
Undefined 0 (0) 1 1
IOS Press

An Infrastructure for Probabilistic Reasoning
with Web Ontologies
Jakob Huber a Mathias Niepert b Jan Noessner c Christian Meilicke a Heiner Stuckenschmidt a

a Data- and Web Science Group, University of Mannheim
b Department of Computer Science, University of Washington
c Nuance Communications, Sunnyvale, USA

Abstract. We present an infrastructure for probabilistic reasoning with ontologies that is based on our Markov logic engine
ROCKIT. Markov logic is a template language that combines first-order logic with log-linear graphical models. We show how to
translate OWL-EL as well as RDF schema to Markov logic and how to use ROCKIT for applying MAP inference on the given set
of formulas. The resulting system is an infrastructure for log linear logics that can be used for probabilistic reasoning with both
extended OWL-EL and RDF schema. We describe our system and illustrate its benefits by presenting two application scenarios.
These scenarios are ontology matching, and knowledge base verification, with a special focus on temporal reasoning. Our results
indicate that our system, which is based on a well-founded probabilistic semantics, is capable of solving relevant problems as
good as or better than state of the art systems that have specifically been designed for the respective problem.

Keywords: Ontologies, Reasoning, Markov Logic, RDF Schema, Log-linear Logics

1. Motivation

Originally, the idea of the Semantic Web was built
on formal ontologies and logical reasoning leading to
the development of description logic based ontology
languages, in particular the Web Ontology Language
OWL. The advantages of logical reasoning on the web
has been argued by many researchers in terms of veri-
fying information models and extending query results
to implicit information. While in particular, the devel-
opment of light-weight ontology languages and the use
of database techniques for ontology-based data access
has given another boost to the use of logical models
(e.g. [7]), it has also become more and more clear that
logical reasoning alone is not enough for many Seman-
tic Web applications. In particular, use cases that re-
quire a combined processing of structured and unstruc-
tured data (i.e. free text) can often not be adequately
handled by logical methods alone. On the other hand,
abandoning logical reasoning and completely relying
on machine learning techniques for handling unstruc-
tured data seems like throwing out the child with the
bathwater. Therefore, research on the (Semantic) Web

has focused on methods that combine structured repre-
sentations with statistical inference. One possible ap-
proach is the extension of machine learning methods to
complex structural features [10], the other is to extend
logical reasoning in Semantic Web languages towards
statistical inference. In this paper, we present a soft-
ware infrastructure that implements the second way
- an extension of logical reasoning in Semantic Web
languages with statistical inference [27]. In particular,
we focus on the task of computing the most probable
consistent ontology from a set of possibly inconsis-
tent axioms some of which are not certain and have a
weight attached that can be used to resolve inconsis-
tencies given a probabilistic interpretation. This corre-
sponds to the maximum a posteriori (MAP) inference
in statistical relational models as opposed to marginal
inference, which aims at computing the probability of
a certain assertion given evidence in terms of a knowl-
edge base. Our approach is based on an encoding of
description logics into Markov logic networks that en-
ables reasoning about description logics that support
consequence-driven reasoning.

0000-0000/0-1900/$00.00 c© 0 – IOS Press and the authors. All rights reserved

2 Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies

Related Work The extension of web languages to-
wards statistical inference has been addressed by a
number of researchers leading to various extensions of
the OWL language with notions of probability using
different approaches including non-monotonic reason-
ing, probabilistic logic programming, Bayesian net-
works and Markov logic. The probabilistic descrip-
tion logic PSROIQ [26] is an expressive description
logic that combines conditional probabilities about
concepts and statements expressing uncertain knowl-
edge about instances. The logic supports probabilis-
tic knowledge base consistency checking and lexico-
graphic entailment. Both are probabilistic versions of
non-monotonic reasoning where consistency can be
achieved by preferring more specific assertions over
less specific ones and calculating upper and lower
bounds for the probabilities of the resulting state-
ments. The corresponding methods have been imple-
mented in the PRONTO system [22]. Riguzzi and
others adapt the semantics of probabilistic logic pro-
grams as introduced in [11] to description logics defin-
ing the DISPONTE approach for probabilistic on-
tologies. DISPONTE can answer queries over prob-
abilistic ontologies using binary decision diagrams.
The corresponding methods have been implemented
in the BUNDLE reasoner [33,5]. Both reasoners have
been integrated into the Pellet description logic sys-
tem. DISPONTE clearly aims at computing probabilis-
tic query answers which corresponds to marginal in-
ference rather than MAP inference. PR-OWL [8,9] is
a language based on the multi-entity Bayesian net-
work (MEBN) logic [24]. MEBNs specify a first-order
language for modeling probabilistic knowledge bases
as parametrized fragments of Bayesian networks. PR-
OWL adds new elements to the OWL standard which
enables to create MEBNs as part of an ontological
model and thus supporting probabilistic reasoning, al-
though providing only a limited integration of logi-
cal and probabilistic reasoning. Parts of the PR-OWL
language were implemented in the tool UNBBAYES-
MEBN[dCLC+08] which provides a GUI and a trans-
lation of MEBN to classical Bayesian networks. Based
on the translation to Bayesian networks, PR-OWL can
in principle compute both MAP and marginal infer-
ence. To the best of our knowledge, INCERTO1 is
the only reasoner which uses Markov logic for proba-
bilistic description logics. It directly translates the de-
scription logic axioms to Markov logic so that con-

1https://code.google.com/p/incerto/

cepts correspond to unary predicates, roles correspond
to binary predicates, and individuals to constants. The
description logic axioms are translated to first-order
logic formulas. The objective of INCERTO is to learn
the weights of axioms through the analysis of indi-
viduals. Furthermore, they provide exact and approx-
imate marginal inference. However, computing the
most probable coherent ontology is not supported.
Due to the direct translation of the logical model into
Markov logic and the implicit closed world assump-
tion introduced on the Markov logic level, it is unclear
whether the system can guarantee complete reasoning
with respect to the description logic used.

In this paper, we first provide a comprehensive
overview of our Markov logic engine ROCKIT, which
to be best of our knowledge currently is the most per-
formant and scalable Markov logic reasoner with re-
spect to MAP inference. We give a brief introduction
to Markov logic as an underlying formalism and ex-
plain how ROCKIT computes the most probable model
by an efficient encoding of the problem as a linear inte-
ger program (see Section 3). After providing some de-
tails about the optimized implementation of ROCKIT,
we introduce the notion of log-linear logics which pro-
vides the formal foundation for a sound and complete
encoding of description logics and related formalisms
into Markov logic, and describe two concrete logics
that corresponds to probabilistic versions of OWL-EL
and RDFS (see Section 4). We then present success-
ful applications of the approach to relevant Semantic
Web problems, in particular knowledge base verifica-
tion and ontology matching (see Section 5). We close
with a discussion of the benefits and limitations of our
infrastructure in Section 6.

2. System Architecture

We present a software architecture (see Figure 1)
that bundles a series of systems which enable proba-
bilistic reasoning in the context of the Semantic Web.
The system is available at http://executor.
informatik.uni-mannheim.de/. The core of
the presented system is the ROCKIT Markov logic en-
gine. It is specialized for executing maximum a poste-
riori (MAP) inference in Markov Logic Networks. For
this purpose, it takes advantage of a database (MySQL)
and an integer linear program solver (Gurobi) (see Sec-
tion 3). Based on this core system, we provide inter-
faces for specific probabilistic reasoning tasks. In par-

http://executor.informatik.uni-mannheim.de/
http://executor.informatik.uni-mannheim.de/

Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies 3

Cutting Plane Aggregation
Metainference

GurobiMySQL

RDF Schema
Interface

OWL-EL
Interface

R
o

ck
It

M
ar

ko
v

Lo
gi

c
En

gi
n

e
Se

m
. W

e
b

In
te

rf
ac

e

Website REST API

W
e

b
In

te
rf

ac
e

Fig. 1. Overview of the system architecture

ticular, the "Semantic Web Interface" supports prob-
abilistic reasoning for OWL-EL and RDFS (see Sec-
tion 4). The web interface has the purpose to bundle
different reasoning interfaces and to make them avail-
able in a convenient way, i.e., through a user interface
and an API.

The reasoners are made available by a web inter-
face that allows executing different tasks. Hence, they
can be used without installing them on a local ma-
chine which would involve setting up a database man-
agement system as well as an integer linear program
solver. We offer a web site and REST interfaces to ac-
cess the services. The web site provides a description,
usage examples of the different reasoners and forms to
upload files and to initiate the reasoning process. Ad-
ditionally, the REST interfaces support the most im-
portant features and allow developers of other applica-
tions to use our services and to integrate them in their
systems. As the infrastructure can be accessed by mul-
tiple users at the same time, we implemented a wait-
ing line that ensures that the system processes at most
one reasoning task at a time. This is necessary as it de-
creases the chance of overloading but it also makes the
runtimes comparable.

The system creates a unique identification key for
each added process that can be used to identify a spe-
cific process in the process database. For each process
we keep track of relevant statistics and useful informa-
tion. Therefore, we record the time and the date when a
process was added to the waiting list, when the execu-
tion was started and when it terminated. Moreover, we

Fig. 2. View of a terminated process.

store the input information which includes the selected
reasoning method as well as the chosen parameter set-
tings and input files (see Figure 2). We also present
the console output of the underlying reasoning system
during the execution in real-time which helps to keep
track of the execution of a process.

The web interface is written in Python and uses the
web application framework "Pylons"2. Its internal ar-
chitecture allows integrating other (reasoning) system.
In fact, it is possible to add any system that is compat-
ible with the Linux distribution Debian.

3. The ROCKIT Engine

The foundation of our system is the ROCKIT rea-
soning engine [30], a state of the art reasoning engine
for Markov logic networks. ROCKIT is specialized on
performing maximum a posteriori (MAP) inference.
Each MAP query corresponds to an optimization prob-
lem with linear constraints and a linear objective func-
tion and, hence, ROCKIT formulates and solves the
problem as an instance of integer linear programming
(ILP). This is done in several iterations where the novel
cutting plane aggregation approach (CPA) is tightly in-
tegrated with cutting plane inference (CPI) which is
a meta-algorithm operating between the grounding al-
gorithm and the ILP solver [32]. Instead of immedi-
ately adding one constraint for each ground formula to
the ILP formulation, the ILP is initially formulated so
as to enforce the given evidence to hold in any solu-

2www.pylonsproject.org/projects/
pylons-framework

www.pylonsproject.org/projects/pylons-framework
www.pylonsproject.org/projects/pylons-framework

4 Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies

tion. Based on the solution of this more compact ILP
one determines the violated constraints, adds these to
the ILP, and resolves. This process is repeated until
no constraints are violated by an intermediate solution.
In the following, we provide a brief introduction to
Markov logic as well as RockIt’s approach to efficient
maximum a posteriori (MAP) inference.

3.1. Markov Logic

Markov logic is a first-order template language com-
bining first-order logic with log-linear graphical mod-
els. We first review function-free first-order logic [14].
Here, a term is either a constant or a variable. An atom
p(t1, ..., tn) consists of a predicate p/n of arity n fol-
lowed by n terms ti. A literal ` is an atom a or its nega-
tion ¬a. A clause is a disjunction `1∨...∨`k of literals.
The variables in clauses are always assumed to be uni-
versally quantified. The Herbrand base H is the set of
all possible ground (instantiated) atoms. Every subset
of the Herbrand base is a Herbrand interpretation.

A Markov logic network M is a finite set of pairs
(Fi, wi), 1 ≤ i ≤ n, where each Fi is a clause in
function-free first-order logic and wi ∈ R. Together
with a finite set of constants C = {c1, ..., cn} it defines
the ground Markov logic networkMC with one binary
variable for each grounding of predicates occurring in
M and one feature for each grounding of formulas in
M with feature weight wi. Hence, a Markov logic net-
work defines a log-linear probability distribution over
Herbrand interpretations (possible worlds)

P (x) =
1

Z
exp

(∑
i

wini(x)

)
(1)

where ni(x) is the number of satisfied groundings of
clause Fi in the possible world x and Z is a normal-
ization constant.

In order to answer a MAP query given evidence E =
e, one has to solve the maximization problem

arg max
x

P (X = x | E = e)

where the maximization is performed over possible
worlds (Herbrand interpretations) x compatible with
the evidence.

3.2. ILP Formulation of Markov Logic Networks

Since we are employing cutting plane inference
(CPI), ROCKIT retrieves in each iteration the ground

clauses violated by the current solution. Hence, in each
iteration of the algorithm, ROCKIT maintains a set of
ground clauses G that have to be translated to an ILP
instance. RockIt associates one binary ILP variable x`

with each ground atom ` occurring in some g ∈ G.
For a ground clause g ∈ G let L+(g) be the set of
ground atoms occurring unnegated in g and L−(g) be
the set of ground atoms occurring negated in g. Now,
we encode the given evidence by introducing linear
constraints of the form x` ≤ 0 or x` ≥ 1 depending
on whether the evidence sets the corresponding ground
atom ` to false or true. For every ground clause g ∈ G
with weight w > 0, w ∈ R, we add a novel binary
variable zg and the following constraint to the ILP:∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≥ zg.

Please note that if any of the ground atoms ` in the
ground clause is set to false (true) by the given evi-
dence, we do not include it in the linear constraint.

For every g with weight wg < 0, w ∈ R, we add
a novel binary variable zg and the following constraint
to the ILP:∑
`∈L+(g)

x`+
∑

`∈L−(g)

(1−x`) ≤ (|L+(g)|+|L−(g)|)zg.

For every g with weight wg = ∞, that is, a hard
clause, we add the following linear constraint to the
ILP: ∑

`∈L+(g)

x` +
∑

`∈L−(g)

(1− x`) ≥ 1

Finally, the objective of the ILP is:

max
∑
g∈G

wgzg,

where we sum over weighted ground clauses only, wg

is the weight of g, and zg ∈ {0, 1} is the binary vari-
able previously associated with ground clause g. We
compute a MAP state by solving the ILP whose solu-
tion corresponds one-to-one to a MAP state x where
xi = true if the corresponding ILP variable is 1 and
xi = false otherwise.

3.3. Constraint Aggregation

The ILP defined in the previous section can be sim-
plified by aggregating groups of similar constraints.

Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies 5

Table 1
A set of ground clauses that can be aggregated.

g `i c w

g1 x1∨ ¬y1 ∨ y2 1.0
g2 x2∨ ¬y1 ∨ y2 1.0
g3 ¬x3∨ ¬y1 ∨ y2 1.0
g4 ¬x4∨ ¬y1 ∨ y3 1.0
g5 x5∨ ¬y1 0.5

`i c w

x1∨
¬y1 ∨ y2 1.0x2∨

¬x3∨
¬x4∨ ¬y1 ∨ y3 1.0
x5∨ ¬y1 0.5

The resulting ILP has fewer variables, fewer con-
straints, and its context-specific symmetries are more
exposed to the ILP solver’s symmetry detection heuris-
tics. We present the general idea implemented in
ROCKIT and illustrate it by an example. Formal details
can be found in [30].

First we define which subsets G of G can be aggre-
gated to a single constraint.

Definition 1. Let G ⊆ G be a set of n weighted ground
clauses and let c be a ground clause. We say that G
can be aggregated with respect to c if (a) all ground
clauses in G have the same weight and (b) for every
gi ∈ G, 1 ≤ i ≤ |G|, we have that gi = `i∨c where `i
is a (unnegated or negated) literal for each i, 1 ≤ i ≤
|G|.

Table 1 illustrates an example. The subset G =
{g1, g2, g3} can be aggregated with respect to ¬y1∨y2,
while g4 and g5 can be aggregated only as singleton
sets, which does not yield in an advantage over the
standard way of generating the ILP. The standard way
of translating g1, g2 and g3, ignoring the possibility of
an aggregation, would result into the following ILP.

max 1.0z1 + 1.0z2 + 1.0z3 subject to

x1 + (1− y1) + y2 ≥ z1

x2 + (1− y1) + y2 ≥ z2

(1− x3) + (1− y1) + y2 ≥ z3

Note that z1, z2, and z3 are binary variables within this
ILP. By using instead of that a single integer variable
z, all ground clauses in G can be taken into account as
a whole within the following ILP.

max 1.0z subject to

x1 + x2 + (1− x3) + 3((1− y1) + y2) ≥ z

z ≤ 3

This translation follows a general pattern for positive
weights and a similar pattern for negative weights. As

Preprocessing

Add aggregated
constraints to ILP

Return MAP state

co
re

 1

co
re

 n

...

New violated
constraints found?

yes

no

Find violated constraints
and perform CPA

Parallel branch & bound

Fig. 3. ROCKIT parallelizes constraint finding, constraint aggrega-
tion, and ILP solving.

a result of this simplification the number of constraints
can be reduced significantly resulting in a significantly
better runtime behavior of the system. The general ap-
proach is called cutting plane aggregation (CPA).

3.4. Implementation

Figure 3 depicts the computational pipeline of the
system. After pre-processing the input MLN and load-
ing it into the relational database system, ROCKIT per-
forms CPI iterations until no new violated constraints
are found. The violated constraints are computed with
joins in the relational database system where each ta-
ble stores the predicate groundings of the intermedi-
ate solutions. In each CPI iteration, ROCKIT performs
CPA on the violated constraints. We can parallelize
the aggregation steps by processing each first-order
formula in a separate thread. To this end, each first-
order formula is initially placed on a stack S. ROCKIT
creates one thread per available core and, when idle,
makes each of the threads (i) pop a first-order formula
from the stack S, (ii) compute the formula’s violated
groundings, and (iii) perform CPA on these ground-
ings. The aggregated groundings are compiled into ILP
constraints and added to the ILP formulation. When
the stack S is empty and all threads idle we solve the
current ILP in parallel, obtain a solution, and begin the
next CPI iteration.

There are different possible strategies for finding the
ground clauses c that minimize the number of counting
constraints per first-order formula which is required
for CPA. This problem can be solved optimally, how-

6 Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies

ever, we implemented a greedy algorithm that only
estimates the optimal aggregation scheme, since ex-
periments showed that optimal algorithms dominate
the ILP solving itself. The algorithm stores, for each
first-order clause, the violated groundings of the form
`1 ∨ . . . ∨ `n in a table with n columns where each
column represents one literal position of the clause.
For each column k, ROCKIT computes the set of dis-
tinct rows Rk of the table that results from the pro-
jection onto the columns {1, ..., n} \ {k}. Let d =
arg mink{|Rk|}. The clause groundings are then ag-
gregated with respect to the rows in Rd.

ROCKIT employs MYSQL’s in-memory tables for
the computation of violated constraints and the ag-
gregation. Most tables are hash indexed to facilitate
highly efficient join processing. We use GUROBI3 as
ROCKIT’s internal ILP solver due to its ability to paral-
lelize its branch, bound, and cut algorithm, its remark-
able performance on standard ILP benchmarks [23],
and its symmetry detection heuristics.

4. The Semantic Web Interface

The ROCKIT system introduced in the previous sec-
tion is a generic Markov logic engine that does not di-
rectly target languages relevant for the Semantic Web
community. In this section we show how Semantic
Web languages, in particular description logics and
RDF Schema based formalisms, can be transformed to
Markov logic while preserving their original seman-
tics. This translation approach, to which we refer as
log-linear logics, makes the power of the ROCKIT sys-
tem available for Semantic Web applications.

4.1. Log-Linear Logics

Log-linear (description) logics have been introduced
by Niepert and others as a framework for encoding
non-trivial logics into probabilistic reasoning using the
notion of log-linear models [29]. A log-linear logic
knowledge base KB consists of a deterministic knowl-
edge base CD and an uncertain knowledge base CU.
CD contains axioms in some logic L that supports a
valid entailment relation |=L and notion of contradic-
tion ⊥L. The uncertain knowledge base is defined as
CU = {(c, wc)} where c is also an axiom in L and
wc is a real-valued weight assigned to c. CD represents
definite knowledge about the world, whereas CU con-

3http://www.gurobi.com/

tains axioms for which only a degree of confidence is
available. The certain knowledge base is assumed to be
non-contradictory, i.e. CD 6|=L ⊥L. The semantics of a
log-linear logic is based on joint probability distribu-
tions over the uncertain knowledge base. In particular,
the weights of the axioms in CU determine a log-linear
probability distribution in a similar way as it is the case
for Markov logic models introduced earlier.

For a given log-linear knowledge base (CD, CU) and
some (certain) knowledge base C′ over the same sig-
nature, the probability of C′ is defined as

P (C′)=

1
Z
exp

(∑
{(c,wc)∈CU:C′|=c} wc

)if C′ 6|=L ⊥L

and C′ |=L CD;
0 otherwise

where Z is the normalization constant of the log-
linear probability distribution P .

The notion of a log-linear logic provides a means for
interfacing Semantic Web languages with the ROCKIT

engine in the following way:

– We define a Markov logic predicate for each type
of axiom supported by the language. For this pur-
pose, the axioms in the knowledge base typically
have to be normalized in an appropriate way.

– We encode the entailment relation |=L using
Markov logic rules over the predicates represent-
ing the different axiom types.

– We define the notion of contradiction ⊥L by
adding a set of first order rules that results into an
inconsistent set of first-order formulas whenever,
with respect to the semantics of L, a logically un-
desired behavior occurs.

This approach naturally limits the applicability of
the framework to languages that can be normalized to a
finite set of axiom types and whose entailment relation
can be modeled using Markov logic rules. In Semantic
Web research such languages have been studied in con-
nection with the notion of consequence-driven reason-
ing [21], providing us with a set of possible languages
we can extend towards probabilistic reasoning. In the
following, we discuss two of these languages that we
have implemented in our infrastructure.

4.2. The OWL-EL Interface

Computing the MAP state for a log-linear knowl-
edge base that contains OWL-EL axioms requires first

Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies 7

to map the different axioms to a first-order repre-
sentation. As it has been shown that any OWL-EL
knowledge-base can be normalized into an equivalent
knowledge base that only contains 6 types of axioms,
we can map it into Markov logic predicates using the
following set of mapping rules.

C1 v D 7→ sub(C1, D)
C1 u C2 v D 7→ int(C1, C2, D)
C1 v ∃r.C2 7→ rsup(C1, r, C2)
∃r.C1 v D 7→ rsub(C1, r,D)
r v s 7→ psub(r, s)
r1 ◦ r2 v r3 7→ pcom(r1, r2, r3).

The first-order predicates in this listing are typed,
meaning that r, s, ri, (1 ≤ i ≤ 3), are role names,
C1, C2 basic concept descriptions, and D basic con-
cept descriptions or the bottom concept. Note that ax-
ioms involving complex concept descriptions can be
transformed into a normalized representation by apply-
ing a finite set of normalization rules introducing new
concept and role names [3].

The translation of CD and CU results in unweighted
(hard) and weighted first order formulas. The hard for-
mulas are used, together with the completion rules de-
scribed in the following paragraph, to decide whether
for a potential MAP state C′ we have C′ 6|=EL ⊥EL and
C′ |=EL CD. To our knowledge there exists no com-
monly accepted proposal related to adding weights or
probabilities to OWL axioms. In our implementation
we are using annotation properties to add weights to
axioms.

The completion rules of the formalism, in this case
OWL-EL, which corresponds to the description log-
ics EL++, are listed in Table 2. By adding these rules
as constraints to the Markov logic formalization, we
are able to support complete reasoning mechanisms for
EL++, i.e., we re-define |=EL by adding the respective
reasoning rules as first-order formulas in our Markov
logic formalization. Given a concrete reasoning prob-
lem, the resulting MAP state will always contain the
most probably non contradictory subset of CU that en-
tails the previously known axioms CD.

Note that rule F9 does not belong to the completion
rules for EL++. This rule takes the notion of incoher-
ence into account. An incoherent ontology is an ontol-
ogy that contains an unsatisfiable concept, i.e., a con-
cept that is subsumed by ⊥. Usually, an unsatisfiable
concept indicates that the ontology contains a contra-
dictory set of axioms. An incoherent ontology is not

Table 2
Completion rules for OWL-EL.

F1 ∀c : sub(c, c)

F2 ∀c : sub(c,>)

F3 ∀c, c′, d : sub(c, c′) ∧ sub(c′, d)⇒ sub(c, d)

F4 ∀c, c1, c2, d : sub(c, c1) ∧ sub(c, c2) ∧ int(c1, c2, d)

⇒ sub(c, d)

F5 ∀c, c′, r, d : sub(c, c′) ∧ rsup(c′, r, d)⇒ rsup(c, r, d)

F6 ∀c, r, d, d′, e : rsup(c, r, d) ∧ sub(d, d′) ∧ rsub(d′, r, e)

⇒ sub(c, e)

F7 ∀c, r, d, s : rsup(c, r, d) ∧ psub(r, s)⇒ rsup(c, s, d)

F8 ∀c, r1, r2, r3, d, e : rsup(c, r1, d) ∧ rsup(d, r2, e)

∧pcom(r1, r2, r3)⇒ rsup(c, r3, e)

F9 ∀c : ¬sub(c,⊥)

necessarily inconsistent, Thus, we added rule F9 which
allows us to extend the notion of contradiction ⊥EL

from inconsistency to incoherence.
For more technical details on applying the princi-

ple of log-linear logic to OWL-EL, we refer the reader
to [29]. The reasoner that we have implemented fol-
lowing the described approach is called ELog.4

4.3. The RDF Schema Interface

While the OWL-EL interface was mainly designed
for terminological reasoning, the focus of the RDFS
interface is rather on reasoning tasks related to the
A-Box. A RDF [18] knowledge base contains state-
ments of the form (subject, predicate, object).
Such statements can be seen as the only axiom type
present in an RDF Schema knowledge base. Thus, we
only need to define one general first-order logic predi-
cate to which all RDF statements can be transformed:

(s, p, o) 7→ triple(s, p, o)

We decided to use this modeling as it is flexible and
covers all possible RDF statements. In order to at-
tach weights to RDF statements, we rely in our im-
plementation on the concept of reification and annota-
tion properties. Our system relies on the RDF(S) en-
tailment rules [6] as a standard rule set. Using the
predicate triple(s, p, o), we define the entailment rela-
tion |=RDFS by mapping the RDF(S) entailment rules
to first-order formulas. For instance, we state the rule

4http://executor.informatik.uni-mannheim.
de/systems/elog/

http://executor.informatik.uni-mannheim.de/systems/elog/
http://executor.informatik.uni-mannheim.de/systems/elog/

8 Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies

rdfs11 which expresses the transitivity of the property
rdfs:subclassOf as follows:

triple(x, rdfs:subClassOf, y) ∧

triple(y, rdfs:subClassOf, z) ⇒

triple(x, rdfs:subClassOf, z).

We define formulas for the other RDF(S) completion
rules in the same way. Moreover, it is possible to ex-
tend the basic set of completion rules by defining ad-
ditional rules and constraints in order to cover a wide
range of application scenarios. In partiuclar, pure RDF
Schema reasoning does not have a notion of contra-
diction. We therefore introduce notions of contradic-
tion by adding special rules. For example, if one might
want the reasoner to cover the semantics of the prop-
erty owl:disjointWith, the rule set can be extended:

triple(c1, owl : disjointWith, c2) ∧

triple(x, rdf : type, c1) ⇒

¬triple(x, rdf : type, c2).

This is only one of the required rules to cover the se-
mantics of owl : disjointWith. Our formalism can
be extended by such rules depending on the require-
ments of a specific use case. By executing the MAP
inference, the reasoner determines for each poten-
tial MAP state C′ if C′ 6|=RDFS+ ⊥RDFS+ and
C′ |=RDFS+ CD holds. Thereby, the system resolves
not only the detected inconsistencies but is also able
to infer new facts. Hence, the MAP state corresponds
to the most probable consistent subset of facts and all
assertions that can be entailed from that subset.

We adapted our reasoning system to the special
case of probabilistic temporal reasoning. Addition-
ally to adding weights to RDF statements, it is pos-
sible to assign a temporal interval, which consists of
a start point and end point, resulting in statements of
the form 〈triple(s, p, o)[start , end]〉. The interval ex-
presses the validity time of a fact [16,17]. Considering
the temporal relations of events, it is possible to extend
the set of constraints in order to detect inconsistencies.
For this purpose, the reasoning system incorporates the
temporal predicates (e.g. before, during, . . .) of Allen’s
interval algebra [1] that can be used to express such
constraints. The proposed approach is implemented by
the reasoner T-RDFS-LOG.5

5http://executor.informatik.uni-mannheim.
de/systems/t-rdfs-log/

5. Applications

In [31] we have applied the OWL-EL interface to
improve automatically generated ontology alignments,
while in [19] we have shown how to use the meth-
ods available via the RDF schema interface to debug a
probabilistic temporal knowledge base. Within the fol-
lowing two sections we summarize these application
scenarios and the experimental results to illustrate the
general applicability of our framework.

5.1. Ontology Matching

Ontology matching is concerned with the task of
constructing an alignment A between two ontologies
O1 and O2. An alignment is a set of mappings usu-
ally interpreted as equivalence axioms between con-
cepts and properties ofO1 andO2. Most matching sys-
tems annotate mappings with a confidence value that
expresses the trust in the correctness of the generated
mapping. Thus, we have a perfect setting for apply-
ing ELog: The alignment A can be interpreted as a set
of uncertain, weighted equivalence axioms CU, while
O1 ∪ O2 comprises the certain axioms CD.

Some of the concepts in O1 or O2 might become
unsatisfiable due to the axioms of A. A is called an
incoherent alignment if this happens. The following is
an example for an incoherent alignment.

O1 ={Jaguar1 v Cat1, Cat1 v Animal1},

O2 ={Jaguar2 v Brand2, Animal2 v ¬Brand2}

A ={〈Jaguar1 ≡ Jaguar2, 0.9〉,

〈Animal1 ≡ Animal2, 0.95〉}

In this example the concepts Jaguar1 and Jaguar2
are unsatisfiable in the merged ontology. There are sev-
eral possible ways to resolve this incoherence by re-
moving different subsets fromA. Applying the formal-
ism introduced in Section 4.2 results in computing the
coherent subset O1 ∪O2 ∪ {Animal1 ≡ Animal2} as
MAP state. The alignment {Animal1 ≡ Animal2} is
thus the must probable alignment given the informa-
tion available in O1 and O2.

Several systems and algorithms have been devel-
oped to deal with the problem of debugging incoher-
ent alignments. We present experiments comparing our
generic approach to two of these system which are
LogMap [20] and Alcomo [28]. LogMap is a match-
ing system that consists beside other components of an
algorithm for generating (nearly) coherent alignments.

http://executor.informatik.uni-mannheim.de/systems/t-rdfs-log/
http://executor.informatik.uni-mannheim.de/systems/t-rdfs-log/

Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies 9

Fig. 4. Mapping quality and runtime for different debugging ap-
proaches.

Alcomo is a system that has specifically been devel-
oped for the purpose of debugging ontology align-
ments. It can be used with different settings that differ
with respect to completeness and runtime efficiency.

We have used the testcases of the well known OAEI
conference track together with the alignments submit-
ted by the OAEI 2013 participants [15]. We merged
these alignments (details can be found in [31]) and
conducted experiments for different thresholds. For
low thresholds the input alignments were large and
highly incoherent while high thresholds resulted in
precise and small input alignments. We applied our
generic approach as well as LogMap and Alcomo (in
two settings) to these alignments. The results of our
experiments are depicted in Figure 4.

On the left side of the figure we have shown the F-
measure of the debugged alignments for different in-
put thresholds. ELog achieves for all thresholds the
best f-measure. In some cases the results of the other
systems are similar, however, ELog outperforms the
other systems with respect to the threshold range that
results into the best f-measure. Only Alcomo (optimal
setting) can achieve the same result in one case. ELog
can debug the given alignments in acceptable time (see
right side of the figure), however, Alcomo (greedy set-
ting) and LogMap are significantly faster for large in-
put alignments. This is mainly related to the fact that
both systems do not solve the underlying optimiza-
tion problem, but generate an approximate solution by
applying a greedy algorithm. This explains also why

both algorithms generate results that are slightly worse
compared to the results of ELog. Only Alcomo in the
optimal setting, using a search tree to find the opti-
mal solution, is an exception. However, Alcomo (op-
timal setting) does not terminate for larger testcases.
We conclude that our generic approach can be ap-
plied successfully to the problem of alignment debug-
ging and, even more, outperforms existing systems that
have specifically been designed for the given problem.

5.2. Knowledge Base Verification

Knowledge base verification is concerned with the
task of identifying erroneous statements in a knowl-
edge base. In the context of a probabilistic knowledge
base, this scenario is essentially an optimization prob-
lem. This means that a reasoner must identify the most
probable consistent subset of facts given a set of con-
straints. This corresponds to the computation of the
MAP state. The following example illustrates a incon-
sistent knowledge base F = {f1, f2, f3}:

f1 = 〈triple(Einstein, birthYear, 1879), 0.5〉

f2 = 〈triple(Einstein, birthYear, 1955), 1.0〉

f3 = 〈triple(Einstein, deathYear, 1955), 0.8〉

For this knowledge base, we define the following con-
straint setR = {r1, r2}:

r1 = A person has at most one birth date.

r2 = The birth of a person happens before

her death.

Given the constraint set R, it is possible to detect in-
consistencies in F . r1 causes a clash between the facts
f1 and f2 while r2 causes a clash between the facts f2
and f3. Hence, f2 has to be removed in order to obtain
a consistent knowledge base despite having the highest
weight of all facts.

Different approaches have been proposed to solve
such problems. In [4,2] OWL 2.0 is extended in order
to enable temporal reasoning for supporting temporal
queries. The authors define SWRL rules that are com-
patible with a reasoner that supports DL-safe rules in
order to detect inconsistencies. However, their system
can only detect if a knowledge base is consistent but
cannot resolve the existing conflicts. [34,13,12] pro-
posed different approaches to resolve temporal con-
flicts at query time. In particular, they define temporal
constraint as Datalog rules. However, these approaches
do not incorporate terminological knowledge while re-

10 Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies

Table 3

Precision (P), Recall (R) and F-measure (F) for the repaired dataset.
We apply the RDFS reasoner to the input datasets that contain differ-
ent fractions of erroneous statements. The reasoner removes those
statements with a high precision as the loss of recall is reasonable
with respect to the gain of precision.

Input Repaired Dataset
∆F

P P R F

0.99 1.00 1.00 1.00 0.002

0.91 0.97 0.98 0.97 0.022

0.80 0.92 0.96 0.94 0.050

0.67 0.84 0.93 0.88 0.084

0.57 0.78 0.90 0.83 0.106

0.50 0.72 0.87 0.79 0.119

solving the conflicts and do also not support weighted
constraints.

Contrary to this, our reasoner T-RDFS-LOG (see
Section 4.3) is well-suited for verifying probabilis-
tic temporal knowledge bases as it allows extending
a standard rule set, i.e., the RDFS entailment rules,
by defining domain-specific constraints. Hence, it is a
flexible system that can be adapted to many domains.
Based on rules and constraints, the reasoner is able to
cleanse a knowledge base by removing the statements
that do not belong to the MAP state.

In [19] we have evaluated this application scenario
in an artificial setting that is based on DBPedia [25]
data. Therefore, we extracted over 150k facts (RDF
triples) describing entities of the domain of academics.
For this domain, we define a set of specific constraints
that are used to detect and to resolve inconsistencies in
the knowledge base. We also generate erroneous facts
and add them to the knowledge base in order to inves-
tigate the influence of the percentage of wrong state-
ments in the knowledge base on the precision of our
application. Hence, we create multiple datasets whose
recall is 1.0 while its precision depends on the number
of added statements. In order to obtain a probabilis-
tic knowledge base, we assign to all statements a ran-
dom weight in the range from 0.0 to 1.0. The results
of the experiments indicate that our approach is able
to remove erroneous statements with a high precision.
Table 3 shows that the F-measure of the knowledge
base increases independently of the share of added er-
roneous statements which is depicted in the column
∆F . The precision of the debugging process is≈ 80%
while the recall is ≈ 65% which means the at least 4
out of 5 are proper removals while more than half of
the wrong statements get detected and removed.

With respect to the runtime, we measured that it
takes ≈7 minutes for the initial dataset (150k facts,
precision = 1.0) and ≈18 minutes for the largest ex-
tended dataset (300k facts, precision = 0.5) to deter-
mine the consistent subset. We executed our experi-
ments on a virtual machine running Ubuntu 12.04 that
has access to two threads of the CPU (2.4 GHz) and 16
GB RAM. Hence, T-RDFS-LOG is capable to verify
knowledge bases by exploiting terminological knowl-
edge and temporal relations of events.

6. Conclusions

We presented an infrastructure for probabilistic rea-
soning about Semantic Web data. The infrastructure
is based on the state of the art Markov logic engine
ROCKIT that supports very efficient MAP inference.
We presented the ROCKIT system and showed how the
concept of log-linear logics can be used to translate Se-
mantic Web data into Markov logic and use ROCKIT
to solve relevant problems on the web. We also demon-
strated the benefits of specific probabilistic extensions
of Semantic Web languages. In particular a temporal
extension of RDFS as well as the EL fragment of the
Web Ontology language for verifying extracted infor-
mation from the web and for matching heterogeneous
web ontologies. The reasoning infrastructure presented
is available for download6 and can also be accessed
through a web interface that we provide for testing and
smaller reasoning problems.7

While we have already used the infrastructure for
the applications described in the paper and also for
other purposes not mentioned due to lack of space,
there is still a lot of potential for improving the sys-
tem. First of all, we have only experimented with a re-
stricted set of logical languages that do not fully ex-
ploit all possibilities of the concept of log-linear log-
ics. There is a need for a more systematic investigation
of the concept of log-linear logics and their possible
use in the context of Semantic Web applications and
beyond.

So far, our infrastructure only provides efficient rea-
soning support for MAP inference. Other important
problems, in particular marginal inference and weight
learning are only supported to a limited extend. While
- as we have shown in our previous work - MAP infer-

6https://code.google.com/p/rockit/
7http://executor.informatik.uni-mannheim.

de/

https://code.google.com/p/rockit/
http://executor.informatik.uni-mannheim.de/
http://executor.informatik.uni-mannheim.de/

Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies 11

ence can be used to solve a number of important prob-
lems, the restriction to this particular kind of reasoning
limits the applicability of the infrastructure. In particu-
lar, there is a lack of support for answering probabilis-
tic queries over Semantic Web data. We will address
these limitations in future work.

References

[1] James F Allen. Maintaining knowledge about temporal inter-
vals. Communications of the ACM, 26(11):832–843, 1983.

[2] Eleftherios Anagnostopoulos, Sotiris Batsakis, and Euripi-
des GM Petrakis. Chronos: A reasoning engine for qualita-
tive temporal information in owl. Procedia Computer Science,
22:70–77, 2013.

[3] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing
the el envelope. In Proceedings of the 19th International Joint
Conference on Artificial Intelligence (IJCAI), pages 364–369,
2005.

[4] Sotiris Batsakis, Kostas Stravoskoufos, and Euripides GM Pe-
trakis. Temporal reasoning for supporting temporal queries in
owl 2.0. In Knowledge-Based and Intelligent Information and
Engineering Systems, pages 558–567. Springer, 2011.

[5] Elena Bellodi, Evelina Lamma, Fabrizio Riguzzi, and Simone
Albani. A distribution semantics for probabilistic ontologies.
In Proceedings of the 7th International Workshop on Uncer-
tainty Reasoning for the Semantic Web (URSW 2011), volume
778 of CEUR Workshop Proceedings, pages 75–86, Bonn, Ger-
many, 2011. CEUR-WS.org.

[6] Dan Brickley and Ramanathan Guha. RDF vocabulary de-
scription language 1.0: RDF schema. W3C recommendation,
W3C, February 2004. http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/.

[7] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Antonella Poggi, Mariano Rodriguez-
Muro, and Riccardo Rosati. Ontologies and databases: The dl-
lite approach. In Reasoning Web, Semantic Technologies for
Information Systems, volume 5689 of Lecture Notes in Com-
puter Science, pages 255–356, 2009.

[8] Paulo CG Costa. Bayesian semantics for the Semantic Web.
PhD thesis, George Mason University, 2005.

[9] Paulo Cesar G. da Costa and Kathryn B. Laskey. PR-OWL:
A framework for probabilistic ontologies. In Formal Ontol-
ogy in Information Systems, Proceedings of the Fourth Inter-
national Conference, FOIS 2006, volume 150 of Frontiers in
Artificial Intelligence and Applications, pages 237–249, Balti-
more, Maryland, USA„ 2006. IOS Press.

[10] Claudia d’Amato, Nicola Fanizzi, Marko Grobelnik, Ag-
nieszka Lawrynowicz, and Vojtech Svatek. Inductive reason-
ing and machine learning for the semantic web. Semantic Web
Journal, 5(1):3–4, 2014.

[11] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen.
Problog: A probabilistic prolog and its application in link dis-
covery. In Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence IJCAI 2007, pages 2462–2467,
Hyderabad, India, 2007.

[12] Maximilian Dylla, Iris Miliaraki, and Martin Theobald. A
temporal-probabilistic database model for information extrac-

tion. Proceedings of the VLDB Endowment, 6(14):1810–1821,
2013.

[13] Maximilian Dylla, Mauro Sozio, and Martin Theobald. Re-
solving temporal conflicts in inconsistent rdf knowledge bases.
In 14. GI-Fachtagung Datenbanksysteme für Business, Tech-
nologie und Web (BTW), pages 474–493, 2011.

[14] Michael R. Genesereth and Nils J. Nilsson. Logical founda-
tions of artificial intelligence. Morgan Kaufmann, 1988.

[15] Bernardo Cuenca Grau, Zlatan Dragisic, Kai Eckert, Jérôme
Euzenat, Alfio Ferrara, Roger Granada, Valentina Ivanova,
Ernesto Jiménez-Ruiz, Andreas Oskar Kempf, Patrick Lam-
brix, Andriy Nikolov, Heiko Paulheim, Dominique Ritze,
François Scharffe, Pavel Shvaiko, Cássia Trojahn dos Santos,
and Ondrej Zamazal. Results of the ontology alignment evalua-
tion initiative 2013. In Proceedings of the 8th Ontology Match-
ing Workshop, pages 61–100, 2013.

[16] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman.
Temporal rdf. In The Semantic Web: Research and Applica-
tions, pages 93–107. Springer, 2005.

[17] Claudio Gutierrez, Carlos A Hurtado, and Alejandro Vaisman.
Introducing time into rdf. IEEE Transactions on Knowledge
and Data Engineering, 19(2):207–218, 2007.

[18] Patrick Hayes. RDF semantics. W3C recommendation,
W3C, February 2004. http://www.w3.org/TR/2004/REC-rdf-
mt-20040210/.

[19] Jakob Huber, Christian Meilicke, and Heiner Stuckenschmidt.
Applying markov logic for debugging probabilistic temporal
knowledge bases. In Proceedings of the 4th Workshop on Au-
tomated Knowledge Base Construction (AKBC), 2014.

[20] Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. Logmap:
Logic-based and scalable ontology matching. In Proceedings
of the 10th International Semantic Web Conference (ISWC),
pages 273–288, 2011.

[21] Yevgeny Kazakov. Consequence-driven reasoning for horn
shiq ontologies. In Proceedings of the 21st International Joint
Conference on Artificial Intelligence, IJCAI 2009, pages 2040–
2045, Pasadena, California, USA, 2009.

[22] Pavel Klinov. Practical reasoning in probabilistic description
logic. PhD thesis, The University of Manchester, Manchester,
UK, 2011.

[23] Thorsten Koch, Tobias Achterberg, Erling Andersen, Oliver
Bastert, Timo Berthold, Robert E. Bixby, Emilie Danna, Ger-
ald Gamrath, Ambros M. Gleixner, Stefan Heinz, Andrea Lodi,
Hans D. Mittelmann, Ted K. Ralphs, Domenico Salvagnin,
Daniel E. Steffy, and Kati Wolter. Miplib 2010. Math. Pro-
gram. Comput., 3(2):103–163, 2011.

[24] Kathryn B. Laskey. MEBN: A language for first-order
bayesian knowledge bases. Artificial Intelligence, 172(2-
3):140–178, 2008.

[25] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dim-
itris Kontokostas, Pablo Mendes, Sebastian Hellmann, Mo-
hamed Morsey, Patrick van Kleef, Sören Auer, and Chris Bizer.
DBpedia - a large-scale, multilingual knowledge base extracted
from wikipedia. Semantic Web Journal, 2014.

[26] Thomas Lukasiewicz. Expressive probabilistic description log-
ics. Artificial Intelligence, 172(6-7), 2008.

[27] Thomas Lukasiewicz and Umberto Straccia. Managing un-
certainty and vagueness in description logics for the seman-
tic web. Web Semantics: Science, Services and Agents on the
World Wide Web, 6(4):291–308, 2008.

[28] Christian Meilicke. Alignment incoherence in ontology match-

12 Huber et al. / An Infrastructure for Probabilistic Reasoning with Web Ontologies

ing. PhD thesis, University Mannheim, 2011.
[29] Mathias Niepert, Jan Noessner, and Heiner Stuckenschmidt.

Log-linear description logics. In Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelli-
gence (IJCAI 11), pages 2153–2158, Barcelone, Spain, 2011.
AAAI Press.

[30] Jan Noessner, Mathias Niepert, and Heiner Stuckenschmidt.
Rockit: Exploiting parallelism and symmetry for map infer-
ence in statistical relational models. In Proceedings of the Con-
ference on Artificial Intelligence (AAAI), 2013.

[31] Jan Noessner, Heiner Stuckenschmidt, Christian Meilicke, and
Mathias Niepert. Completeness and optimality in ontology
alignment debugging. In Proceedings of the 9th International
Workshop on Ontology Matching collocated with the 13th In-
ternational Semantic Web Conference (ISWC 2014), page 25,
2014.

[32] Sebastian Riedel. Improving the accuracy and efficiency of
map inference for markov logic. In UAI 2008, Proceed-
ings of the 24th Conference in Uncertainty in Artificial Intel-
ligence, Helsinki, Finland, July 9-12, 2008, pages 468–475.
AUAI Press, 2008.

[33] Fabrizio Riguzzi, Elena Bellodi, Evelina Lamma, and Riccardo
Zese. Bundle: A reasoner for probabilistic ontologies. In
Reasoning and Rule Systems - 7th International Conference,
RR 2013, Lecture Notes in Computer Science, pages 183–197,
Mannheim, Germany„ 2013. Springer.

[34] Yafang Wang, Mohamed Yahya, and Martin Theobald. Time-
aware reasoning in uncertain knowledge bases. In Proceedings
of the Fourth International VLDB workshop on Management
of Uncertain Data (MUD 2010), pages 51–65, 2010.

