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Abstract—Cameras are becoming ubiquitous. Technological
advances and the low cost of such sensors enable deployment
of large-scale camera networks in metropolises such as London
and New York. Applications including video-based surveillance
and emergency response exploit such camera networks to
detect anomalies in real time and reduce collateral damage. A
well-known technique for detecting such anomalies is spatio-
temporal analysis – an inferencing technique employed by
domain experts (e.g., vision researchers) to answer spatio-
temporal queries.

Performing spatio-temporal analysis in real-time for a large-
scale camera network is challenging. It involves continuously
analyzing the images from distributed cameras to detect signa-
tures, generating an event by comparing the detected signature
against a database of known signatures, and maintaining a state
transition table that show the spatio-temporal evolution of peo-
ple movement through the distributed spaces. Being inherently
distributed, computationally demanding, and dynamic in terms
of resource requirements, such applications are well-positioned
to exploit smart cameras and cloud computing resources.
However, developing such complex distributed applications is
a daunting task for domain experts.

In this paper, we propose a distributed framework to
facilitate the development and deployment of spatio-temporal
analysis applications on large-scale camera networks and
backend computing resources. The framework requires the
domain experts to provide a set of handlers that perform
the domain-specific analyses (e.g., signature detection, event
generation, and state update). The runtime system invokes
these handlers automatically in the distributed environment
consisting of smart camera networks and cloud computing
resources. We make the following contributions: (a) a dis-
tributed programming framework for spatio-temporal analysis,
(b) a careful investigation of the computation/communication
costs associated with the large-scale spatio-temporal analysis
to arrive at the scalable system architecture, (c) automatic
resource configuration to cope with the dynamic workload, (d)
a detailed performance evaluation of our system with a view
to supporting scalability and quality of service.
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I. INTRODUCTION

As sensors for recognizing humans, such as cameras,
voice recognition sensors, and RFID readers, are becoming
more capable and widely deployed, new application scenar-
ios arise, requiring an automated processing of the continu-
ous stream data to identify and track human beings in real-
time. Applications in this domain include airport security,
emergency response and assisted living, all requiring real
time detection of unusual situations, called anomalies. Dif-
ferent from techniques such as RFID badges, cameras allow
for an unobtrusive way of identifying people’s whereabouts,
making them the primary source of information in many of
these scenarios.

Take an airport scenario as an example: Amsterdam’s
Schiphol airport currently has 1,000 cameras in place and
plans to increase that number to between 3,000 and 4,000
over the next few years [1]. In an airport, a common
security violation is that an individual enters into a restricted
area without permission. If such a situation happens, the
individual should be reported to an airport security team in
real time, preventing potential threats to the airport.

The high level goal in such applications, often referred to
as situation awareness applications [2], is catching anoma-
lies in real time and reducing collateral damage. To achieve
this, there is a well-known technique called spatio-temporal
analysis, enabling an application to answer spatio-temporal
queries on known occupants such as “Where is person A?”,
“When and where did person A leave zone X?”, “When and
where did person A and person B meet for the last time?”.

Applications providing the means to answer these queries
usually employ distributed cameras and sensors of other
modalities (such as audio and biometrics) to detect people in
the observed system. These live sensor streams are used to
make an estimation about the identity of the detected people,
comparing the data to a set of well-known identities. These
estimates generated throughout the system are gathered
and regularly consolidated to create a global view of the
observed area, e.g., by recording the most likely whereabouts



of each person known to the system at a certain point of time.
The current global state and possibly a history of former
states enable the system to answer queries such as stated
above.

Recently, Menon et al. [3] showed the feasibility of
spatio-temporal analysis using this concept by maintaining
the global state in a transition table similar to hidden
markov models. The table represents the probabilities of
each occupant known to the system being in each of the
observed zones. Events, which indicate that an occupant has
been observed within a zone, trigger a transition from the
current state to the next. Just as the global state, events are
represented by probabilities rather than exact knowledge,
because algorithms for signature detection and comparison
are inherently inaccurate.

To develop a large-scale situation awareness application
using the spatio-temporal analysis technique, questions of
system scalability and efficient resource management will
arise and must be addressed. In large settings such as air-
ports or urban environments, processing the data streaming
continuously from multiple video cameras is both data- and
compute-intensive task. Moreover, real-time situation aware-
ness applications have latency-sensitive quality of service
requirements, while their workloads are highly dynamic
depending on the situation of the physical environment
(e.g., level of activity in an airport). Developing a large-
scale distributed application to meet such requirements is
a daunting task for domain experts. Questions of system
scalability go beyond video analytics, and fall squarely in
the purview of distributed systems research.

In this paper, we develop a distributed programming
framework to enable domain experts to develop large-
scale situation awareness applications using spatio-temporal
analysis technique. Specifically, we make the following
contributions:
• We develop a distributed framework for real-time
spatio-temporal analysis that can be used by domain
experts to “plug and play” their algorithms.
• We investigate performance bottlenecks in large-scale
spatio-temporal analysis and design a distributed sys-
tem architecture to support scalability and quality of
service.
• We provide automatic configuration of backend sys-
tem resources to satisfy quality of service with given
application parameters and dynamic workloads.
• We implement the framework, and evaluate scalability
and quality of service of the proposed system with
realistic domain-specific algorithms.

Section II presents other work related to our project.
Section III discusses application logic of spatio-temporal
analysis and challenges of performing such applications on
large-scale camera network to arrive at the design decision
for the scalable system architecture. Section IV explains

details of the framework including its programming model
and resource management, as well as support for scalable
state update. Section V gives implementation details of the
framework, including resource reconfiguration protocol and
a mechanism to ensure temporal order of events. Section VI
provides performance measurements of the implemented
system and show scalability of the proposed approach.
Section VII presents concluding remarks and future work.

II. RELATED WORK

There are many middlewares and frameworks that help
developing applications for smart environment and situa-
tion awareness applications. For example, the EasyLiving
project [4] presents a software architecture for smart envi-
ronments that includes a person tracking system based on
color stereo for maintaining the identities and locations of
people. Gaia meta-operating system [5] provides a frame-
work for building user-centric applications in active spaces,
where users seamlessly interact with their surrounding phys-
ical and digital environments. SLIPstream [6] presents a
scalable programming framework that allows interactive
perception applications to run on distributed nodes to process
streaming data with low latency. However, the focus of such
systems is user-centric pervasive applications in room or
building scale smart environments; our focus is large-scale
camera networks and the application focus for us is real-time
spatio-temporal analysis, quite different from these other
systems. IBM S3 [7] provides a middleware for video-based
smart surveillance system including Smart Surveillance En-
gine (SSE) for the front end video analysis capabilities
and Middleware for Large Scale Surveillance (MILS) for
data management capabilities. However, it does not provide
a domain-specific programming model that is one of the
primary contribution of our work. Target Container [8] is
a parallel programming model for video-based surveillance
applications, which allows domain experts to easily write a
large-scale surveillance applications. However, it does not
address the problem of handling dynamic workload from
large-scale camera network, which is one of the biggest
challenge in developing a situation awareness application
on a large-scale camera network.

There has been extensive research in the area of video
analytics and image recognition that are the enabling tech-
nologies for spatio-temporal analysis. For example, robust
real-time face detection algorithms [9], [10], [11] can extract
faces from video frames. There also exist many algorithms
that can accurately recognize an identity by comparing a face
image to known faces [12], [13], [14], [15], [16] or using
human gaits [17], [18]. BioID [19] uses multi-modal biomet-
ric information such as face, lip movement, and voice for
person identification in order to achieve higher accuracy than
using a single biometric data. While domain experts have
developed robust algorithms and techniques for analyzing
video and exploiting multi-modal biometric information for
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Figure 1. Application structure for spatio temporal analysis: This is
a general structure of spatio-temporal analysis on camera network that
answers target locations at given time using camera streams.

enhancing the quality of spatio-temporal analysis, applying
such techniques to a large-scale distributed camera network
consisting of 1000s of cameras is beyond the expertise of
such domain experts. Developing such a framework is the
focus of this paper.

The system we develop and implement is intended to A
domian expert of situation awareness application using such
advanced biometric

III. DESIGN SPACE EXPLORATION FOR LARGE-SCALE
SPATIO-TEMPORAL ANALYSIS

In this section, we discuss the common steps in spatio-
temporal analysis and identify potential bottlenecks for
large-scale spatio-temporal analysis. To solve the bottle-
necks, we analyze each step’s workload characteristic and
make a design choice for a system architecture consisting of
a smart camera network and elastic computing infrastructure
to enable spatio-temporal analysis for a large-scale camera
network.

A. Application Logic

In general, spatio-temporal analysis enables an application
to answer queries referring to locality- and time-dependent
information about different occupants. Common examples
of spatio-temporal queries include:

“Where was person A at time T?”
“When did person B leave zone X?”
“When and where did person A and B meet for
the last time?”
“Who moved from zone X to zone Y between time
T1 to T2?”

To answer these queries, an application has to maintain its
state which represents each occupant’s location at different
point of time. Figure 1 shows a general application pipeline
of spatio-temporal analysis involving four steps: Signature
detection, event generation, state update, and query handling.

Signature detection involves video analytics to detect
signatures such as faces. For example, when a person enters
a zone, a face detection algorithm reports the person’s face

by analyzing video frames from a camera observing the
zone. Note that multiple signatures can be reported from
a single frame. For each frame, the face detection algorithm
finds all image regions containing faces and passes them to
the event generation step.

Event generation involves generating a probabilistic esti-
mate about the identity of a detected signature. Depending
on the application, different algorithms can be used in this
step. For example, various face recognition algorithms [20]
or human gait recognition [17], [18] may be used to generate
an event, which includes similarities between the detected
signature and known signatures.

State update maintains an application-specific state based
on the observed events. The goal is to reflect in the global
state the information provided by an event, e.g., that Person
A was seen in Zone 2 with a probability of 0.75. The
state of an application represents its knowledge about each
occupant’s location at a given time. A new event causes an
update from one state to another, using the new information
about a specific occupant’s location. Different state update
algorithms can be used depending on the application’s
information needs. For example, Menon et al. [3] proposed
a simple state transition function that increases probabilities
of an occupant being in a zone proportionally to the similar-
ities between the detected signature and known signatures.
More complex algorithms may be used, such as one taking
adjacent zones and possible paths across zones into account
for better accuracy.

Query handling uses the current and past application states
to answer various spatio-temporal queries. Although it is an
essential step for situation awareness applications, we do
not consider query handling for the system design since it
is not in the critical path of real-time event processing. In
this work, we focus on signature detection, event generation
and state update. APIs and mechanisms for efficient query
handling is part of our future work.

B. Qualitative Analysis of the Workload for Large-scale
Spatio-temporal Analysis

In large-scale spatio-temporal analysis, each processing
step becomes a potential bottleneck due to their computation
and communication costs. First, large volume of input video
streams and computationally intensive video analytics makes
signature detection a bottleneck. For example, transmitting
thousands of video streams into a centralized server and
performing video analytics on the streams in real time
is not feasible. Second, event generation becomes another
bottleneck since potentially a large number of signatures
would be generated simultaneously, each of which involves
computationally intensive comparisons to a large set of
known signatures. Similarly, state update becomes a bot-
tleneck due to the large number of events generated where
each event causes updating a large application state.



Step Number of inputs Size of each input Parallelism
Signature detection static large Different parallel streams
Event generation dynamic small A detected signature is compared against a common database of known

signatures to generate an event. A number of such independent events
may be generated in parallel.

State update dynamic small Calculation of probability of occupants in different zones. Each event
affects the global state of the occupants in different zones. Need to
preserve the temporal order of the events in updating the global state.

Table I
WORKLOAD CHARACTERISTICS OF DIFFERENT STEPS IN SPATIO-TEMPORAL ANALYSIS

To solve the bottlenecks, it is necessary to distribute the
workload of large-scale spatio-temporal analysis among dis-
tributed computing nodes taking into account the workload
characteristics of each step. Table I shows the different work-
load characteristics for different steps of the spatio-temporal
analysis. Signature detection involves the processing of large
amounts of video data from the distributed cameras. The
number of input streams is a function of the actual physical
deployment of the camera network, which could evolve over
a long period of time but does not change in the short
run. Plus, signature detection on different video streams
can be performed in parallel since they are independent
computations. The size of the input data for event generation
is relatively small, namely, the size of a signature such as
a ”face”, which is much smaller than a raw video frame
needed for signature detection. However, the number of
events being generated in parallel is highly dynamic and
depends on the number of detected signatures from the
camera streams. For example, number of faces detected from
a camera stream in an airport during the day is typically
much larger than at night. Event generation for each detected
signature can be performed in parallel since each event
generation represents an independent processing step. The
input to the state update step is an event. Each event is a set
of values representing probabilistic estimates of a specific
occupant being in different zones, which is typically much
smaller than a raw image. The number of events is also
highly dynamic since each detected signature leads to the
generation of an event. Unlike the previous two steps, state
update requires sequential processing of events, preserving
the temporal order of events. This is because the processing
of each event can potentially change the relative probabilities
of all the occupants in all the zones. However, the state
update step offers ample opportunities for exploiting paral-
lelism for updating the application state. Details of how such
parallelism of different steps are exploited in our framework
will be discussed in the Section IV-A.

C. Design Choice for Large-scale Spatio-temporal Analysis

In this section, we make a design choice for a system
architecture, based on the workload characteristics discussed
in the previous section. To allow real-time processing of
signature detection on a large-scale camera network, it would
make sense to use embedded smart cameras. Each smart
camera processes its video stream in real time, sending

only signatures when detected. Using smart cameras would
significantly improve scalability of the system because large
volume of videos are locally processed and only interesting
signatures are reported to the system. For example, a stream
of 640x480 Motion JPEG video at 30 frames per second
requires 5 to 10 Mbps for streaming [21] while actual
signature (e.g., a JPEG image of a face) that is meaning-
ful for spatio-temporal analysis is only tens of killobytes.
Plus, streaming all videos at all time, including unchanging
videos, is wasteful since they do not contain any useful
information.

Unlike signature detection, event generation is not well
suited on embedded smart cameras since the computational
cost is highly dynamic; an event generation overhead in-
volves per-signature computing cost where number of signa-
tures in a video stream changes over time. Overprovisioning
resources for smart cameras is tricky since it is hard to
make an assumption for the number of signatures detected.
If such an assumption is violated, e.g., more signatures
are detected due to the changes in physical environment,
quality of service of the application will degrade due to
the insufficient computing resources for real-time event
generation. To overcome such a problem, elastic backend
computing infrastructures (a la cloud) are good candidates
because computing resources can be instantiated on demand.
Moreover, each event generation is an independent compu-
tation, which makes this processing step linearly scalable on
the elastic computing infrastructure.

Similar to signature comparison, state update also has
dynamic workload and therefore elastic backend computing
resources are attractive to reduce this bottleneck. Plus, state
update has a hidden communication cost due to the parti-
tioning and distribution of an application state over multiple
nodes. Typically such communication cost is much cheaper
in the elastic computing infrastructure than in the smart
camera network. More details about the communication cost
for state update will be discussed in Section IV-C.

IV. SYSTEM ARCHITECTURE

In this section, we discuss details of our destributed
framework, including programming model, automatic re-
source configuration, and system support allowing selective
heuristics for scalable state update. Figure 2 shows our
framework to support spatio-temporal analysis on large-scale
camera networks. The framework provides a domain specific
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Figure 2. Conceptual view of our framework: The framework consists
of programming model and resource manager. The programming model
helps domain experts in developing large-scale spatio-temporal analysis
applications, while the resource manager takes care of dynamic deployment
in the cloud.

//application-specific handlers
Signature[] detect_signature(VideoFrame);
EventElement[numOccupants] generate_event(

Signature);
StateElement[numZones] update_state(

OccupantID, StateElement[numZones]);

Figure 3. Handlers in our programming model: Three handlers are
provided by domain experts.

programming model allowing the domain expert to develop
the application as a set of code modules called handlers. The
handlers implement the steps of the spatio-temporal analysis
needed in the application; the handlers are automatically
invoked by the runtime system backing the programming
model. The framework includes a resource manager that au-
tomatically configures the distributed computing nodes in the
elastic computing infrastructure adjusting to the workload
dynamics to perform spatio-temporal analysis in real time.

A. Programming Model

Figure 3 shows the application-specific handlers to be
provided by the domain experts and registered with the
runtime system using our programming model. The domain
expert provides three handlers: There are three handlers in
our programming model: detect signature, generate event,
and update state. Once registered, each handler is invoked
automatically by the runtime system to work on the corre-
sponding input data. For example, detect signature handler
is invoked when a new frame is available while gener-
ate event is invoked when a new signature is reported.

Figure 4 shows the roles of the handlers, along with thier
input and output data. The role of the detect signature is to
analyze each camera image it receives to detect signatures. A
domain expert would code up a video analytics algorithm in
this handler that detects application-specific signatures such
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Figure 4. Roles of the handlers in the spatio-temporal analysis application.
The programming model invokes these handlers automatically upon the
availability of input data.

as faces and human gaits. The handler returns an array of
detected signatures where each signature is automatically
tagged with the current wall clock timestamp and zone ID of
the camera by the runtime system backing the programming
model. The runtime system also guarantees that the handler
is invoked sequentially for images from a single camera
stream. This allows the domain expert to develop a stateful
video analytics algorithm in the handler (such as adaptive
algorithms that distinguish background and foreground [22],
[23] to avoid detecting face-shaped background objects as
faces).

Once a signature is captured, the generate event handler
is invoked. This handler generates a single event upon
processing the detected signature. The runtime system auto-
matically tags the generated event with the timestamp and
zone ID derived from the input signature. Thus the program-
ming model automatically provides propagation of temporal
causality in the spatio-temporal analysis application.

An event is an array of an application-specific data,
where each element of the array is associated with a known
occupant ID. For example, generate event algorithm could
be a face recognition algorithm that compares the signa-
ture (a detected face) to known faces, generating an event
that contains the application-specific similarity metric of
the detected face to the known faces. Intuitively, a single
event generation seems to be parallelizable since different
comparisons between the detected signature and the known
signatures are independent of one another. However, an
event generation algorithm may have an arbitrary structure
including sequential code, which makes it tricky to auto-
matically parallelize the handler execution. For example,
the Eigenface [12] algorithm uses Principal Component
Analysis to transform a face image to an eigenface before
comparing different eigenfaces. In fact, PCA takes most of
the execution time in generating an event, which makes
it less attractive to parallelize just the comparison part of
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the algorithm. Other algorithms may want to normalize
similarities between the detected signature and the known
signatures [24], which involves a sequential process after the
comparisons are completed. For these reasons, and to keep
the programming effort of the domain expert simple, we do
not attempt to parallelize a single event generation. In other
words, generate event handler is a sequential algorithm.
However, the event generation for each detected signature
can be executed in parallel. Therefore, we exploit parallelism
at the level of multiple event generations, instead of different
comparisons in a single event generation.

For each generated event, the application state should be
updated to show the temporal evolution of occupants in dif-
ferent zones. Figure 4 shows how the update state handler
updates an application state from the current state to the
next state. The application state is a table (two-dimensional
array) of application-specific data indexed by occupants and
zones. In this table, each row is called an occupant state
since it gives the information of the whereabouts for a
specific occupant; each column is called a zone state since
it gives the information about the known occupants in a
specific zone. As should be evident, each occupant state
is independent since movement of different occupants are
independent. However, elements in a single occupant state
are coupled. For example, a high probability in a specific
zone would result in low probabilites in other zones. Based
on this observation, the update state handler is designed to
update a single occupant state upon invocation (Figure 4),
allowing our framework to exploit the inherent parallelism
of state update. For a single event, a set of update state
handlers can be invoked in parallel, on different occupant
states with different elements of the event (Figure 4). This
makes it possible to distribute the workload of state update
over distributed computing nodes.

Once handlers are registered, they are invoked by the
runtime system on each of the distributed nodes. Figure 5

shows the execution of the handlers on the distributed
nodes. The detect signature handler is invoked for each
video frame at the distributed smart cameras. If and when
a signature is returned by detect signature, it is delivered
to any available worker node in the cloud, called an event
worker. Different signatures detected from a single smart
camera can be delivered to different event workers in order
to achieve load balancing across distributed event workers.
At each event worker, generate event handler is invoked
with the input signature to generate an event. While events
are independently generated at different event workers, the
events are globally ordered based on their timestamps.
Respecting this global temporal order, different elements of
an event are delivered to specific distributed worker nodes
called state workers.

Each state worker maintains a specific occupant state;
it invokes the update state handler with the input event
element to update its specific occupant state. Note that the
programming model is flexible and allows a state worker to
be responsible for multiple occupant states. The important
point to note is that this structure allows parallel invocation
of update state on the different state workers. More details
about the implementation issues for achieving load balance
and global temporal order of events are discussed in the
Section V.

B. Automatic Resource Management

One of the key quality of service metric of importance
to the application in spatio-temporal analysis is the latency
from signature detection to state update. As we have already
observed, the workload in this application is highly dynamic.
The worst case rate of event generation is the product of the
frame rate of the smart cameras and the number of signatures
detected in each frame. As long as each smart camera has
enough processing power to do the signature detection in
real time keeping up with the frame rate of the camera,
the signature detection step of the application will not be
a problem in meeting the quality of service metric. The
computational resources needed to do the event generation
and consequently the state update in response to each event
changes dynamically with the rate of detection of signatures
by the smart cameras. While it is conceivable to over-
provision the computational infrastructure to meet the worst
case event generation rate, such a strategy will obviously
be wasteful of the computational resources. Therefore, it is
necessary to manage the computational resources to meet
the quality of service requirements without undue over-
provisioning of the resources.

To address this issue, our framework provides a resource
manager using the elastic computing infrastructure of the
cloud. The solution approach we have taken is to require
the domain expert to provide a minimal set of parameters
that can be used by the resource manager to automatically



tune the resource configuration to meet the QoS needs of
the application.

There are three steps involved in such an automatic
resource management. First, we perform off-line profiling
to generate configuration lookup tables that can be used
at runtime to decide the “right” configuration to use for
event generation and state update commensurate with the
dynamically changing workload and the QoS requirement.
for event generation and state update, which includes config-
urations for each level of workload and latency requirement.
Second, at application start-up, we make an assumption
about the initial workload and choose a configuration from
the configuration lookup table based on the assumed work-
load and user-provided latency requirement. Third, once
an application is up and running, the resource manager
adaptively changes the resource configuration in order to
satisfy the quality of service requirement with changing
workload.

Profiling: For the off-line profiling, the following items
are provided by a domain expert: a set of handlers, number
of zones and occupants in the system, maximum event rate,
and a dollar figure for the budget for the resources. Given
these inputs, the resource manager profiles the event gener-
ation and state update steps separately for all configurations
within the specified budget and the event rates within the
maximum event rate, to build the configuration lookup table.
The profiling involves three control variables: the types of
workers, the number of workers, and the event rate. The
event rate for state update is equal to the signature detection
rate, and both are emulated by a workload generator that
provides sample signatures and events at a specific rate.
For each profile run, the resource manager measures the
latencies for event generation and state update over time. The
profiler ignores configurations in which the latencies keep
increasing with time. Each valid configuration with stable
latencies is recorded in the configuration lookup table, where
configurations are indexed by the average latency and event
rate. This table is used by the resource manager at runtime,
to change a configuration for a specific level of workload
while satisfying a given latency requirement.

Initial Configuration: Once the profiling step is com-
pleted, we are ready to launch the spatio-temporal analysis
application. For the launch of the application we have to
make an assumption about the initial workload to configure
the resources. Since the latency is crucial for most applica-
tions in the domain, the initial configuration is picked based
on the maximum event rate. Given the maximum event rate,
the resource manager finds a configuration satisfying the
latency requirement from the configuration lookup table. If
multiple configurations are found, it chooses the one with
the minimum cost.

Runtime Adaptation: Once an application starts to
run, the resource manager adaptively changes the resource
configuration based on the current workload. To estimate
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uration when the estimated workload has been changed.

the current event rate, that is directly related to the level
of workload, the resource manager broadcasts a message to
all event workers for each period and gathers the number
of events generated since the last period. Based on the esti-
mated event rate, the resource manager decides whether to
increase or to decrease the number of workers if necessary.

Figure 6 shows the example scenario of such an adaptive
resource configuration. In the figure, there are two y axes,
one for event rate and another for resource provision. All
lines can be interpreted both in terms of event rate and
resource provision, since they are directly related. The solid
line means the actual workload and the coarse dashed line
shows the resources provisioned without overprovisioning,
while the fine dash line indicates the resources provisioned
with overprovisioning. At T0, the event rate is x and there are
enough resources to handle the incoming events in real time.
At T1, the workload is suddenly changed from event rate x
to y. However, the resource manager does not recognize the
workload change yet since it is in the middle of a sampling
period. From this point (T1), the quality of service starts
degrading, since more events are coming than that can be
handled in real time. At T2, the changed workload is reported
as event rate (x+y)

2 , since the event rate was x for the
half of the last period. Based on the estimated event rate,
the resource manager makes provision to more resources
to handle the increased workload. Although resources are
provisioned, there can be a delay until the resources become
available, depending on the elastic computing infrastructure
used. For example, computing instances in Amazon EC2
need to finish the boot up process of operating systems
before available. After the delay (T3), the provisioned re-
sources are available and therefore the higher event rate can
be handled. However, the resources are still not enough to
handle the actual workload, since the provision was based
on the misestimated event rate (x+y)

2 . At T4, the resource
manager finally estimates the actual event rate y, and makes
a provision to more resources to handle the workload. Again,
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Figure 7. Distributed state update: For each event, occupant states are
updated in parallel at distributed state workers by invoking update state
handler (Phase 1). Once all occupant states are updated, the elements of
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after a certain delay (T5), the provisioned resources become
available and the quality of service will gradually recover.

As shown in Figure 6, overprovisioning has an advantage
in terms of quality of service and an disadvantage in terms of
cost. When resources are overprovisioned, a certain amount
of resources are wasted when there is no workload change
(regions makred with ‘A’). However, when the system expe-
riences a sudden workload increase (at T1), overprovisioned
resources makes less quality of service degradation by using
the overprovisioned resources (regions marked with ‘B’).

There are three parameters that affect the quality of
service degradation during the resource adaptation: amount
of overprovisioning, resource provision delay, and work-
load sampling rate. Resource provision delay is a delay
from resource provisioning to the point when the resources
become available. The delay typically includes boot up
process of operating systems when using IaaS cloud such as
Amazon EC2. The resource provision delay is a parameter
specific to the elastic computing infrastructure, and therefore
it cannot be changed by our framework. The amount of
overprovisioning can be changed by a domain expert since
some applications are more critical than others, which makes
large amount of overprovisioning a reasonable choice. The
workload sampling rate is a parameter that is related to
frequency of workload changes. If the sampling period
is small, it becomes sensitive to small workload changes,
while larger sampling period will not affected by the small
workload changes.

C. Selective State Update for Scalability

Our framework employs distributed nodes for the different
steps of the processing involved in spatio-temporal analysis.
Of the three steps, there is no scalability issue with signature
detection which happens in the smart cameras. This is
based on the reasonable assumption that there is sufficient

computational power in the smart cameras to deal with the
frame rate of a single camera stream. Each individual event
generation step is independent of other event generation
steps that may be going on in parallel. Thus the event
generation step also does not pose any problem from the
point of view of scalability with the adaptive resource
management that ensures that there is sufficient number of
event workers to deal with the dynamic load. State update
step is the one step that requires careful orchestration to
ensure scalability. We explain this step in more detail in this
section.

Figure 7 shows the distributed state update using multiple
state workers. Each state worker is responsible for a specific
set of occupant states and zone states. For example, State
Worker 1 maintains the occupant state of O1 and the zone
state of Z1. The occupant states and zone states are essential
to answer spatio-temporal queries. The occupant state cap-
tured via the rows, allows the spatio-temporal framework to
answer a query such as “where is occupant O1?”, or ”what
is the the track of occupant O1 for the past 10 minutes?”.
On the other hand, the zone state captured via the columns
allows the framework to answer queries regarding a specific
zone such as ”who are presently in zone z1”. When a
new event is generated, different elements of the event are
delivered to different state workers regarding commensurate
with the occupant states that each is responsible for.

As shown in Figure 7, upon the arrival of an event
element, the update state handler for the specific occupant
state is invoked at a state worker. Once the occupant states
are updated, elements of occupant states are exchanged
among the state workers to update the zone states (phase
2). Note that phase 2 only involves data copy and not any
new computation. As shown in the figure, computational
workload of state update is distributed over state workers in
phase 1. However, each state worker has to communicate
to all other state workers to update the zone states in phase
2. We need more state workers to reduce the latency for
state update for each event. One possibility is to simply
stop with phase 1 since the state update is complete at this
point. However, this will make query processing inefficient
since zone-specific queries will need to contact all the state
workers. This is the reason for making each state worker
responsible for a set of occupants and a set of zones. Thus
the communication in phase 2 to update the zone states
in all the workers is a necessary evil for efficient query
processing. The more the state workers the more will be the
communication in phase 2. This has the undesirable effect of
increasing the latency for state update, an equally important
quality of service metric for such applications.

To achieve better scalability, applications may choose to
selectively update application states. For example, the event
generation algorithm by Menon et al. [3] gives only few non-
negligible comparison results when realistic face images are
used. If an event generation algorithm is highly accurate,



//API for selective state update
void set_occupant_mask(set<OccupantID>);
void set_zone_mask(set<ZoneID>);

Figure 8. API for selective update

i.e., giving high probability for the ground truth identity and
very small probability for other identities, the application
can effectively apply a threshold and provide only mean-
ingful event elements for updating specific occupant states.
Similarly, a state update algorithm can threshold negligible
changes of an occupant state, providing only meaningful
state elements for updating specific zone states.

To support such selective update heuristics, we provide
two API calls in our framework as shown in Figure 8.
The set occupant mask() can be used in the generate event
handler in order to mask out negligible event elements.
The masked event elements will not be transmitted to
state workers during phase 1 of the state update step. The
set zone mask() can be used in the update state handler to
mask negligible changes in an occupant state. The occupant
state elements that are masked will not be transmitted to
other state workers during phase 2 of the state update step.

The impact of such heuristics on system performance
depends on the selectivity of the heuristics, which may be
linked to the algorithmic accuracy of event generation and
state update. For example, a single message for an event
element is enough if an ideal event generation algorithm
generates a definite answer: true for the ground truth identity
and false for all other identities. Ideal state update algorithm
would need two messages at a maximum, one for the zone
from where an occupant has disappeared, and one for the
zone where the occupant has appeared. However, such ideal
cases are unlikely; most event generation and state update
algorithms provide probabilistic estimate about the identities
and locations. If the estimate is too vague (e.g., uniform
probabilities for all identities or all zones), more messages
are required since all elements are non-negligible. This
means that poor algorithms in terms of accuracy may result
in poor system performance as well. The accuracy of the
algorithm is in the hands of the domain expert and not
relevant to this study. We focus on the performance behavior
of our framework when applications can selectively update
different amount of application states.

V. IMPLEMENTATION

In this section, we discuss implementation details of our
framework, particularly focusing on resource reconfiguration
using Amazon EC2 and event ordering for state update. The
current version of our framework implementation uses Ama-
zon EC2 as an elastic computing infrastructure, although
the design of our framework is not limited to a particular
infrastructure.

A. Reconfiguration of Computing Resources in the Cloud

The resource manager in our framework dynamically adds
and removes computing resources at runtime. To use the on-
demand computing resources for event workers and state
workers, our framework prepares two Amazon Machine
Image (AMI), one for the event workers and one for the
state workers. AMI is a virtual machine image which is
used to create a virtual machine within the Amazon Elastic
Compute Cloud (EC2). AMI for each type of worker has
a startup process that starts a runtime system that registers
itself to the distributed framework, manages communication
to other workers and smart cameras, as well as invoking
handlers upon arrival of intput data.

Event Worker Pool: When new event workers are
created by the resource manager, they register themselves
to the event worker directory, a well known name server,
after the boot up process of operating system. Each smart
camera periodically requests for the updated list of event
workers from this nameserver. If new event workers are
returned from the event worker directory, the smart camera
initiates tcp connections to the new event workers. This
is to avoid the connection set up cost when a camera
chooses to send its detected signature to a specific event
worker. These tcp connections are kept alive until the event
workers terminate. When a signature is detected from a
smart camera, the signature is transmitted to an event worker
that is randomly picked from the set of active event workers.
When the resource manager decides to reduce the number of
event workers (as part of its dynamic resource management
strategy to save costs), the resource manager removes the
associated event workers from the event worker directory
and terminates the event workers. When the event workers
are terminated, the smart cameras are notified for the closed
tcp connections, which ensures that the cameras will not use
the terminated event workers.

State Worker Pool: When new state workers are created
by the resource manager and become functional after the
boot up process, they register themselves to the state worker
directory, a nameserver maintaining a list of active state
workers as well as a state lookup table that maps state
workers to particular occupant and zone states for a certain
time range. When a new state worker is registered, the state
worker directory adds the new state worker into the list of
active state workers. The new state worker is assigned a
portion of the occupant and zone states for future evolution
of the state table from this time onwards. This information
is entered into the state lookup table. Note that we do
not migrate past application states to the newly incarnated
state worker to minimize the reconfiguration cost. Once this
initialization steps are completed, the information regarding
the new state worker (and the occupant and zone states it is
responsible for) is broadcast by this state nameserver to all
other event and state workers. When some state workers are



  

t6 t4 t3 t2 t1 t0t5

Recovery BufferDelay Buffer

T
delay

T
recovery

disposeEvent
Dispatcher

update_state

Figure 9. Event buffering: to ensure time-ordered state update, events are
buffered in ordering buffer before being used by update handler. If an event
arrives out-of-order after the state update has been done, the rollback buffer
is used to recalculate the new application state.

to be terminated, the resource manager sends messages to
the closing state workers, so that they migrate their occupant
and zone states to other state workers that will survive after
the reconfiguration.

B. Event Ordering for State Update

In many application scenarios, state update should pre-
serve the temporal order of events. For example, suppose
occupant A entered to zone X followed by occupant B
entering zone Y. To preserve application correctness, it is
necessary to perform the state update for event A before
event B at every state worker to whom both the events are
communicated. However there is no way to guarantee such
ordering, given the vagaries of the network and the fact
that our middleware has no control on the scheduling of the
virtual computational resources allocated to an application
on the physical data center CPUs. To solve this problem,
we have developed a delay-and-recovery mechanism using
local event buffers at the state workers.

Figure 9 shows our approach using two buffers: a delay
buffer and a recovery buffer. We assume that all state workers
and smart cameras have synchronized wall clock times using
well known protocols such as Network Time Protocol [25].
There are two system parameters used in our approach:
Tdelay and Trecovery . Tdelay is the latency bound used
for delaying events before state update ; the hope is that
most events would be delivered to the state workers from
the event workers within Tdelay such that the chances of
state update happening out-of-temporal-order is fairly slim.
However, there could always be stragglers in a large-scale
distributed setting. To account for such stragglers, we buffer
the output of the state update for a period Trecovery. Our
system guarantees that the evolution of the state is accurate
so long as all stragglers arrive within the Trecovery time
period. We explain our solution in the following paragraphs.

State Update: When an event element arrives at a state
worker from an event worker, the timestamp of the event el-
ement is checked. If the event elements are delivered within
the Tdelay, i.e., the timestamp is in between the current time
and the current time minus Tdelay, the event elements are
buffered in a delay buffer respecting the correct temporal
order. The processing of an event element is delayed within
this buffer until the gap between its timestamp and the
current wall clock time is larger than Tdelay. After such
time, an event is dispatched by an event dispatcher, which
continously monitors the delay buffer for the event elements
that are ready to be dispatched. The event dispatcher invokes
a set of update state handlers with the event elements,
respecting the temporal order of event elements for the same
occupant state. Note that the event elements for different
occupant states can be processed in parallel regardless of
the temporal order. Once the event elements are processed,
they are placed into recovery buffer.

State Recovery: If a new event element arrives out
of temporal order (i.e., events with later timestamps have
already been processed), then the application state recovery
is triggered to recover the corresponding occupant state.
When the recovery procedure is triggered, event dispatcher
is stopped to avoid any side effect. To recover the occupant
state, update state handler is sequentially invoked with all
event elements for the occupant state from the point where
temporal order is broken1, including the newly arrived event
element. The cost of the recovery procedure depends on
the number of event elements already processed, which in
turn, is related to how much the estimated latency bound
(Tdelay) is violated. Once event elements become very old,
i.e., the gap between their timestamps and the current wall
clock time become larger than Trecovery, the event elements
are removed from the recovery buffer. This means that the
application state older than Trecovery cannot be recovered.

For spatio-temporal queries regarding time between
Tcurrent and Tcurrent − Trecovery where Tcurrent is the
current wall clock time, the answer to the same query may
change in the future, since application states may change due
to the recovery. Answers to the queries for the time older
than Tcurrent − Trecovery are consistent although they are
not necessarily accurate.

The worst case size of delay and recovery buffer in terms
of number of event elements can be calculated based on the
maximum event rate and the time length of two buffers:

Sizedelay = Tdelay ×Maxeventrate

Sizerecovery = (Trecovery − Tdelay)×Maxeventrate

1Recall that the temporal evolution of the state is preserved by the system
to answer time-series queries (”Give the track of person A from 10 AM to
5 PM”).



VI. EVALUATION

To evaluate our prototype framework with a complete ap-
plication, we used existing algorithms. For signature genera-
tion, we used Viola-Jones face detection algorithm [9] from
the OpenCV [26] library in the detect signature handler. The
face detection algorithm finds all faces from a single video
frame, and reports the bounding boxes of the faces.

For event generation, we use face recognition algorithms
from OpenCV. Currently there are three algorithms that are
used in the generate event handler: Eigenface, Fisherface,
and LBPH. Each algorithm has different computational com-
plexities and accuracies. However, we do not consider algo-
rithmic accuracies since we focus on solving performance
bottlenecks for large-scale spatio-temporal analysis. When
the algorithms are invoked, distances between a detected
signature and known signatures are calculated. Once the
distances are calculated, we transform the distance values
to normalized similarities (i.e., probabilities for each known
signature) based on the method developed by Bouchaffra et
al. [24]

After an event is generated, the event is used for state
update. Specifically, we implemented the state update algo-
rithm proposed by Menon et al. [27] within the update state
handler. In the algorithm, each state element represents a
probability of an occupant being in a specific zone. For
the given event element p(oi) tagged with an occupant ID
oi and zone ID zi, the new probability for an occupant,
ps(oi) for the zone zi is calculated as follows: ps(oi) =
p(oi) + xi ∗ p′s(oi), where xi = 1 − p(oi) and p′s(oi) is
the probability of the occupant in the previous state. For all
other zones, ps(oi) = xi ∗ p′s(oi). This ensures that the sum
of probabilities for an occupant across all zones in the new
state transition table equals 1.

We evaluate our framework with various resource con-
figurations using Amazon EC2 as an elastic computing
infrastructure. Following parameters specify different con-
figurations for our experiments:

Nocupant Number of known occupants in the system
Nzones Number of zones in the system
Nworkers Number of workers
Rateevent Event rate
Ratesignature Signature rate
Nodetype Instance type in Amazon EC2
Algorithm Algorithm name
The following sections discuss the various performance

aspects of large-scale spatio-temporal analysis using our
framework.

A. Workload for Spatio-temporal Analaysis
In this section, we evaluate the performance for each

step of spatio-temporal analysis using the design choice
made in the Section III. For signature detection, we used
a local desktop to mimic an embedded smart camera, while
Amazone EC2 is used as an elastic computing infrastructure.

Figure 10(a) shows the computing latency of face detec-
tion for each video frame on a local desktop. We used a
640 x 480 video captured from a surveillance camera, and
performed a Viola-Jones face detection algorithm. While
measuring the latency for each frame, we also recorded
the number of faces detected from each frame. As shown
in the figure, the latency for face detection varies mostly
from 80 to 120 milliseconds, regardless of the number of
faces detected. This is because the face detection algorithm
searches for faces in all regions of an image, and therfore
its cost depends on the size of raw video frame, rather than
the number of faces. Such a stable computational workload
of face detection algorithms makes it possible to perform
using local resources in an embedded smart camera.

Figure 10(b) shows the computing latency of a face
recognition algorithm, Eigenface [12], on differrent types of
computing resources in Amazon EC2. In this experiment,
different face images from LFW dataset [28] are used as
input signatures. As shown in the figure, each EC2 instance
type has different amount of system resources and therefore
the average latencies for face recognition are different de-
pending on the instance type. Plus, all instance types except
m3.xlarge show fluctuations in their computing latencies. We
think this is due to the virtual machines that share physical
CPU time, while the high-end instance type has a dedicated
physical CPU. However, all instance types show stable
average latencies in the long term, which allows predictive
resource provisioning based on the off-line profiling.

For state update, we evaluate the network latencies rather
than the computing latencies since computing latencies on
elastic computing resources are already presented in Fig-
ure 10(b). Figure 10(c) shows the cumulative distribution
function of network latency for the phase 2 of state update
for processing one event per second. In this experiment, we
measured network latency of each message transfer between
every pair of state workers, while no selective heuristics are
used; all occupant and zone states are updated and therefore
all state workers will transmit a message to each other for a
single event. For different setup, we used different number of
state workers but the number of occupants and zones remain
the same. This means the more the workers, the smaller the
message size for each pair of state workers since each state
worker is responsible for smaller number of occupant and
zone states. The size of each message and the total number of
message exchanges among state workers, (not counting local
communication within a single state worker) is as follows:

MsgSize =
Noccupants ×Nzones

(Nworkers)2

TotalTransfer = (Nworkers − 1)×Nworkers

As shown in Figure 10(c), a setup with more state workers
shows higher average network latency for each message,
with more variance in latencies. This is because the total
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Figure 10. Performance for each step in spatio-temporal analysis is measured: (a) Computing latency for signature generation: OpenCV face detection
algorithm is performed at a local desktop with Intel(R) Core(TM) i5-2520M CPU @ 2.50GHz, using a 640 x 480 video stream. (b) Computing
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number of messages increases exponentially with the num-
ber of state workers used, although the total amount of data
exchanged among state workers increases only slightly.

B. Scalability of Event Generation and State Update

To evaluate scalability of spatio-temporal analysis, we
performed stress test on event generation and state update.
Specifically, we increased event rate on a specific resource
configuration, until the latencies saturate; the system is
overloaded from that point. We define the maximum event
rate for the specific configuration as the event rate right
before the latency saturation.

Figure 11 shows the maximum event rate of event gen-
eration and state update. Event generation scales well since
events are generated on different workers, and putting more
event workers will linearly increase the maximum event rate.
However, state update without selective heuristics has a poor
scalability since the maximum event rate does not increase
with more workers.

To investigate the reason for the poor scalability, we
measured the detailed cost for state update. Figure 12 shows
the total latency, computation latency and network latencies
of state update for different number of state workers. The
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event rate (10 events per second) is carefully selected so that
all configurations are not overloaded for the event rate. As
the graph shows, computing latency decreases when more
worker nodes are used. However, the network latency starts
to increase from 16 worker nodes , which makes the total
latency also increase from 20 worker nodes. This shows
that the scalability of state update is bounded because the
network latency starts to dominate from a certain number of
state workers.

C. Effect of Selective State Update Heuristics

In large-scale spatio-temporal analysis, it is necessary to
use selective heuristics for state update since the naive state
update causes poor scalability. In this section, we show the
impact of the selective heuristics on system performance.

Figure 13 shows different average latencies of vari-
ous heuristics with different selectivity, while varying the
number of occupants in the system. The heuristics use
set occupant mask() in the generate event handler to mask
all event elements that are not selected. For example, select-
1 scheme will select only a single event element while all
other event elements are masked. As shown in the figure,
the naive state update selecting all event elements (select-
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all) scales poorly, and the system is overloaded when more
than 500 occupants are in the system. Other heuristics show
good scalability, where the average latency depends on the
number of occupants selected, and not on the total number
of occupants in the system.

D. Impact of Overprovisioning on the Quality of Service

While an application is running, our framework adapts to
the current workload by changing the resource configuration.
To handle an increased workload, the framework starts
provisioning more resources based on the estimated current
workload. After the resource provision delay that depends
on the underlying elastic computing infrastructure, resources
become available and are used to handle the increased
workload. Figure 14 shows the quality of service for event
generation during such an adaptation. In this controlled
experiment, we measured the worst case latency for each
time period (1 second) as a measure of quality of service.
Different overprovisioning polices are used with different
amount of overprovisioned resources. For example, OP-0
keeps the number of workers that are just enough to handle

the given workload, while OP-2 keeps two more workers
than necessary. For simplicity, we assume that the workload
change is immediately captured by the resource manager
in our framework. However, we assume that there is a 10
second delay for resource provisioning.

At the beginning of the experimental scenario, the event
rate is 30 events per second, and there are 4 event workers
handling the workload. The quality of service is around 150
milliseconds for all different policies, since the system is
not overloaded. After 10 seconds, the workload is suddenly
increased to 60 events per second, and the resource manager
starts additional resource provisioning immediately. As can
be seen from the figure, the more over-provisioning there is
the more graceful is the handling of the increased workload
during the time when the resource manager is trying to
allocate new resources. After 10 seconds, the newly provi-
sioned resources become available and the system has fully
recovered and adjusted to the increased workload.

VII. CONCLUSION

Distributed smart camera networks are being widely de-
ployed from building scale to city scale. Spatio-temporal
analysis is one of the key techniques, converting raw video
streams to knowledge of occupants’ whereabout to enable
a wide range of applications such as surveillance, trans-
portation, assisted living, and the like. However, there are
serious impediments to scaling such techniques to large-
scale camera networks, as it involves developing the right
programming middleware and resource management infras-
tructure for handling the dynamic workload in real time.

In this paper, we tackle the technical challenges for
developing a real-time spatio-temporal analysis application
on a large-scale camera network. We present a novel dis-
tributed framework that minimize the burden on the domain
experts by just requiring them to provide the domain-
specific handlers and quality of service parameters. Our
system provides automatic resource configuration through
profiling each step of the spatio-temporal analysis with
given application-specific handlers on the elastic computing
resources. We have implemented our system using Amazon
EC2 and have conducted detailed performance evaluations
showing the scalability of our framework.
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