magnitude by a designer-specified
value. Results for a special case of filtering, namely, decision
feedback equalization of communication channels, was studied
in this framework. Its relation to the existing MMSE-DFE was
explored wherein it was shown that, in certain circumstances,
the MMSE-DFE belongs to the class of SM-DFE filters. Next,
a recursive algorithm called BEACON was derived according
to an optimal bounding ellipsoid criterion as an adaptive
solution to the SMF problem. This algorithm was shown to
feature a highly selective update mechanism, wherein a large
percentage of the data (greater than 90%) was not used to
update the parameter estimate. Moreover, a least-squares-like
criterion was used to derive the same algorithm. The analysis
presented allowed for connections between OBE and least-
squares estimation methods. The alternative formulation also
shed light on the observed insensitivity to model violations
and robust performance under time-varying conditions. The
ability of the BEACON algorithm to track fast time variations
was demonstrated via simulations that indicate much promise
in emerging wireless communication systems where high

performance and low complexity adaptive signal processing
methods are imperative.

APPENDIX

PROOFS OFRESULTS

Proposition 1—Proof:“ :” The supremum of the LHS in
(10) is equal to

and is achieved when , where
is such that An upper bound
on the first term in the above expression is

which leads to a condition of the form (11). Since

because there exists a constantsuch that By
minimizing this upper bound over all , we obtain the
expression for and

“ :” The necessary condition is also obtained in a similar
manner by noting that

since Further, since , we obtain
a lower bound on (10) as

and are the filters that minimize this function,
leading to the necessary condition (12).

Proposition 3—Proof:First, if updating instants, then
Else, from the update equation

for , we have that thea posteriori error is

where the second equality comes from the optimal assignment
of Thus, the phase of is the same as that of , and

, which implies that
Proposition 4—Proof:The result is proved by induction.

Assume that is the same in both the realizations. Then, all
the equalities above are true at time Further, let the
above results be true at a time instant Since

is independent of the scale factor, also does not
depend on From (18), this implies that
since by assumption. This immediately

leads to the fact that from (15) and from
(16), and it is easy to conclude that The scaling
of can also be shown similarly, which also implies that
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Proposition 5—Proof:

• If such that , then
since This implies

there is no update at time , and From
this, it follows that for all

• The result does not hold in the trivial case when
(since there would be no updates at all, and

Otherwise, assume the contrary: Let
This is possible only if such

that C , and
[note that if , then by the previous
result, there would be no more updates]. This implies that

such that
since the error magnitude is at updating
instants. Note that lies strictly inside That
is, it belongs to Therefore, there are
some parameter vectors (which also
belong to the feasibility set). Since thesedo not belong
to , which is not possible
because also belongs to and

Hence,
• Assume that there is no model violation and that

is not true. Then, there exists an
such that

(27)

In other words, for infinitely many At such
instants , by substituting the value of in the expression for

(17), we have

where for all , and This, coupled
with (27), implies that for some large enough, we have

, which is not possible. However, by changing the
value of by any factor does not change the sequence of
estimates. Therefore, this result is extendible to arbitrary

Proposition 6—Proof:

• When the actual noise bound is overestimated, then there
is a feasible set of plants that result in This set
is nonempty since belongs to it. This is so because

for all generated by (22). Since , we know
that However, even if the estimates
converge to a point in , we have shown that
they converge to the boundary of the feasibility set (from
Proposition 5). This means that

• Using the fact that and lower
bounding the LHS by the expected value of the squared
prediction error, the result follows after substituting the
expression for from (22).

Proposition 7—Proof:The gradient of the auxiliary func-
tion with respect to gives

The satisfaction of the constraint implies
From this, we obtain

From the above results,
, which gives the desired result. It is straight-

forward to verify that this vector is a point of minimum.
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