
Integrated Development of Distributed Real-Time
Applications with Asynchronous Communication

Marc Schanne
FZI Forschungszentrum Informatik

Research Center for Information Technologies
Software Engineering (SE)
Haid-und-Neu-Str. 10-14

76131 Karlsruhe, Germany

schanne@fzi.de

ABSTRACT
This paper illustrates added values of an integrated devel-
opment methodology for distributed real-time applications.
Strategic focuses of the proposed methodology and middle-
ware framework are real-time and embedded applications.
The framework builds on top of real-time Java with an asyn-
chronous communication model for broadcast networks and
�eldbusses. Results of the EC research projects HIDOORS
(IST2001-32329) and HIJA (IST 2003-511718) are used to
establish a methodology which supports design, implemen-
tation, and analysis of distributed real-time applications.

Keywords
Distributed Real-Time, Integrated Development

1. INTRODUCTION
Distributed high-integrity systems pervade daily life and are
gaining importance. Their failure can cause loss of life, en-
vironmental harm, or signi�cant �nancial loss. The Event-
CannelNetwork (ECN [3]) has been developed to increase
dependability and reusability for these systems. ECN sup-
ports the development of distributed real-time applications
for embedded systems with real-time requirements.
Integrated development is supported by the ECN middle-
ware framework and the ECN development methodology.
The methodology allows the development of distributed sys-
tems with loosely coupling of networked system components
and services. The use of an object-oriented component de-
sign supports code reuse and the methodology integrates
declarative application design with code generation for im-
plementation and static analysis to reduce testing e�orts.
An asynchronous communication model with a direct pub-
lish/subscribe event service is used [17]. The ECN mid-
dleware allows the development of distributed applications
without a central administration unit or persistence mech-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
JTRES’07, September 26–28, 2007, Vienna, Austria.
Copyright 2007 ACM 978-59593-813-8/07/9 ...$5.00.

Figure 1: Components in the ECN middleware

anism. Components in each communication node are re-
sponsible to guarantee timely event reception and handling.
The ECN middleware utilizes a simple broadcast oriented
socket interface for byte array access to any underlying net-
work system1. For hard real-time use a network system like
AFDX2 [8] or TTP3 [10, 22] with deterministic timeliness
and bandwidth for bounding the delivery time of events is
necessary.
The ECN middleware framework with asynchronous event
communication and object-oriented component design for
distributed systems was developed in two research projects
founded by the European Commission. Both projects ad-
dressed the use of the Real-Time Speci�cation for Java (RTSJ)
with embedded systems. HIDOORS (�High Integrity Distri-
buted Object-Oriented Real-time Systems�, IST 2001-32329
[1]) introduced the ECN middleware for the interaction be-
tween distributed components, and HIJA (�High Integrity
Java Applications�, IST 2003-511718 [2]) extended this for
the use with both �exible and hard real-time requirements.
Experiences in application development in�uenced and es-

1Fieldbusses � common in embedded systems � are sup-
ported with the interface of an ISO/OSI transport layer.
2Avionics Full Duplex Switched Ethernet, real-time network
protocol standardized as ARINC664.
3Time Triggered Protocol, a class of time-triggered real-time
bussystems to meet high safety and fault tolerance require-
ments.

Figure 2: ECN methodology

tablished an ECN methodology, which supports design, im-
plementation, and analysis of distributed real-time applica-
tions.

2. METHODOLOGY FOR INTEGRATED
DEVELOPMENT

The ECN methodology uses the known structure of dis-
tributed applications with event communication. An inte-
grated development with application design, code generation
and static execution analysis is supported thereby. This sec-
tion introduces four major steps of the ECN methodology
for integrated development. Figure 2 shows an abstract view
of these steps. The following descriptions classify them in a
common software development process:

(1) Initial step of the development of the distributed appli-
cation is the declaration of nodes and event channels in
the design phase. The central concept in ECN middle-
ware based distributed applications is the use of event
channel objects. Figure 1 introduces the class of these
logical components in the center of other middleware
components. Events are grouped with event channels
and the developer has to declare communication char-
acteristics through XML descriptions for each event
channel at each node.
It is necessary to identify communication links and
sockets for the nodes in the distributed system. Com-
munication links (i.e., event channels) abstract from
physical network connections and protocols, whereas
sockets (i.e., physical network access with a transport

Figure 3: Communication attributes of example

event channel

Figure 4: XSLT code generation

layer) map this design to concrete hardware systems
[13]. In the design phase Januar [14] emphasizes the
need of support to control the development of dis-
tributed applications. His experience results in an
Eclipse Plug-in for application development. The use
of such an assistant is well advised to avoid error-prone
�copy-n-paste� from a sample or a former project.
The declaration of communication attributes (e.g., pe-
riod or deadline) predicates the following steps in the
development process. Figure 3 depicts these attributes
for an example event channel. Each node registered to
an event channel has to keep the deadline for process-
ing events of this channel. To meet the requirements
of several concurrent event channels the ECN middle-
ware separates event handling from event reception.
The reception is part of the middleware and values for
worst case execution time (WCET) have to be anal-
ysed for each receiving node � hardware and Java
runtime environment.

(2) The second step is automated. The implementation
phase is supported with generation of standard pro-
gram code for communication. A diagram of the XSL
transformation in the prototype implementation for
the HIDOORS project is presented in �gure 4. An
equivalent analysis model is generated here, too. The
ECN middleware uses a design pattern with a receiver
collective, activity manager, and queues [16]. Event
reception is separated from event handling, and the
middleware is responsible to provide real-time threads
with appropriate priorities to guarantee the processing
in necessary deadlines. These deadlines for concurrent
event handling of di�erent event channels are assigned
in a deadline monotonic [7] order.
Communication attributes for periodic or sporadic event
arrival are declared in design phase. The program gen-
erator uses these attributes to calculate thread param-
eters in each node. Section 3 explains this more de-
tailed.
The generation allows creating equivalent model de-
scriptions for a static analysis by nodes. It is nec-
essary to calculate WCET bounds for basic activities
(i.e., queue read/write and copy actions, as well as
any thread noti�cation action) in the ECN middle-
ware API for the used hardware and runtime system4.
Step four uses this description for a thread scheduling
analysis in each node. Event reception and handling
with real-time requirements become feasible.

4The use of tools for WCET analysis are recommended, but
if the calculation of upper bounds is not available, the soft-
ware developer has to provide estimations for these costs.

(3) Step three allows the developer to implement applica-
tion speci�c program code. Generated empty frames
for application logic with the ECN middleware have to
be �lled. The methodology guides the implementation
phase with components for event handling. Standard
factory methods or constructors are used for an easy
integration in generated program code of communica-
tion and real-time resource provision. With WCET
analysis upper bounds for these code fragments have
to be calculated. These bounds for application speci�c
event handling are also part of the analysis model for
the static analysis in step four.
Application logic beyond standard event handling can
be provided in new program components as well. The
analysis model has to be completed with additional
threads or shared resources.

(4) For hard real-time requirements the development pro-
cess is extended in step four of the methodology. The
use of static analysis methods to reduce testing e�orts
are more and more accepted in academic, industrial
and governmental organizations. It is possible to ana-
lyse the behaviour of dynamic systems before execu-
tion. HIJA identi�ed the need of �xed priority schedul-
ing with RTSJ for hard real-time systems [21]. Fixed
priorities allow the static analysis for all threads and
due to the results of WCET analysis a scheduling anal-
ysis with veri�cation of declared deadlines is possible.
As a result of the HIJA research project the schedula-
bility and real-time analysis suite MAST [4, 9] is used
for this analysis step.
While a schedulability analysis of the distributed sys-
tem by node can not verify end-to-end communica-
tion requirements, the methodology requires a hard-
ware and runtime system with communication net-
work for adequate real-time, bandwidth and capac-
ity guarantees. The ECN middleware uses these fea-
tures and the proposed methodology enables a simpli-
�ed development of distributed applications with asyn-
chronous event communication for broadcast networks
[18]. With static analysis the methodology provides an
alternative to extended runtime tests. Requirements
speci�cations like the DO-178B (Software Considerati-
ons in Airbone Systems and Equipment Certi�cation)
of the RTCA (�Radio Technical Commission for Aero-
nautics� [5]) in the U.S. are standard in the avionics
software development. With support for new analy-
sis methods it is possible to satisfy these requirements
with less expensive tests.

The ECN methodology is a result of the software devel-
opment experience in the research projects HIDOORS and
HIJA. It focuses on the integrated support of the developer.
The goal is a controlled and well guided process to improve
the development of safety critical distributed applications.
While asynchronous communication is not extensively used
in distributed systems with real-time requirements, this com-
munication mechanism �ts well to an object-oriented and
component based software design. The ECN middleware
provides a decentralized communication infrastructure and
XML �les describe the distributed system with real-time re-
quirements in each node. These descriptions are used to con-
�gure the middleware components for each node and with
hard real-time requirements the code generation of necessary

bu�er objects and real-time threads is possible.
Development by description is comparable to system devel-
opment with the Uni�ed Modeling Language (UML) and a
model driven software development process. UML2.0 sup-
ports additional pro�les and the �UML Pro�le for Schedula-
bility, Performance and Time� (UML-RT) enables the design
of object-oriented systems with real-time requirements [11].
In the HIDOORS project the XML description was used as
starting point for an implementation of the UML-RT with
the ECN middleware [19].
Even though the UML and �Model Driven Architecture�
(MDA) propose a straightforward model transformation ap-
proach. An integrated development with automated model
transformation is not available yet. Software development
with less complex domain speci�c languages (DSL) and do-
main speci�c modeling (DSM) become popular in recent
times. Industrial experiences of DSM consistently show it
to be 5-10 times faster than current practices, including cur-
rent UML-based implementations of MDA [6, 20]. The ECN
methodology and middleware follow a similar concept. The
focus on embedded real-time systems with broadcast net-
works allows the integrated development of distributed ap-
plications. The methodology supports application design,
implementation, and static analysis.

3. ASYNCHRONOUS MIDDLEWARE
FRAMEWORK

The ECN methodology builds on a middleware framework
supporting asynchronous event communication with syn-
chronous COTS components. Event channels declare neces-
sary deadlines for event handling after event arrival in the
nodes of the distributed system. The ECN middleware re-
quires event transmission with upper bounds for this guar-
antee. Figure 3 illustrates an example event channel decla-
ration with all necessary time frames to receive an event.
Start declares the �rst possible point in time where an event
can arrive. With period the time frame for periodical recur-
rence of events in this channel is given, and jitter describes
the possible inaccuracy of these arrivals. After an event ar-
rival at a node deadline declares the time until this node has
to receive and handle the event successfully.
The grey boxes represent time frames, where the receiving
node needs to be able to read arriving events from the input
queue of the physical network interface. The processor has
to provide processing capacity at any point of time in these
frames. A variance of jitter is possible here. In this time
frame the processor has to be ready to execute the receiver
thread. This is done by �xed priority scheduling and highest
priority for this thread. While no event is available, the
receiver thread blocks and other lower priority threads can
be executed. This mechanism allows the asynchronous event
handling with synchronous networks and network interfaces.
The �gure 5 shows a sequence diagram for the event recep-
tion and handling for the example event channel described
in �gure 3. The interactions between threads of the ECN
middleware are presented. The used thread schedule with
changes in this schedule is described for the following steps.

(1) Arrival of an event in the input queue of the network
interface.

(2) Activation of the blocked receiver thread.

(3) Noti�cation of the activity manager thread.

Figure 5: Sequence diagram for successful event re-

ception and handling

(4) Receive the event: Copy attribute values in bu�er ob-
ject of the queuing system.

(5) Waiting (blocking read) of the receiver thread until
next event arrival.

(6) Activation of the activity manager thread.

(7) Dispatching of the received event.

(8) Copy event (attribute values) to the input queue of the
event handling activity thread.

(9) Recalculation of the activity thread deadline depend-
ing on a reception time stamp.

(10) Change to a new thread schedule.

(11) Activation of the activity thread and handling of the
event.

(12) Successful reception and handling of the event in the
deadline given with the event channel.

The ECN middleware controls the reception of events. Each
node has to provide processing capacity and threads to re-
ceive and handle asynchronous arriving events in their dead-
lines. The design of the distributed application declares time
frames with bound jitters for all event arrivals. Real-time
requirements are declared with deadlines for successful han-
dling.
After arrival of a data package in the network interface the
middleware has to decode these data. A receiver thread,
responsible for this network socket, reads the input queue of
the network interface and creates a Java object representing
the event for further processing.
The activity manager thread is responsible for dispatching
pending event objects. Because the thread has a lower pri-
ority than any receiver thread (i.e., highest available prior-
ity minus 1), the execution is postponed until all receiver
threads are in a blocked state again.
All events are saved in a priority-sorted queuing system for
further handling. Existing bu�er objects are reused to sup-
port hard real-time requirements, thus no object creation is
supported in the mission phase of an application. Receiver
and activity manager threads copy attributes to members in
reusable Java objects.
Receiver threads5 work with highest priority to guarantee
the reception of all available events. Each receiving node
has a thread schedule depending on event channel commu-
nication attributes (periodic or aperiodic with a minimum
inter-arrival time) that allows the reception of all interesting
events. When all receivers are in blocked state, the manage-
ment and event handling has to be done. Static analysis for
each node can verify, that no processor is in danger to be
overloaded. If a node processor requires too much process-
ing capacity to receive and handle required event channels,
a system redesign is necessary.
The activity manager thread reads pending events from the
queuing system, identi�es their types and required handler
actions. It copies the event attributes into the input bu�er
object for this handler logic and prepares an activity thread
with appropriate priority for execution. Events with short
deadlines are handled by threads with high priorities [16].
This deadline monotonic approach with a �xed priority sched-
uler allows meeting all deadlines. The use of �xed priorities
also allows a static analysis of the thread schedule [21] in
each communication node.
After event arrival the receiver thread copied event data into
a reused bu�er object of the queuing system. The point in
time of the reception was saved as a time stamp. For asyn-
chronous event handling in real-time restrictions this infor-
mation is used for recalculation the deadline of the activity
thread. After reception the ECN middleware guarantees
handling bound by a declared deadline of the event channel.
This timing requirement is part of the channel description.
The recalculation of thread attributes like deadline changes
are always conservative (i.e., the recalculation with the time
stamp shortens the deadline), the schedule of the threads
needs no new online scheduling/feasibility analysis. The
runtime system is only responsible to control the compli-
ance of these thread parameters and for example deadline
missed handlers get �red. In �exible real-time6 systems this
feature is used to react on exceptional states.

5One thread for each used network system or �eldbus.
6In the HIJA terminology this is used for systems with soft
or mixed (hard and soft) real-time requirements.

After assigning events to their handler activity threads, the
activity manager thread's work is done. Another thread
with the largest available priority is activated. In the ex-
ample sequence the activity thread to handle the received
event is executed and the event handling is done.
For the example event channel the event handling has �n-
ished within the declared deadline. For systems with hard
real-time requirements the ECN methodology supports a
static worst case analysis of these requirements (i.e., dead-
lines). An analysis model representing real-time threads and
shared resources of the ECN middleware is generated, and
the developer extends this model for schedulability analysis
with application speci�c logic.
The ECN middleware presented in the previous description
and the sequence diagram in �gure 5 provides a sound ar-
chitecture design pattern to support the proposed method-
ology. The ECN middleware implements this pattern with
separation of reception and handling, and distributed sys-
tems are composed (i.e., declared) with applications speci�c
logic and generated standard code for communication.
Because asynchronous event communication with synchronous
network interfaces and standard communication hardware
requires concurrent processing of events, a multithreaded
runtime systems is necessary. The Java platform for safety
critical embedded systems (JSR302 [15]) or developments
within the EC research project HIJA are reasonable.

4. CONCLUSIONS
The use of asynchronous event communication with real-
time and embedded systems provides several bene�ts for
distributed applications [17]. Decoupling of senders and re-
ceivers in the proposed publish/subscribe system allows in-
dependent development and reuse of components. The com-
position by declarative programming supports scalable and
robust application design. In embedded systems with broad-
cast oriented communication networks an e�cient use of
bandwidth and processing capacities over distributed nodes
is possible.
The development of distributed applications is improved
with a declarative design method, the implementation by
generation of standard communication and real-time man-
agement code, as well as created analysis models equivalent
to program code. The ECN middleware for real-time Java in
embedded systems implements a design pattern to support
concurrent and timely handling of several periodic or spo-
radic events7. Real-time requirements for event handling are
declared for each channel in a system and the compliance of
the implementation (i.e., software and hardware) with these
requirements is veri�ed for each node of the application.
This use of a domain related abstraction for event chan-
nels proposes a standard for the description of distributed
embedded real-time systems with asynchronous event com-
munication, and an integrated software development is sup-
ported by the ECN methodology.

5. ACKNOWLEDGMENTS
This work has been supported by the European Commission
with funding for the research projects HIDOORS (IST2001-
32329) and HIJA (IST 2003-511718). The author would like
to thank colleagues participating in these projects for their

7Result of the HIJA research project are two implementa-
tions for hard and �exible real-time requirements.

help and comments on his work. Thanks also to the FZI
and the University Karlsruhe for the possibility to work on
a PhD with autonomous research on an interesting topic.

6. REFERENCES
[1] HIDOORS. High Integrity Distributed

Object-Oriented Realtime Systems. Project website.
http://www.hidoors.org, 2002.

[2] HIJA. High Integrity Java Applications. Project
website. http://www.hija.info, 2004.

[3] ECN. Event Channel Network. Project website.
http://www.eventchannelnetwork.org, 2006.

[4] MAST. Modeling and Analysis Suite for Real-Time
Applications. Project website. http://mast.unican.es,
September 2005.

[5] RTCA. Radio Technical Commission for Aeronautics.
Website. http://www.rtca.org, 2006.

[6] DSM Forum. What is Domain-Speci�c Modeling?
http://www.dsmforum.org/why.html, December 2006.

[7] Neil C. Audsley, Alan Burns, M. F. Richardson, and
Andy J. Wellings. Hard Real-Time Scheduling: The
Deadline-Monotonic Approach. In Proceedings of the
8th IEEE Workshop on Real-Time Operating Systems,
1991.

[8] AEEC Airlines Electronic Engineering Committee.
Circulation Prior to Adoption Consideration Draft 4
of ARINC Project Paper 664: Aircraft Data Network,
Part 7 - Avionics Full Duplex Switched Ethernet
(AFDX) Network. ARINC Aeronautical Radio, Inc.,
2551 Riva Road, Annapolis, Maryland 21401-7465
USA, February 2005.

[9] Jose Maria Drake, Michael Gonzalez Harbour,
Jose Javier Gutierrez, Patricia Lopez Martinez,
Julio Luis Medina, and Jose Carlos Palencia.
Modeling and Analysis Suite for Real Time
Applications (MAST 1.3.6). Description of the MAST
Model. Universidad de Cantabria, June 2004.

[10] Wilfried Elmenreich and Richard Ipp. Introduction to
TTP/C and TTP/A. Technical report, Vienna
University of Technology and TTTech
ComputerTechnik, 2003.

[11] Susanne Graf, Ileana Ober, and Iulian Ober. A
real-time pro�le for UML. Software Tools for
Technology Transfer (STTT) Journal, November 2004.

[12] HIJA project partners. D7.4b - HIJA Methodology
Handbook. Technical Report 1.4, The Open Group,
September 2006.

[13] Dr. James J. Hunt, editor. The HIDOORS
Methodology. Using Java in Realtime and Embedded
Systems. aicas GmbH, Karlsruhe, Germany, 2004.

[14] Mohammad Athar Januar. Bewertung von
Programmier- und Entwicklungsassistenten am
Beispiel eines Eclipse Plug-Ins für den Entwurf
verteilter Systeme mit der EventChannelNetwork-
Kommunikationsinfrastruktur, 2006. Available over
ECN project website [3].

[15] C. Douglass Locke. JSR 302: Safety Critical Java
Technology. JSR Website
http://jcp.org/en/jsr/detail?id=302, July 2006.

[16] Marc Schanne. Real-Time Communication with a
Receiver Collective, Activity Manager, and Queues. In

Proceedings of IADIS International Conference
Applied Computing 2005, 2005.

[17] Marc Schanne. Real-Time Communication with Direct
Publish/Subscribe Event Service. In Internal report
3rd Workshop on Java Technologies for Real-time and
Embedded Systems (JTRES) OOPSLA 2005, October
2005.

[18] Marc Schanne. Methodik zur durchgängigen
Entwicklung verteilter Systeme mit Echtzeitbeding-
ungen für Rundrufnetze. PhD thesis, University
Karlsruhe, Faculty of Informatics, Institute for
Program Structures and Data Organization (IPD),
2007. To appear.

[19] Marc Schanne and James J. Hunt. Remote Event
Service Design. Technical report, FZI Forschungs-
zentrum Informatik, 2004. Deliverable D4.2 describing
the HIDOORS event channel network.

[20] Juha-Pekka Tolvanen. MetaEdit+: domain-speci�c
modeling for full code generation demonstrated
[GPCE]. In Proceedings of the 19th Conference on
Object Oriented Programming Systems Languages and
Applications, pages 39�40. ACM press, 2004.

[21] Andy J. Wellings et al. D1.2a. Technical report,
University of York (on behalf of the HIJA project),
2005. HIJA deliverable D1.2a describing the analysis
of requirements for high-integrity systems.

[22] TTA Group. TTP. Time-Triggered Protocol TTP/C.
High-Level Speci�cation Document. TTA Group, July
2002.

