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Abstract

Recent works in action recognition have begun to treat
actions as space-time volumes. This allows actions to be
converted into 3-D shapes, thus converting the problem into
that of volumetric matching. However, the special nature of
the temporal dimension and the lack of intuitive volumet-
ric features makes the problem both challenging and in-
teresting. In a data-driven and bottom-up approach, we
propose a dictionary of mid-level features called Space-
Time Shapelets." This dictionary tries to characterize the
space of local space-time shapes, or equivalently local mo-
tion patterns formed by the actions. Representing an action
as a bag of these space-time patterns allows us to reduce
the combinatorial space of these volumes, become robust
to partial occlusions and errors in extracting spatial sup-
port. The proposed method is computationally efficient and
achieves competitive results on a standard dataset [5].

1. Introduction

Recognizing actions and activities recorded on a video
sequence leads us closer to the ultimate goal of com-
pletely understanding the world captured or sampled in that
space-time interval. At the same time, these are signif-
icant problems and stand-alone applications in their own
right, holding potential solutions for improved and uni-
versal human-computer interaction, automated health and
behaviour monitoring of the sick and elderly, and detec-
tion of suspicious activities in surveillance footage. Recent
works [5, 11, 22, 24] have demonstrated success by work-
ing with the space-time volumes formed by the actions,
and treating action recognition as volumetric matching. Of
course, as Neumann et al. [15] and Boyer et al. [23] dis-
cuss, actions really reside in a four-dimensional space-time
space, while we have access to a three-dimensional volume
as a result of the projection being performed in the camera.

IFor a discussion on the historical use and interpretations of the term
shapelet, please see Sabzmeydani and Mori [19].
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The existence of resultant self-occlusions and the special
nature of one of the dimensions is precisely what makes
this problem challenging. Blank er al. [5] extend an exist-
ing 2-D shape representation technique [9] to 3-D space-
time volumes, and then perform nearest neighbour clas-
sification on the feature vectors extracted from these vol-
umes. However, this feature extraction involves quantify-
ing and characterizing arbitrary qualities like “stick-ness”,
“plate-ness” and “ball-ness” of local structures. Bobick and
Davis [6] propose an interesting way to combine spatial and
motion information with Motion History Images (MHI) and
Temporal Templates, but still work with images not vol-
umes. Weinland et al. [23] extend their work to volumes
but require multiple calibrated cameras. Our work will fit
somewhere in the middle ground — we work with space-
time volumes, but introduce a dictionary of mid-level lo-
cal space-time shape/motion descriptors that we call Space-
Time Shapelets, which not only scales down the combina-
torial space of these volumes, but also makes us robust to
partial occlusions and errors in extracting spatio-temporal
support.

For the sake of completeness, we would like to refer
to another class of approaches that extend the 2-D interest
point feature matching paradigm [1, 20] to spatio-temporal
interest points and descriptors [21, 13, 8]. However, there
are two significant advantages of our approach: i) sur-
veys [20, 14] have shown the non-repeatability of interest
points causes major problems for any matching algorithm,?
and in video slow moving actions or low quality sequences
often result in very few or no interest points being found at
all,’ and ii) by working purely with the shape of the vol-
ume formed by the action, we are able to focus on the ques-
tion: “What characterizes this action?”, and to a large ex-
tent ignore the issue of “Who performed this action?”. As
a result, our method is more robust to lighting conditions,

2For an interesting discussion on the use of interest points vs. dense
sampling please see Nowak et al. [16]

3Ke et al. [10] show examples of two very simple and commonly oc-
curring motions that fail to produce any interest points using the software
from Laptev and Lindeberg [12]



(a) frame no. 1 (b) frame no. 5 (c) frame no. 10

b ] ]

+ ]

(d) frame no. 15 (e) frame no. 20 (f) frame no. 84

Figure 1: Video Sequence showing a person walking
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Figure 2: Key Poses: Top row shows the five cluster centers
(means), the bottom row shows actual examples closest to
cluster centers (pseudo-medians).

clothing worn by the person performing the action, etc. Of
course, there exists a trade-off, because this robustness is
achieved at the expense of an assumption that we have ac-
cess to the space-time volume create by an action; but as
Blank et al. [5] discuss, this is a reasonable assumption to
make in many scenarios like surveillance where we have
access to a “background” appearance model, and adaptive
background subtraction is effective.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces the idea of Space-Time Shapelets and their
application in our overall algorithm; Section 3 describes our
experimental setup and results; Section 4 concludes with
discussions, and future directions.

2. Space-Time Shapelets

Cognitive studies [4, 7] have shown the wealth of in-
formation that humans are able to extract from silhouettes
alone: recognizing objects, labeling parts, comparing simi-
larities to other shapes. This motivates the central question
of this paper: what could we do with a video of silhouettes?
Figure 1 shows a few frames from a video sequence of a per-
son walking. If we were to define a shape as a bias-variance
normalized version of these masks, then figure 2 shows the
key articulations (using k-means clustering) achieved while
performing this action. As useful as this formulation is,
there are drawbacks we cannot hope to cope with: 1) the
space of these global shapes and key articulations is too

large, and ii) there is very little generalization across ac-
tions, so we would have to recompute these key-positions
every time that an action is added to the dataset. Motivated
by the success of local shape descriptors [2, 3], we would
prefer to describe and characterize local space-time struc-
tures rather than global shapes. Thus, in a sense, we wish to
extract key articulations of local space-time shapes around
all points in the video volume. In the same bottom-up data-
driven manner as before, we extract all possible MxNxF'
volumes from the space-time volumes formed by our action
dataset, and cluster them to extract Space-Time Shapelets.

Figure 3 shows the extracted Shape-Time Shapelets as 3-
D volumes. In order to avoid viewing difficulties due to par-
tial occupation of voxels by cluster centers, and ambiguities
caused by shading effects, we have chosen not to display the
cluster centers, however, as the following sections describe
we work solely with the cluster centers (which are what we
refer to by shapelets). There is nothing special about the
data-points closest (in euclidean distance sense) to the clus-
ter centers (which we term, pseudo-medians), and they are
shown in the figure purely for illustrative purposes, to get
an idea of what these shapelets might look like, if quan-
tized. These are the local 3-D parts, overlapping chunks of
which put together, make up our action volumes. However,
this is just one way to interpret these Space-Time Shapelets.
Another, more intuitive way is to interpret them as local
edge-structures moving across our field of view over time.
Figure 4 shows two of these pseudo-medians, only this time,
they are accompanied by x-y time slices that make up these
volumes. These time slices allow us to visualize the local
edge motions captured by these 3-D volumes. Imagine fo-
cusing your attention on a small region in 2-D, or equiva-
lently peeping through a window while an action is being
performed on the other side. What shapes would one see
passing through the field of view during a given time inter-
val? And if we could characterize such structures, would we
then be able to recognize the actions being performed on the
other side of this “perception wall”? Even if we assume ac-
cess to multiple such windows (as our algorithm does), this
still seems a challenging task — but one that our proposed
method accomplishes with a competitive ability.



Figure 3: Space-Time Shapelets: Shown are the data-points closest to a few cluster centers (pseudo-medians), created from
7x7x7 volumes. The indicated temporal dimension makes it easier to visualize motion.

2.1. Feature Vectors

Once a dictionary of these Space-Time Shapelets has
been established, we represent every voxel in the action vol-
ume by the following feature vector, which represents a dis-
tribution over the shapelets:

fo(x)=[p1 D2 Pn ]T7 (1)
where
p; = Pr(Vol(x) belongs to shapelet i) , (2a)
= Pr(Sh; | Vol(x)), (2b)
o Pr(Vol(x) | Sh;) Pr(Sh;). (2c)

The first probability is modeled using an exponential kernel:
Pr (Vol(x) | Sh;) o< exp{—d(Vol(x), Sh;)},  (3)

where, d is the euclidean distance operator, and the marginal
is modeled using popularity at the end of the clustering pro-
cess:

# members in cluster i

P i) = . 4
r(Shi) # data points @

Here, Vol(x) is the MxNxF volume centered at the point
x, flattened into a column vector. It should be noted that D
indexes the dictionary being worked with.

2.2. Action Representation and Classification

Following a bag-of-words model, we represent an ac-
tion by a histogram over a dictionary of these space-time
shapelets.

hp(V)=1/n Y fp(x) (5)

voxels

In practice, however, in order to reduce computation, the
above summation is run only over those voxels that con-
tain at least one foreground and one background voxel
in their neighbourhoods, defined by Vol(x). Finally, we
use nearest-neighbour and logistic-regression classifiers for
classification.

3. Experiments and Results

We test our approach on a recently introduced dataset
for action recognition: the Weizmann dataset by Blank
et al. [5], which consists of 81 video sequences (180 X
144,25 fps) of nine actions (“run”, “walk”, “jumping-
jack”, “jumping-forward”, “jumping-in-place”, “galloping-
sidways”, “two-handed-wave”, “one-handed-wave”), per-
formed by nine people. In order to create a dictionary of
Space-Time Shapelets, we randomly chose half of these
videos (while ensuring a uniform sample from each action),
and clustered all possible 7x7x7 volumes that contained at
least one foreground and background voxel. This collection
of more than 100,000 343-dimensional feature vectors were

clustered using a publicly available efficient C implemen-
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Figure 4: Unrolling volumes: Each row depicts a shapelet as a volume, and then x-y time slices, or frames that make up these
volumes. In the frames, white represents object pixels, black represents background, and gray pixels exist for illustration

purposes to provide contrast.

Figure 5: Weizmann Dataset: The rows represent different
actions, while the columns show different people perform-
ing those actions

tation of k-means/x-means by Pelleg and Moore [17]. The
number of cluster centers was automatically chosen using
the x-means algorithm [18] maximizing a Bayesian Infor-
mation Criterion (BIC) criterion within a range (10 - 50).

3.1. Sequence Classification

For our first experiment, we converted each action se-
quence into a histogram (as described by equation 5) which
is then treated as feature vector for this volume. We then
performed leave-one-out-cross-validation (LOOCV) to get
the classification rate. Using the 1-Nearest Neighbour clas-
sifier, we achieved an accuracy of 82.7%. Figure 6a shows
the resulting confusion matrix. We can see that the one-
handed-wave and the two-handed-wave are often confused

with each other; this is unsurprising considering that both
hands in the wave produce similar motion patterns, and
our bag-of-features representation is unable to represent the
spatial structure, which is precisely the difference between
these two actions. However, by using a logistic regres-
sion classifier, we were able to increase this accuracy to
91.4%. To this purpose, we trained nine one-vs-rest bi-
nary logistic units to model the probability of a class given
the feature vector. At test time, we assigned a feature vec-
tor the label of the most confident of the nine models (i.e.
arg max Pr (Class | feature)). The confusion matrix, using
logistic regression is shown in figure 6b. We note that this
classifier is able to discriminate between wavel and wave2
better, and intuitively, we can understand that this is because
the weights of the logistic classifier tune to ignore com-
monly observed motion patterns (and thus similarly popu-
lous bins), and focus on the discriminative motion patterns.

3.2. Action Localization

If the video sequences do not contain periodic actions,
we can no longer classify entire volumes, and need to per-
form temporal localization of the action. In order to stay
comparable to Blank ez al. [5], we use a sliding window
in time, 10 frames wide, with an overlap of 5 frames, be-
tween successive windows. In a similar fashion as the se-
quence classification, we represented every space-time win-
dowed volume as a histogram over our dictionary of Space-
Time Shapelets, and classified these histograms as one of
the classes. We again used leave-one-out-cross-validation
(LOOCYV) to compute a final accuracy, however, this time
all windows from the same sequences were also removed
and the classifiers were trained on the remaining data. It
should be noted that, since we do not apply any tempo-
ral smoothness, different subparts of a sequence could in
fact be labeled as different actions. This, combined with
the fact that we now have more instances to label, would
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Figure 6: Sequence Classification results using two differ-
ent classifiers. We can see improved discriminatory power
between one-handed-wave (wavel) and two-handed-wave
(wave2).

lead us to expect a worse performance than the sequence
classification experiment. However, we found that the per-
formance was actually comparable: the mean accuracy us-
ing 1-nearest neighbour was 84.1%, compared to 82.7% in
the sequence classification experiment. One possible expla-
nation might be that we now have more data, and an ac-
tion window only has to be similar to another action win-
dow (and not the entire sequence) to be labeled that class.
Figure 7a shows the confusion matrix achieved by using 1-
nearest neighbour classifier. As in the previous experiment,
the dominant cause of errors is wavel-wave2 confusion,
which we address by using the logistic regression classi-
fier. The mean accuracy with this classifier was 88.2% , and
figure 7b shows the confusion matrix.

3.3. Robustness Experiment

In this experiment, we test our approach to establish
robustness to viewpoint changes, partial occlusion, back-
ground clutter, and other errors cause by more realistic
sequences and actions. Figure 8 shows a few examples
sequences from the “robust sequences” in the Weizmann
dataset [S]. These sequences consist of the walk action be-
ing perfomed under different conditions like: “walking in a
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skirt”, “carrying a briefcase”, “knees up”, “limping walk”,
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“occluded feet”, “swinging bag”, “sleepwalking”, “walking
with a dog”, “walking past a pole”, and nine walk sequences
recorded from different viewpoints (0°, 9°, 18°, 27°, 36°,
45°, 54°, 72°, 81°) with respect to the image plane. Out
of these 18 videos, our algorithm was able to label to all
but the 72° and 81° viewpoint sequences correctly, which
contain significant scale changes. These results are compa-
rable to those reported by Blank er al. [5], who classify all

sequences correctly.
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Figure 7: Action Localization results using two different
classifiers.

4. Conclusions

We looked at the problem of action recognition as that of
spatio-temporal volumetric matching. In order to describe
these volumes in a discriminative, yet memory and time ef-
ficient manner, we represented these volumes as a bag-of-
local-parts. Instead of manually defining these parts in a
supervised manner, we decided to follow a data-driven ap-
proach by introducing Space-Time Shapelets which give us
a dictionary of these local spatio-temporal parts, however,
we achieved this dictionary in an unsupervised manner. We
showed two different interpretations of these Space-Time
Shapelets: i.e. the volumetric and local-motion interpre-
tations. Bulk of the computation in our work is done at
training time (e.g. extraction of local volume vectors over
training data, clustering to create a Shapelet dictionary). At
test time, the feature extraction for a (180 x 144 x 50) pre-
segmented sequence takes 3 - 6 seconds (which is an order
of magnitude faster than the Poisson equation solution used
by Blank et al. [5]) using our unoptimized Matlab® code on
a 3.4 GHz Intel® Xeon™ machine. Finally, we evaluated
this simple and efficient algorithm a standard action recog-
nition dataset. Although our results are lower than those
reported by Blank et al. [5], the deficiency can be primar-
ily attributed to confusion between actions such as wavel
and wave2, where the local (shapelet) information is simi-
lar and where histogram-based methods are unable to rep-
resent global properties of the action. Thus, our results are
representative of the trade-off between global and local rep-
resentations: global representations tend to be richer, but
local descriptors are more robust to occlusions and clutter.
The Weizmann-robust-dataset gives preliminary indications
that this is the case, and we plan to explore the issue in fu-
ture work using more challenging datasets with significantly
more occlusion.
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