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Animation Cartography—Intrinsic Reconstruction
of Shape and Motion
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In this article, we consider the problem of animation reconstruction, that is,
the reconstruction of shape and motion of a deformable object from dynamic
3D scanner data, without using user-provided template models. Unlike pre-
vious work that addressed this problem, we do not rely on locally convergent
optimization but present a system that can handle fast motion, temporally
disrupted input, and can correctly match objects that disappear for extended
time periods in acquisition holes due to occlusion. Our approach is moti-
vated by cartography: We first estimate a few landmark correspondences,
which are extended to a dense matching and then used to reconstruct ge-
ometry and motion. We propose a number of algorithmic building blocks: a
scheme for tracking landmarks in temporally coherent and incoherent data,
an algorithm for robust estimation of dense correspondences under topo-
logical noise, and the integration of local matching techniques to refine the
result. We describe and evaluate the individual components and propose a
complete animation reconstruction pipeline based on these ideas. We eval-
uate our method on a number of standard benchmark datasets and show
that we can obtain correct reconstructions in situations where other tech-
niques fail completely or require additional user guidance such as a template
model.
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1. INTRODUCTION

Recently, a number of techniques have been proposed to scan three-
dimensional moving objects in real time [Würmlin et al. 2002;
Zhang et al. 2004; Zitnick et al. 2004; Davis et al. 2005; Weise
et al. 2007; König and Gumhold 2008; Vlasic et al. 2009; Bradley
et al. 2010]. The output of such an acquisition process is a sequence
of unstructured point clouds. The measurement process does not
provide any correspondence information and usually only shows a
limited part of the object at a time, due to occlusions. This introduces
a new problem, the problem of animation reconstruction: How can
we reconstruct the shape and the motion of a deformable object
given that only parts of it can be seen at any given point in time?
More precisely, we want to reconstruct the full shape out of the
partial observations and establish dense correspondences over time
that describe the motion of the object.

Some techniques have recently been proposed to solve this
problem [Mitra et al. 2007; Wand et al. 2007, 2009; Pekelny and
Gotsman 2008; Süßmuth et al. 2008]. However, these approaches
employ local numerical optimization to align parts of the object in-
crementally: The final shape is inferred by a deformable alignment
of the geometry in time sequence order. If some of the alignments
yield an incorrect result, neither the shape of the deformable object
nor the correspondences are reconstructed correctly. In practice,
alignment problems are frequently observed. They are caused by
fast object movement or vanishing geometry that reappears in later
frames in a different pose. Local alignment is not able to handle these
situations correctly. The problem obviously becomes much easier if
the user provides additional information, such as a template model
[Carranza et al. 2003; Sand et al. 2003; Anuar and Guskov 2004;
Zhang et al. 2004; Park and Hodgins 2006; de Aguiar et al. 2008;
Li et al. 2009]. Nevertheless, numerical tracking can still fail so
that manual user intervention becomes necessary. Furthermore, the
fixed template restricts the expressiveness of the model, prohibits
topological changes, and makes an acquisition of general scenes
tedious.

We present a template-free technique (Figure 1) that is able
to assemble shapes from partial scans more robustly and under
general motion than previous methods. The main idea is motivated
by cartography (from which we derive the name of the approach,
animation cartography). We first track the location of a few
landmark points, which we subsequently use to compute dense
correspondences, assuming that the deformation of the object is
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Fig. 1. Animation cartography recovers template model (blue) as well as
its motion over time (yellow) from dynamic point cloud data with holes and
topological noise (gray). Datasets provided by Li et al. [2009] and Vlasic
et al. [2009].

approximately isometric. The output of the algorithm is a chart
that covers the complete original object. It encodes the intrinsic
structure of the reconstructed manifold and dense correspondences
to the data points. This intrinsic reconstruction does not yet
provide concrete geometry. Therefore, we combine the intrinsic
manifold charting with a state-of-the-art extrinsic reconstruction
scheme [Wand et al. 2009] that computes actual geometry. By
initializing this local numerical optimization scheme with charted
correspondences, we obtain much more reliable results.

In order to perform the charting, a number of algorithmic building
blocks are necessary, each of which is a novel contribution of this
article: First, we propose a scheme to track salient landmark points.
The algorithm automatically detects temporal discontinuities and
resorts to a global feature matching algorithm to provide landmark
correspondences also in general settings. The second component
is the intrinsic charting algorithm that extends the sparse landmark
correspondences to dense matches and stitches together partially
overlapping charts. Finally, we design a matching pipeline that
iteratively performs tracking and chart merging to chart animation
sequences. A key challenge in all three steps is that we have to deal
with partial data, due to occlusion artifacts. Therefore, intrinsic
distances are not reliable. Similarly, the apparent topology of the
input data might change, for example, if a person temporarily rests
his hands touching the body. We account for these problems by
employing a novel robust matching model which can handle such
topological noise and furthermore quantify the uncertainty under
noisy input.

We describe and evaluate the separate building blocks of the
algorithm as well as a complete animation reconstruction pipeline
that is composed of these components. In experiments with well-
known benchmark datasets, we show that the new reconstruction
pipeline can handle more general input data than previous work.

In summary, the main contributions of this article are the
following.

—A matching model that is robust to geometric and topological
noise and that can quantify the matching uncertainty;

—A landmark tracking algorithm that establishes sparse correspon-
dences fully automatically under both temporally coherent as well
as arbitrary, abrupt motion;

—A charting algorithm that computes dense correspondences from
sparse landmark tracks, thereby assembling multiple partial
charts into one common reconstruction;

—Finally, a complete animation reconstruction pipeline that is sig-
nificantly more robust than previous techniques. In particular, it
can, for the first time, handle abrupt motion and occluded objects
that reappear in very different pose without user input.

2. RELATED WORK

In this section, we review previous work related to our approach,
in particular techniques for animation reconstruction and global
deformable matching.

Animation Reconstruction is the process of recovering the mo-
tion of a deformable object from time-varying three-dimensional
scanner data, typically point clouds. There are a number of pre-
vious methods that require the user to provide a template model
that is subsequently deformed in order to match the acquired data
[Carranza et al. 2003; Sand et al. 2003; Anuar and Guskov 2004;
Zhang et al. 2004; Park and Hodgins 2006; de Aguiar et al. 2008;
Li et al. 2009; Bradley et al. 2010].

More recently, a number of template-free techniques have been
examined. Mitra et al. [2007] perform rigid alignment between
frames, assuming rather slow motion with little local deformation.
The technique is elegant and very fast but cannot handle general se-
quences with missing data and substantial inter-frame deformation.
Wand et al. [2007] use deformable matching and a statistically mo-
tivated global optimization scheme. The considerable computation
costs have been addressed more recently in Wand et al. [2009] by
employing a subspace deformation technique. The technique is able
to compute complete template models from partial input data but, as
a local optimization technique, it is sensitive to the issues mentioned
in the Introduction such as large time steps, temporarily disappear-
ing objects, and fragmented frames. We later demonstrate that the
technique developed in this article is significantly more robust in
comparison to their previous approach. Very recently, Popa et al.
[2010] proposed an improved template-free reconstruction method
based on optical flow and cross-parametrization. However, their
technique cannot handle fast motion and requires video input for
2D feature tracking (such as a passive stereo acquisition systems).

Li et al. [2009] use a more efficient subspace deformation tech-
nique in combination with detail transfer, which was previously
examined by Bickel et al. [2007] for the case of wrinkles, to obtain
very good results, however, requiring a template model as input.
A combination of deformable matching with Mitra et al.’s [2007]
algorithm is examined in Süßmuth et al. [2008]. Their work, how-
ever, relies on having a complete shape in the first frame, again
not improving on the issue of assembling the template model from
partial data.

Comparable approaches have also been examined with different
regularizing assumptions: Pekelny and Gotsman [2008] use an ar-
ticulated piecewise rigid model, segmented by the user, and Sharf
et al. [2008] examine volume and momentum preservation as an
alternative. Both are still local optimization techniques, subject to
the according limitations.

Global Deformable Matching considers the problem of aligning
exactly two deformable shapes. The technique of Li et al. [2008]
is based on local matching but increases its robustness by
modeling correspondences explicitly as latent variables and
optimizing over them. Chang and Zwicker [2008, 2009] provide
global and robustified local matching strategies for articulated,
piecewise rigid models. Bradley et al. [2008] propose a technique
specifically designed for garment capture that uses specific
properties of such datasets to control the boundary conditions of a
cross-parameterization algorithm, thus establishing correct corre-
spondences. Anguelov et al. [2004] introduce intrinsic distances as
validation criterion for matching feature points on deformable man-
ifolds. The resulting quadratic assignment problem is solved using
Bayesian belief propagation. A similar approach based on dense
feature points is proposed by Starck and Hilton [2007]. Leordeanu
et al. [2005] propose a simpler technique based on spectral
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relaxation for solving quadratic feature assignment problems, which
has been employed for isometric matching by Huang et al. [2008]
and Ahmed et al. [2008]. The two papers introduce landmark coor-
dinates for deriving dense matches from the coarse matches returned
by spectral matching, a concept that has previously been invented
in the context of routing in sensor networks [Fang et al. 2005].

A problem with all these intrinsic matching strategies is topolog-
ical noise: Acquisition holes as well as apparent topology changes,
such as a closing mouth in a face scan, might strongly distort intrin-
sic distances such that correspondences cannot be detected reliably.
Bronstein et al. [2009] address this problem by mixing geodesic
and Euclidean distances, but this solves the problem only in some
cases. In general, both extrinsic and intrinsic distances might be very
different. In addition, the technique is based on local numerical op-
timization, which requires prealignment of the data. More recently,
Bronstein et al. [2010] propose diffusion distances, which are more
robust to a certain amount of topological noise, as this distance
measure is sensitive to the cross-section of interconnections rather
than just the reachability in the case of geodesic distances. However,
large-scale artifacts such as big acquisition holes or false connec-
tions in a large area also change diffusion distances significantly.
Unfortunately, these problems are common in our application area
(large acquisition holes, arms at the body, closing mouth in a face
scan, etc.).

Tevs et al. [2009] address this problem in a different way by al-
lowing for outlier geodesic distances within a RANSAC algorithm.
This approach requires a minimum set of “witness geodesics” but
otherwise does not depend on the geometric extent of topologi-
cal noise. We put their technique on a sound statistical basis that
allows for explicitly calculating matching uncertainties. More im-
portantly, Tevs et al. [2009] are limited to pairwise matching while
we address the more general problem of simultaneously recon-
structing 3D topology and correspondences over long sequences.
The reconstruction of many-frame correspondences is a nontrivial
generalization: Just repeatedly performing pairwise matches expo-
nentially increases the failure probability of randomized matching,
thus rendering merging of long sequences practically impossible.
We avoid this pitfall by on the one hand using a continuous tracking
algorithm to detect and use local temporal coherence and on the
other hand by explicitly assessing the matching quality, avoiding
the incorporation of ambiguous information in the result.

Global Animation Reconstruction refers to methods that aim
at incorporating more information than pairwise matching can
provide into the reconstruction process. The previously cited global
registration methods only consider, with the exception of Ahmed
et al. [2008] and Varanasi et al. [2008], the pairwise matching case.
Their methods are based on matching feature distances computed by
Laplacian diffusion which is not robust against general topological
noise. In addition, both methods require color information asso-
ciated with the point cloud data for matching SIFT/SURF features
and thus cannot be applied to purely geometric datasets. The same
holds for the technique of Liao et al. [2009], which also does not
address the problem of handling temporal gaps or jumps in motion
where continuous tracking breaks down. The method of Popa
et al. [2010] also requires image information. It performs intrinsic
cross-parametrization, similar to our approach, but has to assume
a “gradual change” prior (rather than robust matching densities)
to resolve ambiguities, therefore not yet providing a full global
animation reconstruction. A very interesting, recent approach by
Zheng et al. [2010] aims at reconstructing the temporal correspon-
dences of a skeleton rather than complete geometry, which can then
subsequently be used as guidance information for shape alignment.
The drawback in comparison to our approach is that although

skeletonization improves robustness, it does not represent the full
correspondence information, which cannot always be recovered
reliably.

3. OVERVIEW

We start with an introduction of concepts that are used through-
out the rest of the article: We first formally define the problem
that we are solving and describe the input data we are expecting
(Section 3.1). Next, we describe the data structures that we use to
represent charts, and how intrinsic and extrinsic information is rep-
resented (Section 3.2). Afterwards, we describe the robust matching
model that is used throughout the article (Section 3.3). Finally, we
conclude this section with an overview of the individual reconstruc-
tion steps and how they are combined in the final reconstruction
pipeline (Section 3.4).

3.1 Problem Statement

Original animations. The goal of our method is to reconstruct a
manifold and its motion from partial observations. Formally, we
assume that there has been an original differentiable 2-manifold
M ⊂ R

3 that underwent a time-variant motion ft : M → R
3.

t ∈ [1, T ] is the time parameter. Each ft is assumed to be injective
and differentiable, and each ft (M) denotes a deformed version of
the original manifold M.

Isometry assumption. We equip differentiable manifolds M ⊂
R

3 with an intrinsic metric dM(·, ·) that measures the shortest
geodesic distance between pairs of points. We assume that the de-
formation ft is approximately isometric for each fixed t . This means
that

∀t ∈ {1..T } : dM(x, y) = dft (M) (ft (x), ft (y)) + ησf
, (1)

where ησf
∼ N (0, σf ) is an error that is normal distributed with

standard deviation σf and mean zero. In other words, we assume
that the original deformation, even before measurement, has not
been perfectly isometric but that there might have been errors that
are in the range of σf .

Discussion. Assuming (approximate) isometry is an established
model [Anguelov et al. 2004; Bronstein et al. 2006; Bradley et al.
2008]. It is sufficiently general to characterize the motion of the
surface of many real-world objects, such as scans of people, animals,
plants, or clothing. A strongly nonisometric surface deformation
would be fatal to such objects. Nevertheless, intrinsic isometry poses
a strong constraint on the interpretation of observed data; one can
think of a rigidity assumption within the manifold (rather than within
the embedding space). Consequently, isometries have only very
few degrees of freedom once the manifold they act upon is known
[Lipman and Funkhouser 2009; Ovsjanikov et al. 2010; Tevs et al.
2011].

Measurement. A 3D scanner only yields a partial, sampled rep-
resentation. We assume that the scanner operates at regular time
steps t ∈ {1, 2, . . ., T } and for each time step, yields a finite set
of sample points Dt ⊂ R

3. We denote the individual points by
d(i)

t , i = 1, . . ., nt and the collection of all input data by just D.
To simplify further processing, we assume that parts of objects that
have actually been acquired have been sampled with a sample spac-
ing of at most εs , that is, for each point of the original surface visible
by the 3D scanner, there is a sample point in Euclidean distance of
at most εs . Areas with lower sampling density are discarded during
preprocessing. Furthermore, we assume that all of M at some point
has been observed with sufficient sampling density (or equivalently,
we only try to reconstruct what we have observed).
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Reconstruction Tasks. We consider two reconstruction tasks: a
full geometric reconstruction and the reconstruction of a chart of
the data. The full geometric reconstruction is the ultimate goal: We
want to reconstruct M and f . Because of acquisition holes, this
involves an interpolation of f in areas of missing data. Wand et al.
[2007, 2009] propose a variational model that can find plausible in-
terpolations by employing physically motivated prior assumptions
on shape and motion. However, their model is nonlinear and non-
convex so that there is no efficient technique known for computing
a global optimum.

In order to compute a suitable initialization for such methods, we
propose to perform a simpler reconstruction task first, the recon-
struction of a chart of the data. Here, we only reconstruct the shape
M (up to isometries) and correspondences between M and (most
of the) data points D. This means, we either encode for each data
point d(i)

t ∈ D its preimage f −1(d(i)
t ) ∈ M, or mark it as unknown,

in case the reconstruction was not able to interpret the data point.
This reconstruction model and its algorithmic treatment is the main
focus and contribution of this article. Having such a chart, we can
then use the retrieved shape and correspondences to the data points
as fixed boundary conditions to stabilize a locally convergent re-
construction. For efficiency, our actual pipeline will not compute
explicit correspondences for each single data point but rather use a
coarse cloud of correspondence samples that covers the data points
in order to encode the correspondence information, as detailed in
the next subsection.

3.2 Data Structures

In this subsection, we explain the data structures that we employ to
represent the objects defined earlier.

Sampled manifolds, intrinsic view. From the point of view of
intrinsic geometry, we look at manifoldsM simply as metric spaces,
that is, a set of points with a distance measure that determines
geodesic distances of pairs of points. We represent these objects as
graphs of points: We cover a manifold M with a finite εs-sampling
M = {m1, . . ., mnM

} ⊂ M. This means that for every point of the
original M, one point in M exists at geodesic distance of at most
εs . Furthermore, we build a graph G = (M,E) to approximately
encode the metric of M. We include an edge e ∈ E between points
mi, mj ∈ M whenever mj is among the k-nearest neighbors of mi

in Euclidian metric (in practice, we use k = 20). Furthermore, we
annotate the edge with this intrinsic distance. The graph distance
dM (·, ·) (i.e., the shortest path in the graph) between two arbitrary
points will then serve as an approximation of the original geodesic
distance dM(·, ·).

Discussion. Obviously, the discrete approximation will distort the
distance measure. Smooth geodesics are approximated by zig-zag
paths in graphs, which introduces systematic deviations. However,
we use this representation consistently for data and all (partial)
reconstructions. The relative deviation introduced by the systematic
errors therefore affect all geodesic paths in the same way so that they
remain directly comparable, which is sufficient for our application.
Nevertheless, the discretization also causes additional quantization
noise in distance estimates. Accordingly, we adapt the expected
error of intrinsic distances σf to be at least in the range of εs (in
practice, we use 3εs). Hence, σf in the following describes the
magnitude of both modeling as well as representation noise.

Sampled manifolds, extrinsic view. Sometimes, we want to be
able to give an embedding of a sampled manifold M in R

3. This
is trivial to encode; we just store for each graph node mi ∈ M
an additional position vector x0(mi) ∈ R

3. Following Wand et al.
[2009], we call this embedding of the chart an urshape. We denote

the urshape of M by X0(M). Please note that urshapes are not unique
but any isometric deformation f (X0(M)) is again a valid urshape.

Charts. A chart combines a (partial) reconstruction of a mani-
fold with correspondences to data points. This means, a chart is a
sampled manifold M , and for each mi ∈ M we store a list of 3D
positions of where node mi would be located in each data frame. We
denote these positions by xt (mi) ∈ R

3, where t covers a nonempty
subset of time steps t ∈ 1, .., T . If the embedding is unknown at a
specific time t , we mark xt (mi) as unknown.

Discussion. The definition of a chart has been chosen to account
for a later technical problem: To limit computational costs, we will
not be able to include every data point into the chart. Therefore, we
allow for using a coarse set of points to represent M and store cor-
respondences implicitly, by storing 3D positions for mi ∈ M . Each
mi will form (partial) tracks that move over time but, in general,
will not exactly coincide with data points but rather cover the data
points. Please also note that a chart does not necessarily have a full
geometric embedding, as the temporal coverage might be sparse
and different at every node. However, as we will see later, our final
pipeline will actually maintain a fully embedded urshape X0(M) for
every chart in order to interface with the extrinsic reconstruction.

Landmark coordinates. Some of the chart points are landmark
points. These points are special as they correspond to features of the
input data that we were able to recognize and track over time. As
any other chart point, the spatial location of landmarks might not be
known for the full time sequence t = 1..T but only for a (nonempty)
subset. Given a set of landmarks L = {l1, .., ln} ⊆ M , we define
the landmark coordinates1 dL(m) of an arbitrary node m ∈ M as
the vector of intrinsic distances between m and the landmark points.

d(L)
M (m) = [dM (l1, m), .., dM (ln, m)]T (2)

Discussion. The main idea of our algorithm is that if two charts
share a number of landmarks, we can compute dense correspon-
dences for the remaining chart points by comparing landmark co-
ordinates. The main challenge is to do this in a way that is robust to
topological and geometric noise, unlike previous work [Fang et al.
2005; Ahmed et al. 2008; Huang et al. 2008]. For this, we introduce
a robust probabilistic matching model in the next subsection.

3.3 Robust Intrinsic Matching

Assuming one knows the landmark correspondences, then a central
problem of our approach is to determine correspondences between
points from different charts. Let MA and MB be two charts that
share a set L of landmarks for which we know the correspondences.
We now want to compute where a point a ∈ MA could correspond
to in MB . For this, we compute a probability distribution over all
points of MB that quantifies the likelihood of a ∈ MA matching a
point b ∈ MB (denoted as a ∼ b).

Pr(a ∼ b|L) = 1

Z

|L|∏
j=1

(
λ · e

−
(

d(L)
MA

(a)[j ]−d(L)
MB

(b)[j ]

)2

2σ2
f + (1 − λ)

)
, (3)

1To be precise, there is a difference between distances and coordinates:
Distances are nonlinear functions of coordinates. Fang et al. [2005] show
how this nonlinearity can be removed for developable surfaces, but we
are not aware of such a solution for general 2-manifolds. However, in our
application, the nonlinearity is not an issue as we only need to test for the
likelihood of equality rather than compute routing paths as in their original
paper. We therefore stick to the simple but slightly imprecise notion of
calling the vectors of distances “landmark coordinates”.
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reliable unreliable unreliable

graph A graph B

Fig. 2. Matching probabilities (schematic drawing): For the green point
(left) the variance is low so that the match is accepted as reliable. The
matching point for the blue point would be located in the hole of chart B,
leading to a high variance that indicates an unreliable match (for large holes,
a uniform distribution remains). The red point has a proper neighborhood,
however, the landmark coordinates do not constrain the match sufficiently.
Again, this leads to a high variance and the match is detected to be not
reliable.

d(L)
MA

(a)[j ] and d(L)
MB

(b)[j ] are the j th component of the landmark
coordinate vector of a and b, respectively, and the term 1/Z is just
the normalization constant. Eq. (3) models the matching problem by
considering the geodesic distance to each landmark point indepen-
dently. For each connection, we assume a normal-distributed error
in case that the geodesic is correct. However, it may happen that
acquisition holes or contacts (i.e., apparent connections of discon-
nected parts, such as a closing mouth) distort the geodesics such that
the distance is arbitrarily wrong. In this case, we do not have any
information about the correct distance so that we resort to a uniform
distribution. The parameter λ is the probability for geodesics being
correct. We use a global constant failure probability of 10%, that is,
λ = 0.9.

Improvement. In practice, we can make the model more robust
by limiting the product to take into account only nearby landmark
points (in a geodesic sense) for each model point. In practice, we use
the 5 nearest landmarks. Limiting the influence helps because the
likelihood of geodesic path being distorted increases with distance
to the point considered.

Discussion. This model is similar to the robust RANSAC ap-
proach by Tevs et al. [2009], where only the k-best geodesics are
considered for matching. However, our new model provides some
important improvements: It provides a continuous probability den-
sity that describes the likelihood of matching point a on MB . If land-
mark points are chosen in a good configuration, the density is more
sharply peaked than for landmark points in a bad configuration (see
Figure 2). The probability density does not only encode the maxi-
mum likelihood match, but we have the complete distribution that
quantifies the uncertainty. In particular, we examine the variance of
Pr(a ∼ b|L) with respect to xt (b) in order to determine how certain
a match is. If the variance is high, the match is not reliable. Please
note that the variance automatically increases if the outlier proba-
bility 1 − λ increases. In this case, more correct landmark matches
are required to reduce the variance again (the the uniform density
“floor” of the distribution converges to zero with (1 − λ)|L|). Fur-
thermore, if the error in the normal distribution is large, combining
multiple landmark correspondences reduces the variance because

multiplying the Gaussians will lead to a more peaked distribution.
Another important improvement over the previous model is that we
do not need to fix a constant k of reliable geodesics but we can
use the more natural formulation that geodesics have a certain fail-
ure probability; the resulting uncertainty is automatically taken into
account, including the case that even some of the k best matching
geodesics could be wrong.

3.4 Pipeline Overview

The full animation reconstruction pipeline consists of a number of
components. We will discuss each individual component separately
in the next section (Section 4) and the composition of the full
pipeline afterwards, in Section 5. Here, we give a brief overview for
orientation (see also Figure 3).

The reconstruction starts by landmark tracking. In this step, the
input data is examined for feature regions and a KLT-like tracking
scheme [Lucas and Kanade 1981], adapted to 3D geometry, is used
to find landmark tracks. Out of these tracks, initial charts are built,
which we refer to in short as i-charts. Our algorithm usually extracts
a number of such i-charts that end when tracks discontinue due
to abrupt motion or occlusion. Therefore, the next step matches
disconnected i-charts to general partial charts of the animation,
which we refer to in short as p-charts. The matching step involves
an additional topology check to remove incorrect edges from the
sampled manifolds and an extrinsic refinement step to improve the
matching precision, followed by a graph stitching step that connects
the two manifold representations (charts). This scheme is iterated
in an outer loop until a full chart of the complete animation is
obtained. Finally, we input the full chart as boundary conditions in
a standard numerical optimization to obtain the final results; we use
the method of Wand et al. [2009].

4. ALGORITHMIC BUILDING BLOCKS

This section discusses the individual algorithmic primitives that
are used in our reconstruction pipeline. We opt for an isolated
discussion for two reasons: First, it makes it easier to structure
the rather complex reconstruction system. Second, several of the
individual components might be useful as algorithmic primitives in
other geometry processing contexts so that it is valuable to look at
them separately.

We structure the building blocks in three parts: landmark
tracking-related algorithms (Section 4.1), intrinsic charting
algorithms (Section 4.2), and extrinsic matching techniques
(Section 4.3).

4.1 Landmarks

We start by discussing the concept of landmarks and their track-
ing. Landmarks are the key concept for solving the reconstruction
problem because they allow us to characterize dense correspon-
dences between surfaces by fixing only a small number of land-
mark correspondences. This reduces the combinatorial complexity
of the matching problem to a level that makes the reconstruction
feasible.

ALGORITHM 4.1.1: Continuous Landmark Tracking

Input: Temporal sequence of data points D

Output: Set of landmark tracks L. Each of these tracks is
a smoothly moving feature.
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Fig. 3. Overview of the animation cartography pipeline. Landmark tracks, Algorithm 4.1.1, are used to build initial charts (i-charts), Algorithm 4.2.1, which
are recursively combined in a pairwise chart merging loop, Algorithm 4.2.2–4.3.2. The final result is used to initialize a numerical bundle adjustment algorithm
for postprocessing. Dotted blocks indicate extrinsic matching components based on previous work of Wand et al. [2009]. A more detailed description of how
each of the part fits in the overall approach is given in Section 5.

The first component is a tracker for continuous landmark tracks.
It gets the raw data D from the scanner as input. The task is
to: (1) identify feature regions, (2) track features over time, and
(3) recognize when tracks end due to incoherent motion.

We solve the first problem (1) by running slippage analy-
sis [Gelfand and Guibas 2004]. It looks at every frame Dt of the
data and determines for each point d(i)

t whether a region of radius r

around d(i)
t can be stably aligned to itself under a rigid motion (in

practice, we use r = 10% of the bounding box size of the object).
For flat areas, for example, the alignment is unstable because the
patch could just slip along the plane. We keep only the unslippable
regions and perform a coarse r-sampling to distribute feature points
uniformly. Again, we use a Poisson-disc algorithm to obtain a good
uniform distribution.

The main tracking step (2) is performed by simple rigid ICP
(Figure 4): We extract the r-neighborhood of each feature point and
align it to the next frame using point-to-plane ICP, always initialized
to the (known) position of the previous frame. If the algorithm
converges, we align the same geometry again to the next frame, and
iterate until the alignment diverges. The landmark track is given
by the trajectory of the center of the aligned region (the feature
point) over time. Divergence is determined (3) by not converging
to a fixed point within 32 iterations or by a translational motion
by more than r within one frame (which is likely to be wrong,
because there was no initial overlap of the geometry with the new
target).

We start new tracks automatically: For each new frame, we re-
compute the nonslippable regions and insert a new point whenever
it is not r-covered with feature points that are being tracked.

Discussion. This scheme could be considered a geometric vari-
ant of the well-known KLT feature tracker for images [Lucas and
Kanade 1981]. It works quite effectively in our situation because
scanned data usually contains a lot of coherent motion (but not
everywhere) with small motion between frames. Locally, within a
small spatial and temporal environment, the motion is usually al-
most rigid. Our scheme does not lead to perfect results but might
create both false negatives and positives, which have to be handled
by the robust matching model.

ALGORITHM 4.1.2: Connecting Broken Tracks

Input: Two points clouds A, B ⊂ R
3, feature points FA ∈ A.

Optionally: seed correspondences L between A and B.
Output: Correspondences between all a ∈ FA and points in B

(set to “unknown” if unreliable)

Usually, the tracking algorithm is not able to cover the whole
animation sequence but rapid motion or occlusion disrupts some
or all of the tracks. Therefore, we need an algorithm to reconnect
broken tracks.

Fig. 4. We align small patches of points to successive frames via ICP to
generate tracks. A track is stopped when ICP fails to compute a stable result.

We consider two point clouds A, B ⊂ R
3. They might already

have a small number of landmark tracks L in common, but the set
L can be empty. If a few continuous tracks are present, we include
these as initialization, so that the algorithm finds the correct solution
more quickly and more reliably. We now form candidate landmark
correspondences by connecting each landmark node of A to every
other node in B (here: landmarks and ordinary nodes). From this set,
we have to find a consistent subset. We employ a forward search
algorithm [Chum and Matas 2005; Huang et al. 2006] based on
our robust matching scores, extending the RANSAC-like algorithm
of Tevs et al. [2009]: We tag each candidate correspondence with
a descriptor matching score (using local curvature histograms as
rigidly invariant descriptors of r-neighborhoods, as in their paper)
and select a starting correspondence by importance sampling ac-
cording to these scores. Given one correspondence, we can select
a random second starting point from A and compute for all points
in B the likelihood of this match being correct. This probability is
given by multiplying the descriptor matching score with the robust
distance matching score for the intrinsic distances of all previously
selected correspondences: Eq. (3). We then draw the next corre-
spondence using importance sampling according to this compond
density and iterate the process until no more candidates are found
that have a low variance in the resulting probability density, indi-
cating that no more reliable matches can be found. We switch from
probabilistic sampling to choosing only the best fit (highest density)
after 3 matches have been fixed to improve the convergence speed.
The whole forward search/RANSAC loop is iterated multiple times
(typically, 100 trials), and the result with the largest number of
established matches is used as the final result.

Discussion. In principle, we could just always apply this algo-
rithm to find landmark tracks, omitting the continuous tracking
phase altogether. However, RANSAC-based matching might fail
with a small probability. Therefore, several independent matching
operations have success probability that declines exponentially with
the number of matches. By making use of temporal coherence, we
can make our algorithm substantially more robust, or in other words,
dramatically reduce the computational costs (because the number
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of RANSAC-rounds would have to be increased exponentially to
make up for this).

4.2 Intrinsic Charting

We now assume that we know landmark correspondences and turn
our attention to the problem of establishing dense correspondences
among charts, and subsequently merging these into compound
reconstructions. We look at a number of different algorithmic steps:
creating a single frame chart from scratch (as initialization), merging
two charts given landmarks, and checking the topology of merged
charts. Afterwards, we use these more elementary algorithms to
formulate higher-level algorithms that build i-charts and p-charts.

ALGORITHM 4.2.1: Building Single-Frame Charts

Input: Point cloud Dt

Output: Single frame chart Mt

We build initial charts (i.e., just sampled manifolds) for a single
frame directly from data Dt : In order to limit the computational
costs, we resample Dt to an (Euclidean) sample spacing of εs , using
a Poisson-disc sampler. We choose the sample spacing such that
about 1500 overall points are retained (this turned out to be a good
compromise of speed and quality). This yields the vertices of a sam-
pled manifold Mt . Afterwards, we form the graph Gt by building
a k-nearest neighbor graph on Mt , with respect to Euclidean dis-
tances. We then also use the Euclidean distance of the points as edge
length. For a smooth manifold, this is a first-order approximation
of the true (but unknown) distances, which is sufficiently accurate
for the sampling resolution we employ. Afterwards, we remove all
vertices and edges in connected components with fewer than 100
points in order to delete small outlier patches and undersampled
data.

ALGORITHM 4.2.2: Merging Two Charts Given Landmarks

Input: Charts MA, MB

Output: A single chart of MA ∪ MB

Let us assume that we have two charts MA and MB and a set
of landmarks L that the two charts have in common. Our goal is
now to compute dense correspondences and then stitch together the
charts accordingly to form a single sampled manifold.

Probabilistic correspondences. We go through all points of a ∈
MA and compute a probability distribution Pr(a ∼ b|L) for all
points b ∈ MB according to Eq. (3). If the landmarks are placed
well to constrain the matching point and if redundant landmark
coordinates are all consistent, a single narrow peak indicates the
expected position. If only a small number of inconsistent distances
are present, this scheme still leads to one pronounced maximum.
In case of insufficient or completely inconsistent information, we
obtain a spread-out distribution with high variance, which can be
detected (see Figure 2).

Reliability. We use the variance of the distribution of the match-
ing score as a reliability measure for the correctness of a match. We
assume that MB has an extrinsic embedding X0(MB ) and annotate
each point xb ∈ X0(MB ) with the probability Pr(a ∼ b|L). Then,
we compute the mean and covariance of this distribution in 3D by
a PCA analysis. As uncertainty criterion, we look at the largest

eigenvalue of the PCA2 (largest standard deviation). In our imple-
mentation, we consider matches unreliable if this value is larger than
3εs . Unreliable correspondences will be excluded from the output.

Improvements. We can further reduce the risk of wrong corre-
spondences if we perform a bijective consistency check. Intuitively,
we aim at establishing correspondences that are valid either way,
whether matching from A to B or vice versa. In our probabilistic
framework, this is realized by constructing a probability in graph
A that the matched point in B matches back to the region around
the original point in A with a high probability. Computationally, we
importance sample the matching distribution in B to determine a set
of potentially matching points. We then determine their matching
probability on A. Assuming statistical independence of the individ-
ual potential matches, we multiply their distributions in A to obtain
a probability density that the match is bijective. If the original point
in A has a high probability of being matched back, we accept the
match, otherwise it is discarded.

Point-to-point correspondences. Finally, we need to convert the
matching densities to actual point-to-point correspondences. We
have two choices for this step: The simplest is the nearest-neighbor
approach. We just connect a ∈ MA to the point b ∈ MB that
maximizes Pr(a ∼ b|L). This is simple and robust but comes with
an error of O(εs). The second option is an extrinsic approach3: We
assume that MA and MB both have an extrinsic urshape X0(MA) and
X0(MB ). We then use the nearest-neighbor estimates (first strategy)
to initialize an extrinsic optimization that aligns the two urshapes
by pairwise deformable matching (see Algorithm 4.3.1). From the
urshapes, we recompute a new sampled manifold, as described next.

Graph merging. Having two aligned urshapes, we can easily
recompute a new sampled manifold. We just connect each point
to its extrinsic k-nearest neighbors (in a Euclidean sense) in the
overlaid urshapes.

Technical details. We need to avoid connecting parts that acci-
dentally have a similar Euclidean position but are actually far away
in an intrinsic sense. This can happen because the extrinsic opti-
mization does not perform any collision detection (Section 4.3). We
therefore do not consider all points as candidates for the k-nearest
neighbors but only those that can be reached by a short walk along
the graph of the sampled manifold: We allow only points within a
Euclidean distance c · εs (for k = 20 we use accordingly c = 3),
walking on the graph edges of MB and MA and using the nearest-
neighbor correspondences between MA and MB as “bridges” to
switch between the graphs (see Figure 5 for an illustration).

Discussion. In summary, this algorithmic building block allows
us to merge two charts into a single one if we find suitable landmark
correspondences. It might fail to recognize corresponding parts if
the landmarks are unable to reliably identify the dense matches.
However, as part of the output, the algorithm will mark these re-
gions and not provide correspondence information. Furthermore,
as described before, the algorithm needs an extrinsic urshape for
both charts in order to compute an accurate matching. Otherwise, a
nearest-neighbors solution is possible but it introduces a small error
in each operation so that iterative merging would become inaccurate
over time.

2The check could also be implemented purely intrinsically by looking at
the variance of geodesic distances; however, in our pipeline, an extrinsic
urshape will always be available.
3In our implementation, we use a combination of the nearest-neighbor and
the extrinsic approach; an implementation of the purely intrinsic formulation
is still subject to future work.
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graph A

graph B

topologically incorrect
connection

Fig. 5. Graph merging: The blue and the red graph are merged. Points
within the c · εs search range (light green) are potential neighbors of the
center point. We exclude points that are not reachable by walking on the
joint red and blue graph without leaving the search range. Nearest-neighbor
correspondences (green) can be used as “bridges” to walk from blue to red
and back.

ALGORITHM 4.2.3: Resampling a Chart

Input: A chart M .
Output: A resampled version M ′ which is a minimal

εs-covering of M

The next operation we need to provide is to reduce the complexity
of a chart by resampling. The motivation for this is that we will
need to perform many chart merging operations that will constantly
increase the sampling density in overlapping parts, which at some
point becomes a problem in terms of computational costs.

Resampling itself is very easy: We just use the Poisson-disc
sampler to remove nodes from the graph that are still covered by
nearby nodes within a distance of no more than εs/2. The remaining
challenge is to maintain the temporal correspondence information
between the chart and the actual data. At this point we need to
remember that charts encode correspondences by attaching sets of
extrinsic positions of points to which they correspond. Therefore,
removing chart points deletes valuable correspondence information.

We propose again an extrinsic scheme to counter this problem by
interpolation: We keep the original chart M and chart M ′ resampled
to a sample spacing of εs . Each m′ ∈ M ′ is also a node in the original
M . We look at all neighbors Nεs

⊆ M of m′ that are located within
an (intrinsic) distance of εs . For each time step t that is covered by
the chart, we then retrieve their extrinsic embeddings. If we find at
least three such points, we compute a local tangent space by fitting
a least-squares-optimal rigid alignment T of the points at time t to
the corresponding urshape points [Horn 1987]. We then estimate
the correspondence of m′ at time t as T−1(x0(m′)), that is, by just
transforming the urshape point back to the corresponding tangent
space (see Figure 6).

Landmarks. A special situation occurs for landmark nodes. Since
landmarks carry global matching information that is valid across
different charts, these nodes cannot be deleted, moved, or interpo-
lated to different positions in the graph. Hence we just copy the
landmark nodes into the resulting chart.

Discussion. The scheme performs a first-order accurate interpo-
lation which yields satisfying results for the dense sampling we are
employing in our implementation. The scheme could easily be im-
plemented intrinsically, without having an extrinsic urshape, using
the intrinsic distances as weights for the tangent space approxima-
tion; however, in our implementation, we use the extrinsic urshape.

Fig. 6. Schematic representation of resampling and merging of two charts:
We first merge two charts A, B (upper left) by nearest-neighbor match-
ing (lower left). The match is refined by extrinsic, numerical alignment,
which leads to partially represented correspondences (lower right). When
we resample the representation, we need to perform neighborhood-based
interpolation to retain this information (upper right).

ALGORITHM 4.2.4: Detecting Apparent Topology Changes

Input: A chart M

Output: Augmented chart M ′ so that intrinsic paths are
never shorter than extrinsic paths

If we use the chart merging algorithms described earlier to as-
semble a more comprehensive chart from simpler ones, we are still
facing a major problem: It might happen that the apparent topology
of the chart changes, for example, if the mouth closes in a face
scan. Charts built from closed mouth data have an incorrect metric
structure and incorrect topology: They do not show a hole in the
mouth region and the distance between the lips is too short. We
therefore need to detect this situation and adapt the graph of the
chart accordingly.

Invariant. We have only one criterion to detect such mistakes:
The intrinsic distance between corresponding points must always
be larger or equal to the largest extrinsic distance that has ever been
observed. This criterion is used in Wand et al. [2007] to build a
straightforward “edge-stretch” test: It just checks if extrinsic em-
beddings of points connected by a common edge violate this invari-
ant, and if so, delete the edge. This works in practice but it is not very
robust; it requires a delicate trade-off of elasticity and edge-stretch
tolerance. We adopt this basic idea and develop an improved, more
robust algorithm.

Basic version. We can implement the basic stretch test easily
by just comparing the Euclidean embedding (correspondences to
data) of neighboring nodes at all time steps. Because the extrinsic
correspondences are stored only sparsely, we also have to resort
to interpolation from neighbors at both endpoints (as described in
Algorithm 4.2.3) to make this robust.

Improved version. The improved version looks at the problem
from a more global perspective: The main idea is to look at shortest
intrinsic paths and all of their known temporal correspondences in
Euclidean space. If we find a subpath for which the endpoints are at
a larger Euclidean distance than the geodesic distance of the path,
we know that a part of this path violates our invariant, hence one
or more edges on that path must be deleted. In order to search for
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Fig. 7. A difficult case for chart merging: the two charts of the puppet
dataset have a very different topology. In input data (top row) on the left,
the hand of the puppet is merged with the body. On the right, the puppet
is fully visible and hand and body are disconnected. The lower row shows
the chart topology before performing the topology consistency check (left),
after topology clean-up (middle), and for the second chart (right). Note how
the hand got disconnected from the body in the left chart while the topology
of the chart on the right is unaffected.

those paths, we compute the geodesic paths between all pairs of
nodes in the graph and compare the Euclidean and the intrinsic
distance for all time steps. If we find a violation (intrinsic distance
being too small), we walk inwards along the path until we find the
smallest interval that still violates the distance criterion. We also
stop shrinking the interval if correspondences are not known. This
usually does not yet give us the desired result because the intervals
in which the error occurs can be quite large. We therefore perform
a voting scheme in order to identify edges which are responsible
for the violation. Each edge gets a vote if it shows up in a path that
violates the distance criterion. After that, we determine the set of all
edges that obtained a maximum number of votes and delete them
from the graph. Then we iterate this scheme until no more violating
paths are found.

Speedup. Computing all pairs of paths is obviously too slow. We
therefore restrict the search to paths of a bounded length and use
only a subsample of starting points instead of all points.

Discussion. This strategy is more robust in finding problematic
connections than the edge-stretch test. However, due to the greedy
deletion algorithm, it might still delete a larger set of edges than
absolutely necessary. Due to subsampling, it is also possible to miss
smaller topological problems. Nevertheless, our experience is that
the improved strategy is significantly more robust than the previous
technique. An example of the topological consistency filter on the
hand puppet dataset [Li et al. 2009] is shown in Figure 7; the simple
edge-stretch test fails here.

4.3 Extrinsic Matching

Finally, we also integrate locally convergent, extrinsic matching and
optimization into our pipeline. We will use this numerical approach
for refinement. This approach is very common in optimization: we
first use a coarse global optimization algorithm to estimate a good
initialization for a more precise (but not globally optimal) local
optimization scheme. Here, we only give a very short summary of
the previous work of Wand et al. [2007, 2009]; we refer the reader
to the original papers for implementation details.

ALGORITHM 4.3.1: Pairwise Local Matching

Input: Two point clouds A, B ⊂ R
3

Output: A deformed version f (A) of A that fits the shape of B

The main idea of the extrinsic matching algorithm is to compute
a deformation field f : A → R

3 that minimizes a matching energy.

Ematch(f ) = Edist (f (A), B) + Eelastic(f ). (4)

Ematch combines two energy functions: The first, Edist , measures
the distance of point cloud B from the deformed f (A). It sums up
the point-to-plane distance between points from f (A) and points
from B. In order to support partial matching reliably, a number
of heuristics are employed, such as checking the angle of the cor-
respondence vectors to the surface normals. The energy Eelastic

penalizes the elastic energy of the deformation field f , trying to
keep it as-rigid-as possible. In the optimum, minimal bending and
stretching is introduced while still matching the data well. The two
terms are usually weighted to control the trade-off. We use the elas-
tic subspace matching model of Wand et al. [2009], but several other
choices are possible, see for example, the seminal work of Allen
et al. [2003] and Häehnel et al. [2003].

ALGORITHM 4.3.2: Animation Fitting

Input: Temporal point sequence D

Candidate reconstruction f, M , partially initialized.
Output: Improved reconstruction f, M

The pairwise matching model of Eq. (4) is extended in Wand
et al. [2007; 2009] to a global animation fitting approach that fits
animation sequences with multiple frames to data. For this, an aug-
mented energy function is employed.

Eanim(f ) = Edist (f (M),D) + Eelastic(f ) + Etemp(f ) (5)

It now operates on a whole animation sequence. It computes the
distance to the data at all frames (summation over time) and it also
sums up the elastic energy in all time steps. Furthermore, it adds a
new term Etemp that takes into account the temporal behavior of the
time-dependent motion field f . It penalizes acceleration such that
smooth motion is preferred. This energy can be optimized using par-
tially initialized data, where some correspondences ft (m),m ∈ M
are not known. The method first fixes the known correspondences
and fills in the missing data and then perform a global energy min-
imization. This interpolates missing data in a temporally coherent
fashion and distributes the remaining error globally. Another way
to view this is as a numerical bundle adjustment to improve the
reconstruction accuracy.

Discussion. Once again, it is very important to stress that this
optimization is only reliable if the model is suitably initialized. In
particular, the data term is highly nonconvex so that model parts
covered by data need to be prepositioned close to matching data
points. We use the existing technique because of its ability to in-
terpolate missing data and because the numerical optimization, as
a continuous method, does not suffer precision limitations (unlike
some of our intrinsic algorithms, as discussed next). There is a small
inconsistency, though: The extrinsic methods assume elastic defor-
mations (minimizing bending and stretching), while the intrinsic
methods assume isometry (minimizing stretching only). For the tar-
get data, this is an acceptable restriction: The stricter assumption of
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elastic behavior is a reasonable regularizer, as validated extensively
in previous work [Häehnel et al. 2003; Wand et al. 2007, 2009;
Süßmuth et al. 2008; Li et al. 2009]. Nevertheless, the charting al-
gorithm itself could alternatively be formulated in a purely intrinsic
fashion. We will discuss this briefly in the following.

5. RECONSTRUCTION PIPELINE

We now use the building blocks developed in the previous section
to setup a complete animation reconstruction pipeline. We divide
the algorithm into three conceptual stages: i-chart building, p-chart
merging, and final optimization.

5.1 Building i-Charts

As a first step of our algorithm, we run the continuous landmark
tracking Algorithm 4.1.1 to determine a set of landmark tracks L.
Afterwards, we first build a separate single frame chart for every
frame of the input using Algorithm 4.2.1. From this correspondence
information, we build initial charts (i-charts). This is done by merg-
ing single frame charts using the continuous landmark tracks L.

We first select a subset of starting frames to build the initial
charts (our current implementation uses every tenth input time step
as starting frame). For each starting frame, we build one i-chart. We
first fix the landmark set L to the landmark sets that overlap the
starting frame. We then walk both forward and backward in time
and use the chart merging to merge the data into a larger i-chart.
For this step, however, we ignore the stitching of the graphs and
use only the reference frame as the chart’s urshape. This provides
us with a temporal correspondence information of the chart and a
suitable urshape (i.e., does not contain any “artificial” errors which
might be introduced with our stitching pipeline).

In each merging step, we exclude unreliable correspondences, and
also exclude newly starting tracks that were not continuously present
from the starting frame. Therefore, the amount of area covered will
typically decrease with time distance to the starting frame. When
the ratio of matched graph nodes to the number of nodes in the base
frame falls below a threshold (we use 40% in all our results) we
stop the temporal extension of the i-charts. Finally, we equip the
newly created chart with an urshape; we just use the starting frame.
Figure 8 summarizes the process.

Discussion. We have designed this procedure to make sure that an
i-chart does not contain the same piece of geometry twice at different
positions in the chart: We never include any area in an i-chart that
could already have been represented elsewhere within the same
chart, but where we would not yet have been able to recognize this
fact. This is guaranteed by not introducing new landmarks and by
only collecting reliable correspondences. Therefore, the coverage
of i-charts is typically still fragmented. Patching these fragments
together is the task of the next step, p-chart merging.

5.2 Outer Loop: Building p-Charts

We now build p-charts by stitching together separate i-charts
as well as p-charts that have already been generated earlier
during this process. The stitching is done by using the global
matching Algorithm 4.1.2. It first tries to establish landmark
correspondences. If a sufficient number of matches is found, the
two charts are assembled by chart merging (Algorithm 4.2.2),
followed by subsampling (Algorithms 4.2.3). The topology check
(Algorithm 4.2.4) is performed before graph merging in order
to reduce the error accumulation which might be introduced by
merging two urshapes with false connections.

t-1 t t+1

x

t

x

t

per frame charts

space - time diagram, landmark tracks

space - time diagram, charg correspondence established

initial chart

landmark
ordinary point

landmark node
ordinary node

chart support

Fig. 8. i-chart construction as spacetime diagram (x-axis: time, y-axis:
spatial location). We first build single frame charts and track landmarks
(first row). The second row shows a block of tracked landmark points. These
are used to perform robust matching of landmark coordinates to establish
correspondence between ordinary points (third row). The resulting chart is
represented as a time-independent graph that encodes the intrinsic structure
(last row). Each point stores correspondences to the raw data (not shown).

Merging by global matching has a certain risk because the
RANSAC matching algorithm might fail to give good results with
some small probability. We can minimize the risk by using good
matching candidates first. Each i-chart and newly generated p-chart
is kept in a pool of matching candidates. In order to decide on which
pairs to match first, we use the following score.

wscore = λ1woverlap + λ2wmatch + λ3wcommon (6)

woverlap is the temporal overlap of the charts, that is, the number of
overlapping frames of the two charts normalized by their maximum
length. wcommon is the normalized number of common landmarks in
both charts. wmatch is the average number of matched nodes during
all previous i-chart or p-chart merging operations, thus quantifying
how well the matching worked out in the history of this chart. The
weight parameters are set to λ1 = 3, λ2 = 2 and λ3 = 1, putting
the most emphasis on overlap. This heuristic scoring encourages
the merging of charts that actually do overlap and are not likely
to be bad matches. In addition, we also monitor the outcome of a
match. Chart merging is considered a failure if only a small number
of correspondences have been established in relation to the overall
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number of nodes (in practice, we use 30% as threshold). In case
of failure, the p-chart is not added to the pool and only one of the
two participating charts is kept. We keep the “better” one judging
by Eq. (6) (omitting the overlap which is not defined for a single
chart).

5.3 Final Optimization

The outer loop described before is run until only one chart is left
in the pool, which is the final reconstructed chart, and the primary
output of our method.

We use this chart to drive a final numerical bundle adjustment
according to Algorithm 4.3.2. This yields a full motion sequence
where the urshape of the final chart is deformed to plausibly fit all
of the data and move smoothly over time for frames or parts where
no data is available. We show these reconstructions as results in
Section 6 and in the accompanying video.

6. RESULTS

We evaluate our algorithm on a number of datasets. First, we use the
“Saskia”, “Abhijeet”, and “Kicker” datasets of Vlasic et al. [2009],
which have been acquired using a photometric stereo approach. We
also include the “Face” and “Puppet” datasets of Li et al. [2009],
which have been acquired with the motion-compensated structured
light acquisition method of Weise et al. [2007]. Finally, we also
include the “woman”, a dataset that we acquired ourselves using a
Swissranger SR4000 [MESA 2012] time-of-flight depth camera. In
addition to the original datasets we create a shuffled version of the
“Face” dataset by deleting subsequences of frames and rearranging
the remaining data blocks. This dataset is specifically designed
to test the performance of our landmark continuation technique,
Algorithm 4.1.2. In addition, we also use a synthetic dataset of a
gesticulating hand, created in Poser 7, to separately evaluate the two
main new pipeline stages, landmark tracking and robust charting. To
fully appreciate the results of our technique we recommend to watch
the accompanying video. A brief summary is shown in Figure 12.

6.1 Synthetic Tests

We first examine the two most important algorithmic components
of our pipeline separately before we test the complete pipeline.
Figure 9 shows a hand model in two different poses with an
increasing amount of missing data. With this example, we examine
the benefits of the robust matching model. The green area indicates
that the variance of the matching distributions indicates a reliable
match. The robust matching model is able to find reliable matches
for most of the nonhole area and does not create false positives. If
we turn off the robustness, the coverage is substantially reduced.

Figure 10 shows a tracking result on a hand sequence that in
the middle undergoes an abrupt motion. This example examines
the behavior of the landmark tracking algorithms. In our results,
the landmark tracks are correctly interrupted at this point and the
RANSAC matching is invoked to build new landmark correspon-
dences. Finally, the dense chart merging is used to obtain globally
consistent dense correspondences.

6.2 Real-World Scanner Data

The different real-world datasets (see Figure 12 and the video)
present a number of challenges to our reconstruction pipeline.
For the “Saskia” dataset, the legs of the person often appear to
be connected to the skirt, giving evidence for a different topology
than the correct interpretation of the legs being separately moving

Fig. 9. Effect of robust matching: Matching a (synthetic) hand model with
a simulated acquisition hole. The results (a)–(c) use robust matching so that
still large areas are covered with reliable correspondences (green). In the
nonrobust result in the lower right (d), significantly more area outside the
hole region cannot be matched. Dataset created in Poser 7.

Fig. 10. Applying landmark tracking to the hand dataset (synthetic). Up-
per row: The blue tracks are obtained by continuous tracking; They end
automatically at the abrupt turn in the middle. Bottom row: The situation
is recognized automatically and the RANSAC algorithm establishes addi-
tional landmark correspondences. The orange lines indicate the final dense
correspondences.

objects. In addition, we have significant amounts of missing data in
the leg region. Another difficulty is presented by the arms moving
upwards in the beginning of the sequence. Since the scanner is not
able to resolve the gap between the arms and the body, the surface
seems to undergo some significant deformation. Even though
this violates our model, our algorithm is able to process the data.
Also note how the legs are reconstructed as separate entities; see
Figure 1 (left). This is only possible using the improved version
of Algorithm 4.2.4, which detects topology changes. The basic
variant proposed in earlier work fails to recognize the individual
parts.

The main challenge in the “Face” dataset, which has previously
been used for template-based animation reconstruction, is presented
by large amounts of missing data, due to the single camera scanner
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Fig. 11. Comparison of the algorithm of Wand et al. [2009] (left) and our
reconstruction (right) for the “Face 2 shuffled” dataset. In the case of Wand
et al. [2009], large deformations between individual frames prevent a proper
alignment of the data.

setup. Important features of the head, such as both ears, are never
present simultaneously in any of the input frames. The nose is often
visible from one side only. Nevertheless, our algorithm successfully
assembles a complete urshape of the person, including both ears and
a closed nose surface, See Figure 1 (right) and Figure 12. In addition,
the neck region appears to be disconnected for a large part of the
sequence. Our algorithm is able to correctly connect the neck to the
head. A small artifact remains: The dataset contains a few small
disconnected outlier patches (collar of the shirt) that are attached
to the main figure in the reconstruction. Here, the available data is
insufficient to handle these pieces correctly.

The “Puppet” dataset is an example for a strongly deformable
object. It has also previously been used for template-based recon-
struction. The dataset is challenging due to its strongly changing
apparent topology (hand connected to body); see Figure 7. The in-
correct topology even persists for as many as 40 frames. Even with
large amounts of missing data in the folds and widely varying ap-
parent surface topology we recover the complete sequence. Again,
a using the improved algorithm to resolve the topology is essential;
the previous algorithm leads to incorrect reconstructions.

The “Face shuffled” dataset shows a test sequence for our land-
mark continuation strategy. We cut the original “Face” sequence
into 5 blocks of 10,29,29,10, and 28 data frames each. In between
these contiguous blocks of data we deleted 12,10,8, and 5 frames
of the original data frames. They are present as empty frames in
the modified dataset, disrupting landmark tracking altogether. As
shown in Figure 11 (right), our algorithm is still able to reconstruct
a complete template model and its motion over the full sequence,
even interpolating the missing frames with plausible information
(see video). For comparison, we show a result computed with the
sequential alignment algorithm of Wand et al. [2009]; Figure 11
(left), which, as expected, is not able to perform a useful recon-
struction for this type of incoherent motion.

The “Abhijeet” dataset is particularly challenging. As shown in
the video, the topology is ambiguous and the geometry shows sys-
tematic low-frequency artifacts. Parts of the arm are displaced by
more than the diameter of the arm itself, and incorrect sheets of
surface show up, probably due to the photometric acquisition ap-
proach that cannot estimate depth reliably in this highly occluded
situation. The situation is particularly bad for the first 20 frames,
where the arms are merged into the body and drag large sheets of
phantom geometry with them when disconnecting. In this situation,
our algorithm only recovers a sparse set of correspondences for the
arms, which is not sufficient to reliably guide the final numerical
optimization. When we omit these frames, we obtain qualitatively
correct results for the remaining 94 frames, with stable correspon-
dences (see video for details). The main artifact is that the arms in
some frames twist and squeeze. However, the data support is still
rather weak and certainly outside the scope covered by our matching

Fig. 12. Original data (left) and reconstruction with parameterization of
the “Puppet” and “Face” [Li et al. 2009]. “Saskia”, “Abhijeet”, and “Kicker”
[Vlasic et al. 2009] and “woman” datasets for different poses.
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Table I. Statistics for Processing the Individual Datasets
data set Saskia Face Face shuffled Puppet Abhijeet∗ Kicker∗ Woman∗

# frames in seq. 116/116 200/200 141/106 100/100 92/112 20/20 100/100
avg. # data points / frame 20500 10300 10300 9800 20000 16000 8300
avg. # ord. points 1250 1300 1300 1250 1800 2000 3000
avg. # landmarks 82 66 66 86 81 79 34
comp. time i-charts 5h 3h 2h 3h30min 4h30min 1h18min 21min
comp. time outer loop 3h 1h20min 1h 1h40min 1h 19min 2h
comp. time post-proc. 30min 1h 1h 25min 12min 8min 4min

model. We therefore think that this example shows quite well both
the limitations of matching model itself as well as the robustness of
the computational pipeline. We again compare our results to those
of previous local optimization [Wand et al. 2009]. When we run the
algorithm with standard parameters (as we also did with our new
approach), the local algorithm produces inferior results with sig-
nificant artifacts in both shape and motion (see the accompanying
video for details). However, in this example (unlike the others), it
is actually possible to improve the results of the previous local op-
timization algorithm by involved parameter tuning: The approach
provides a number of heuristics, such as deleting points with small
temporal coverage before the final optimization step. In this par-
ticular example, this happens to remove some of the problematic
artifacts such that we actually obtain results almost as good as with
our new approach. However, the success of the previous method is
rather coincidental and unstable under slight parameter variations.
We would therefore still see a substantial improvement in using the
newly proposed pipeline.

The “woman” dataset represents a stress test and partial failure
case for our approach. The time-of-flight data is extremely noisy,
which is a major challenge for the landmark tracking algorithm.
In addition, the apparent topology is again constantly changing,
including a full topological connection of the arms with the upper
body in the the beginning of the sequence. We obtain only sparse
tracking information so that our algorithm was not able to recon-
struct dense correspondences reliably over the body for all frames
but some data remains uncharted. Hence, the final optimization pro-
duces a smooth interpolation that in some parts does not follow the
data. The quality of the reconstructed geometry is low; the corre-
spondence noise does not permit resolving high-frequency details
in the final reconstruction, but the result is qualitatively correct. For
such kind of very low-resolution data, additional cues such as a
simultaneously recorded video with color information is probably
necessary to permit better reconstructions.

In Table I, we show statistics of algorithm runtimes and other
characteristic data for the different sequences. The first row shows
the number of reconstructed frames versus the available data frames.
Note that for the “Face shuffled” dataset more frames are recon-
structed than are present in the original data. The second row shows
the average number of data points per frame of the input sequence,
while row three shows the number of nodes in a typical chart.
The average number of detected landmarks per frame is shown in
row four. Note that this number varies widely over frames. Finally,
the computation times for the different steps of our algorithm are
given. The computations were run on a 2xQuadCore Intel Xeon
X5550 with 2.67 GHz. Datasets marked with a “*” were computed
on 2xHexaCore Intel Xeon X5650 with 2.67 GHz.

6.3 Discussion and Limitations

As shown by the example scenes, the new algorithm is able to handle
more general input data that could not be reconstructed automati-

cally by previous techniques. Not relying on temporal coherence is
an important step for practical applications. Although scanners are
available that scan at very high frame rates, the fact that geometry
often vanishes in acquisition holes and reappears in a different pose
is a strongly limiting factor in practice to previous algorithms. We
can also show that our algorithm is quite robust: Even for datasets
with strong noise or artifacts outside our modeling assumptions, we
still obtain qualitatively correct results.

As most complex reconstruction systems, our method has a num-
ber of parameters. However, we were able to fix most of these param-
eters for all of the datasets, as described in the text. We only adapted
the sampling resolution εs to control the computational costs. The
main issue here is that the computation of the matching probability
densities for every point to be matched (used in Algorithm 4.2.2)
is quadratic in the number of discretization points. Therefore, a
very fine sampling becomes quite expensive. As seen in Table I,
we generally choose the sampling density such that the number of
discretization points per frame is about in the range of 1000–2000,
which provides a reasonable trade-off of accuracy and computa-
tional costs. In addition, we have increased the number of landmarks
in the robust matching scores from 5 to 6 in the “Abhijeet” dataset
as this leads to slightly better results. Finally, we have adapted the
regularizer weights for stiffness and acceleration penalty in the final
numerical optimization best visual (aesthetic) impression.

Our method still has a number of limitations that require further
research: A problem is the handling of “unreliable” data. Our current
pipeline dismisses this data in the construction of initial i-charts but
during p-chart merging, we currently do not delete uncharted data
because this could reintroduce large holes in the charts, but rather
rely on extrinsic alignment to match these pieces. This problem
can be addressed by a good scheduling of the merging operations,
which are commutative but not associative: The order in which
pairs are merged matters. The current heuristic tries to minimize
the negative impact by aiming at large overlap, but better orders
(possibly including options for backtracking from bad matches)
might exist.

A second issue is the detection of topological changes. Although
we can handle more scenes than previous techniques, we still en-
counter problems in some situations. In particular, if large acquisi-
tion holes and topological changes coincide, this can lead to incor-
rect results where the local topology is not resolved correctly. An
example is the face scan from Wand et al. [2007]. Our technique
cannot resolve the opening of the mouth because of large acquisition
holes opening up around the lips simultaneuously with the opening
of the mouth. The missing area is too large to be handled by even
robust intrinsic matching. In this case, a purely extrinsic technique
or a template-based technique [Li et al. 2009] has an advantage
over our approach. In general, for low-fidelity data, a model-based
approach with high-level prior knowledge might still be the only
way for obtaining useful reconstructions.

Finally, the combination of elastic and isometric matching
is sometimes a limiting factor: For objects with very strong
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deformations, this introduces a bias towards rigidity, leading to
insufficient bending. A purely intrinsic formulation of the charting
could probably reduce these problems. However, this seems to be a
minor issue in practice that can usually be resolved by reducing the
strength of the elastic regularizer appropriately.

7. CONCLUSIONS

We have presented a global optimization technique for animation
reconstruction from dynamic point cloud sequences as produced
by dynamic range scanning devices. Our method is based on the
concept of cartography and uses an intrinsic framework for a more
reliable and robust matching of partial deformable shapes in vastly
different poses. Iteratively applying this technique automatically
yields a completed template model, its motion over the course of
the acquired sequence, and a consistent parameterization. Our tech-
nique uses a landmark tracking scheme that uses temporal coherence
if available but can fully automatically resort to an efficient random-
ized global matching algorithm if required by the data. We can thus
recover from scanner shortcomings such as large-scale occlusion
and we can handle fast motion in the scene. We also improve the
robustness in detecting topological changes. Overall, we are able to
process sequences under significantly more general conditions than
previous work.

For future work some interesting avenues are opened up by our
research. First, the problem of finding a globally consistent intrinsic
description of a moving scene can be applied to other problem areas,
for example, the computer vision problem of robustly detecting
occlusion boundaries in video sequences. Possibly, dynamic scene
reconstruction from (multiview) stereo data could be approached by
a charting of consistent parts. Another interesting direction would be
to reformulate the extrinsic matching techniques that we currently
use for obtaining subsampling precision in an intrinsic framework.
This would make our technique fully isometry invariant. Although
this is probably of minor importance in terms of practical results, it
would put the approach in a simpler and more coherent framework.
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HÄEHNEL, D., THRUN, S., AND BURGARD, W. 2003. An extension of the
icp algorithm for modeling nonrigid objects with mobile robots. In Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(IJCAI). 915–920.

HORN, B. K. P. 1987. Closed-Form solution of absolute orientation using
unit quaternions. J. Opt. Soc. Amer. A4, 4, 629–642.

HUANG, Q.-X., ADAMS, B., WICKE, M., AND GUIBAS, L. J. 2008. Nonrigid
registration under isometric deformations. Comput. Graph. Forum 27, 5,
1449–1457.
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