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Abstract. In this paper, we introduce the rakaposhi stream cipher.
The algorithm is based on Dynamic Linear Feedback Shift Registers,
with a simple and potentially scalable design, and is particularly suit-
able for hardware applications with restricted resources. The rakaposhi

stream cipher offers 128-bit security, and aims to complement the current
eSTREAM portfolio of hardware-oriented stream ciphers.

1 Introduction

A stream cipher is a type of encryption algorithm that encrypts individual alpha-
bet elements of plaintext, one at a time, with a time-varying transformation [28].
Stream ciphers are very popular due to their many attractive features: they are
generally fast, can typically be efficiently implemented in hardware, have no (or
limited) error propagation, and are particularly suitable for use in environments
where no buffering is available and/or plaintext elements need to be processed
individually. These are particularly important features in the telecommunication
sector, and stream ciphers are ubiquitous in the field.

Recent years have witnessed an increase in the research of design and analysis
of stream ciphers, primarily motivated by eSTREAM, the ECRYPT Stream
Cipher Project [12]. eSTREAM was a multi-year project, which started in 2004,
and had the objective of selecting a portfolio of promising stream cipher designs.
The selection of algorithms was based on two usage profiles, corresponding to
specific applications identified for stream ciphers of dedicated design:

- Profile 1: stream ciphers for software applications with high throughput.
- Profile 2: stream ciphers for hardware applications with highly restricted

resources.

The project received 34 submissions, of which 16 were selected to the final
phase [31]. The final portfolio was announced in April 2008, containing eight ci-
phers: four in profile 1 and four in profile 2 [4]. The portfolio was later revised [3],
due to new cryptanalytic results [15] against one of the selected ciphers in profile
2 (namely, the F-FSCR-H stream cipher [1]).
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Despite the end of the eSTREAM project, the research area of analysis and
design of stream ciphers remains active, with particularly eSTREAM portfolio
ciphers continuing to attract much attention of the cryptographic community [8].
In this trend, we propose in this paper a new stream cipher, called rakaposhi.
The algorithm presents a simple and potentially scalable design, and is partic-
ularly suitable for hardware applications with restricted resources (and thus it
would fall into profile 2 of the eSTREAM project). The motivation for such a
proposal soon after the end of the eSTREAM project is manifold:

- The cipher provides 128-bit security. Most eSTREAM candidates in profile 2
employ 80-bit keys, as suggested in the original call for proposals3. However
we believe 128-bit security is a very attractive feature when aiming for long-
term deployment of such ciphers.

- The cipher uses a simple and elegant design, based on Dynamic Linear Feed-
back Shift Registers (Section 2). The design can be seem as a generalisation
of constructions found in early designs[6, 33, 24], and may motivate a more
detailed mathematical analysis of properties of such constructions.

- The cipher design and security evaluation incorporates lessons learned during
the several years of extensive analysis in the eSTREAM process, and thus
rakaposhi is less likely to be susceptible to more recent attacks, such as
initialisation attacks.

- More importantly, as noted by the eSTREAM selection committee, ciphers
in the final portfolio are still very new, and analysis may not be mature
enough to consider widespread deployment [3]. This was indeed illustrated
by the need to revise the eSTREAM portfolio soon after its announcement.
eSTREAM algorithms in profile 2 may in fact become the most popular
stream ciphers in practice, due to the growing use of cryptographic mech-
anisms in small electronic devices (such as RFIDs). Thus we believe that
alternatives to eSTREAM ciphers in this particular profile may prove to be
desirable for future use.

In summary, we believe that rakaposhi complements the current eSTREAM
portfolio in profile 2, while presenting some attractive additional features, in-
creasing thus the choice of secure lightweight stream ciphers suitable for hard-
ware applications with restricted resources.

This paper is organised as follows. In Section 2 we give a brief overview of the
main component of the rakaposhi design (namely, DLFSR - Dynamic Linear
Feedback Shift Registers). In Section 3 we describe the details of the cipher
specification and design, and in Section 4 we describe the cipher operation. In
Section 5 we present a provisional security evaluation of the cipher. In Section 6
we discuss some implementation aspects of the rakaposhi cipher, and present
our concluding remarks in Section 7.

3 We note however that some designers later also defined 128-bit versions of the original
80-bit submissions to eSTREAM.
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2 Dynamic Linear Feedback Shift Registers

A Dynamic Linear Feedback Shift Register (DLFSR) scheme is a general con-
struction consisting usually of two registers: the first subregister A, of length
r, is clocked regularly and updated using a fixed mapping λA. Subregister B,
of length n, is updated using a linear mapping λt

B
, which varies with time and

depends of the state in register A at time t. Thus subregister A is used to select
and dynamically modify the feedback function of LFSR B, and as a result, B
presents an irregular updating mechanism, as opposed to the regular clocking
that the register would present if a unique, fixed linear feedback function was
used. In practice, the state of B is used as input to a non-linear function to
produce the output sequence of a stream cipher.

Although used in early ciphers, the general concept of Dynamic Linear Feed-
back Shift Registers seems to have been first proposed in open literature in the
short article by Mita et al [29]. A simple example was presented, and properties
of the output sequence were studied and compared with the output of a con-
ventional LFSR of similar size. A more detailed characterisation of DLFSRs was
presented in [27]. We note that we may generalise the idea to have non-linear
updating functions, or possibly more than two subregisters.

Examples of stream ciphers based on the Dynamic Linear Feedback Shift Reg-
ister primitive include the stop-and-go generator [6], LILI [33], dynamic feedback
polynomial switch [21], and K2 [24]. The rakaposhi stream cipher is in fact a
successor of the K2 stream cipher, but aiming at low-cost hardware implemen-
tations. Furthermore, in the rakaposhi design, the FSR A uses a non-linear
updating function, and the state of both subregisters are used as input to a
non-linear output function to produce the cipher’s keystream.

3 Cipher Design

In this section we describe the main design criteria for the rakaposhi stream
cipher, as well as the details of the cipher specification.

3.1 Design Criteria

The main criteria used in the design of rakaposhi were: 128-bit security, use of
elegant and structurally rich FSR-based construction, and competitive perfor-
mance and hardware implementation requirements when compared to ciphers in
profile 2 of the eSTREAM portfolio. Furthermore, the cipher design is such that
increasing the speed of the algorithm may be efficiently done by implementation
of circuits for parallelization of the algorithm.

The rakaposhi parameters are the following:

Key length: 128 bits.
Initialisation Vector length: 192 bits.
NLFSR A length r: 128 bits.
DLFSR B length n: 192 bits.
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Thus the size of the internal state S = (A,B) is s = r + n = 320 bits. When
aiming for 128-bit security, we note that the internal state size of the cipher
should be at least 320 bits, in view of the TMTO attack recently proposed by
Dunkelman and Keller [11] (see Section 5.1).

We define below the notation used in this paper:

User-provided Key: {k0, k1, ..., k127}
Initialisation Vector (IV) : {iv0, iv1, ..., iv191}
Registers of NLFSR at time t: [at, at+1, ..., at+127] = At

Registers of DFSR at time t: [bt, bt+1, ..., bt+191] = Bt

Keystream at time t: zt

3.2 RAKAPOSHI Specification

The rakaposhi stream cipher main component is the bit-oriented Dynamic
Linear Feedback Shift Register (DLFSR). It consists of a 128-bit Non-Linear
Feedback Shift Register and a 192-bit Linear Feedback Shift Register, denoted
as registers A and B, respectively. The cipher uses two bits from the state of
the NLFSR to select, and dynamically modify the (linear) feedback function
of the LFSR. The cipher keystream is produced by combining the output of
both registers with the output of a non-linear Boolean function over (F2)

8. This
function takes as input six bits from the state of register B and two bits from
the state of register A. The cipher schematic is depicted in Figure 1.

Nonlinear Feedback 
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Fig. 1. rakaposhi Stream Cipher
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Non-Linear Feedback Shift Register A . The cipher’s registerA is a 128-bit
NLSFR, defined using the feedback function

g(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = x1x3x9 + x1x7x9 + x5x8 + x2x5+

x3x8 + x2x7 + x9 + x8 + x7 + x6+

x5 + x4 + x3 + x2 + x1 + x0 + 1,

as at+128 = g(at, at+6, at+7, at+11, at+16, at+28, at+36, at+45, at+55, at+62). Explic-
itly, we have the following recurrence relation:

at+128 = 1⊕ at ⊕ at+6 ⊕ at+7 ⊕ at+11 ⊕ at+16 ⊕ at+28 ⊕ at+36 ⊕ at+45⊕

at+55 ⊕ at+62 ⊕ at+7at+45 ⊕ at+11at+55 ⊕ at+7at+28⊕

at+28at+55 ⊕ at+6at+45at+62 ⊕ at+6at+11at+62.

The feedback function g was selected according to criteria for non-linear feed-
back shift registers with maximum period [34] and consists of a primitive linear
feedback shift register and a non-linear function of degree 3. This is a balanced
function, of which the best linear approximation has bias 2−4.

Linear Feedback Shift Register B. The register B is a 192-bit Dynamic
LFSR, which can use four different linear recursive functions. These are selected
using two bits from the state of register A. Let c0 and c1 be the 42nd and 90th

bits of register A at time t, respectively (that is, c0 = at+41 and c1 = at+89).
Then LFSR B at time t is defined by the following characteristic polynomial:

f(x) =x192 + x176 + c0x
158 + (1 + c0)x

155 + c0c1x
136+

c0(1 + c1)x
134 + c1(1 + c0)x

120 + (1 + c0)(1 + c1)x
107+

x93 + x51 + x49 + x41 + x37 + x14 + 1.

We note that f(x) ∈ F2[x] is a primitive polynomial for all four choices of (c0, c1).
Thus the recurrence relation for register B is given by:

bt+192 = bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕ bt+93⊕

c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134 ⊕ c0 · c1 · bt+136⊕

c0 · bt+155 ⊕ c0 · bt+158 ⊕ bt+176,

where ci = 1⊕ ci represents the negation of ci.

Non-Linear Filter. rakaposhi uses as non-linear filtering function the 8-to-1
Boolean function obtained by considering the input as an element of the field
F2[x]/〈p(x)〉 ≃ F28 , where p(x) = x8 + x4 + x3 + x + 1, and extracting the least
significant bit of the result of the inverse operation in this field (with 0 7→ 0).
We note that this is the same function used as the non-affine component of the
AES S-Box. This function v(x0, x1, x2, x3, x4, x5, x6, x7) is a balanced Boolean
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function, with polynomial representation (ANF) of degree 7. We give the explicit
polynomial expression of the function v(·) in the Appendix A.

In the rakaposhi stream cipher, the input bits for the function v are ex-
tracted from both registers A and B, as

st = v(at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128).

We note that both the sets B = {bt+23, bt+53, bt+77, bt+81, bt+103, bt+128} and
A = {at+67, at+127} are full-positive difference sets [14].

4 Cipher Operation

In this section we describe the details of the cipher operation.

4.1 Keystream Generation

The cipher outputs one keystream bit at each cycle. Given the cipher state
St = (At,Bt) at time t, the cipher operates as follows:

1. The keystream bit zt is computed as zt = bt ⊕ at ⊕ st and is output.
2. c0, c1 ∈ A

t are used to compute the updating function λt

B
for B.

3. RegistersA and B are updated to obtainAt+1 = λA(At) and Bt+1 = λt

B
(Bt),

respectively.

In typical operational mode, a fixed key and initialisation vector must not be used
to produce more than 264 keystream bits. Thus the cipher must be re-initialized
(potentially by only modifying the IV) after at most 264 cycles.

4.2 Initialisation Process

Before start producing the keystream, rakaposhi goes through an initialisation
process, in which the secret key and IV are loaded into the registers and mixed.

The secret key {k0, k1, ..., k127} and IV {iv0, iv1, ..., iv191} are loaded into the
NLFSR and DLFSR, respectively, as follows:

a0, a1, ..., a127 ← k0, k1, ..., k127,
b0, b1, ..., b191 ← iv0, iv1, ..., iv191.

The cipher then clocks 448 times with the output of the filter function v(·) (that
is, st rather than zt) being fed back into the cipher state. This process is divided
into two stages:

– Stage 1

In the first stage of the initialisation, the cipher runs for 320 cycles, with the
output of the non-linear filter function v(·) being fed back into the register
B. Thus during this stage the LFSR B uses the following recurrence relation:

bt+192 = bt ⊕ bt+14 ⊕ bt+37 ⊕ bt+41 ⊕ bt+49 ⊕ bt+51 ⊕ bt+93⊕

c0 · c1 · bt+107 ⊕ c0 · c1 · bt+120 ⊕ c0 · c1 · bt+134⊕

c0 · c1 · bt+136 ⊕ c0 · bt+155 ⊕ c0 · bt+158 ⊕ b176 ⊕ st.
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– Stage 2

In the second stage of the initialisation, the cipher runs for further 128 cy-
cles, with the output of the non-linear filter function v(·) being fed back
into the register A. Thus during this stage the NLFSR A uses the following
recurrence relation:

at+128 = 1⊕ at ⊕ at+6 ⊕ at+7 ⊕ at+11 ⊕ at+16 ⊕ at+28 ⊕ at+36 ⊕ at+45⊕

at+55 ⊕ at+62 ⊕ at+7at+45 ⊕ at+11at+55 ⊕ at+7at+28⊕

at+28at+55 ⊕ at+6at+45at+62 ⊕ at+6at+11at+62 ⊕ st.

At the end of the initialisation, the cipher internal state is S0 = (A0,B0), and
it is ready to produce the first output bit of the keystream z0, as specified in
Section 4.1.

5 Security Evaluation

In this section we provide a provisional security analysis of the rakaposhi

cipher, taking into account the most common cryptanalytic methods against
stream ciphers.

5.1 Time-Memory Trade-off Attacks

Time-Memory Trade-off attacks are generic attacks against several cryptographic
constructions, consisting of a precomputation phase and an online phase. In a
typical attack scenario, one would perform extensive offline computation and
store the results, with the goal of reducing the time complexity of the online
attack. Time-Memory Trade-off attacks were originally proposed by Hellman [18]
for attacking the DES block cipher.

In the context of stream ciphers, TMTO attacks were first proposed by Bab-
bage [2], and later improved by Biryukov and Shamir [7]. In these attacks, one
tries to invert the function mapping the cipher internal state to a segment of the
keystream output. As a result, to prevent against such attacks a cipher should
have its internal state at least twice as long as its key length.

On a different attack scenario, proposed by Hong and Sarkar [19, 20], the
function inverted maps the key/IV to a keystream segment. In their original
approach, the IV is treated as part of the secret key, and as a result, prevention
against such attack scenario requires stream ciphers to have the IV at least
as long as the key. More recently Dunkelman and Keller [11] proposed a new
approach, in which an attacker selects in advance several IVs, and mounts the
attack to invert the function mapping the key to a keystream segment (with the
chosen IVs). As a result, it follows that if n is the cipher key length, then the
IV length must be at least 3

2
n to withstand this form of TMTO attack.

The rakaposhi stream cipher uses 128-bit keys and 192-bit IVs, with in-
ternal state with 320 bits. Therefore it withstands the currently known TMTO
attacks against stream ciphers.
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5.2 Guess-and-determine Attacks

In guess-and-determine attacks, the attacker guesses a subset of the cipher in-
ternal state, and recovers further bits from the state based on the observed
keystream and guessed values. This procedure may be repeated for other values
until the full state and/or the secret key is recovered.

For the rakaposhi stream cipher, one may guess a selected subset of the
state of register A and hope to recover bits from B (since A is the source of
non-linearity to both registers). A näıve attack would be to guess all bits of the
NLFSR A, and then recover the state of the DLFSR B. This attack is however
essentially equivalent to a brute force attack on the cipher key, and is thus
considered infeasible.

We have considered a number of alternative scenarios, in which an attacker
guesses a number of bits of the cipher’s internal state, and tries to recover further
bits from the observed keystream. However due to the rakaposhi internal struc-
ture (its registers’ taps and input to non-linear filtering function), we have not
been able to come up with an efficient attack. Thus we believe that rakaposhi

is not susceptible to guess-and-determine attacks.

5.3 Distinguishing Attacks

In distinguishing attacks, one attempts to find ways to distinguish the stream
cipher (considered as a bit generator) from a purely random source of binary
digits. It is notoriously difficult (if not impossible) to provide assurance that a
cipher is not susceptible to distinguishing attacks. In fact some secure construc-
tions (for instance, AES in counter mode) can be trivially distinguished from
a random source [16], and as a result several researchers dispute the general
applicability of some forms of distinguishing attacks against stream ciphers.

For rakaposhi, we tried to construct linear distinguishers, by considering
linear approximations of functions used in the cipher. For instance, the best affine
approximation of the nonlinear filter has bias ǫ = 2−6, and the function uses as
input 6 bits from register B. For fixed values of c0, c1, the number of terms in
the register’s recurrence function f is 11. Now, if we omit the 2-bit input from
the NLFSR for the nonlinear filter, we can construct a linear distinguisher using
11 keystream bits as follows:

D : zt⊕zt+14⊕zt+37⊕zt+41⊕zt+49⊕zt+51⊕zt+93⊕zt+107⊕zt+155⊕zt+176⊕zt+192 = 0,

where we assume two clock bits c0, c1 from the NLFSR are (c0, c1) = (0, 0) for
each feedback function accompanying the distinguisher D. Using the pilling-up
lemma [26], the bias of the linear distinguisher is estimated as 210 ∗ (2−6)11 =
2−56. We note however that the two clock control bits in the linear recurrence
f have to be determined to obtain the correct equation. As a result, the data
complexity of this particular distinguishing attack for the cipher increases to
((1/2−56) ∗ 22∗6)2 = 2136. Thus even by ignoring the effects of the NLFSR A,
this distinguishing attack can be considered infeasible.

We have also considered several other linear approximations, which are better
than the above scenario; however, due to effects of the NLFSR, we have not been
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able to find a more efficient linear approximation. Thus, we expect that the cipher
is secure against distinguishing attacks.

5.4 Algebraic Attacks

Algebraic attacks against stream ciphers were originally proposed in 2003 by
Courtois and Meier [9]. The attack is a powerful cryptanalytic technique against
some LFSR-based stream cipher constructions (eg the filter generator). When
mounting an algebraic attack, one attempts to construct a system of equations
derived from the cipher operation, which can then be solved using a choice of
methods. A stream cipher designer can protect the algorithm against algebraic
attacks by using to compute the keystream, a non-linear filter function z(·) of
high degree, for which the annihilating sets of both z or its complement z + 1
contain no low degree polynomials (the lowest degree of polynomials in either of
these sets is called the algebraic immunity of z).

For the rakaposhi stream cipher, the keystream output zt is computed by
means of a Boolean function over (F2)

10 given by

zt = st+at+bt = v(at+67, at+127, bt+23, bt+53, bt+77, bt+81, bt+103, bt+128)+at+bt.

This function z(·) has degree 7 and algebraic immunity 4 (which is the same of the
function v). Indeed, there are 21 linearly independent functions of degree 4 in the
annihilating set of both z and z+1. However both registers A and B are updated
non-linearly (by functions g and f respectively). This increases very rapidly
the degree and the complexity of the polynomial expression of the keystream
output bits; this was verified experimentally for several clocks of the cipher.
Thus conventional algebraic attacks do not seem to work against rakaposhi.

We note an alternative to the approach above. One could guess several bits
of the register A, in the hope of keeping the resulting degrees at a reasonably
low value (since A is the source of non-linearity to both registers). A trivial,
somewhat näıve algebraic attack against rakaposhi would thus be to guess
all the 128 values for the register A, and generate 21 equations of degree 4 for
each output bit of the cipher. If the state of register A is fully known, then the
complexity of an algebraic attack would be on the order of

(

4
∑

k=0

(

192

k

)

)3

≈ 277

operations, requiring approximately 221 output bits. The total complexity of the
attack would thus be on the order of 2205 operations. One could instead guess
fewer bits from A; however the results above indicate that the overall complexity
of the attack would remain well above the one required for exhaustive key search.
Thus we conclude that rakaposhi is secure against algebraic attacks.

5.5 Analysis of the Initialisation Process

The rakaposhi initialisation process consists of 448 steps. The first 320 steps
affect the subregister B, ensuring that after this initial stage, all bits of the
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Table 1. Diffusion of the Initialisation Process

Stage 1 Stage 2
cycles cycles

0 293 319 105 128

All registers - - - All KEY All KEY
of NLFSR - - - - All IV

All registers - All KEY All KEY All KEY All KEY
of DLFSR - - All IV All IV All IV

DLFSR B have been influenced by all bits of the secret key (that is, the initial
state of NLFSR A) and all bits of the IV (that is, the initial state of DLFSR B).
The second stage consists of further 128 steps, which affects the subregister A,
and as a result all bits of the NLFSR A would have been influenced by all bits of
the IV and the secret key at the end of this stage. This is summarised in Table 1.
We have also analysed how complex the relationship between the state bits and
the secret key / IV are, by computing the algebraic expression of the state bits
during several steps of the initialisation. Our experiments indicate that these are
dense, high-degree polynomials involving a large number of internal state bits.
Thus, the number of cycles in the initialisation process seems to be sufficient
for diffusing the bits of the initial state in a very complex way, and we believe
that rakaposhi is secure against the most recent attacks on the initialisation
process [10, 25, 32, 35].

5.6 Statistical Tests

The statistical properties of the cipher depend on the properties of the output
sequences of the NLFSR and DLFSR; given their construction, we expect the
keystream of the cipher to have good statistical properties. We have evaluated
the statistical properties for the cipher keystream, as well as the output sequences
of the NLFSR and DLFSR using the NIST Test Suite [30]. The results indicated
that the statistical properties of the rakaposhi output sequence are good.

6 Implementation Aspects

In this section we discuss various aspects related to the implementation and
performance of the rakaposhi stream cipher.

6.1 Parallelization

The throughput of rakaposhi can be increased by applying parallelization
techniques. It is in fact possible to increase the cipher output to 64 bits per
clock cycle by adding some additional circuits. To realise n times parallelization
(1 ≤ n ≤ 64), we add circuits for n feedback functions (for f(·) and g(·)), n
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Table 2. Evaluation Results of rakaposhi

Cir. Size Max. Cl. Freq. Throughput Throughput
(Slices) (MHz) (Mbps) / Slices

Spartan-II 199 111.6 111.6 0.56

Spartan-3 194 120.1 120.1 0.62

Spartan-3 (Opt.) 63 155.9 155.9 2.47

Vertex-II 193 218.9 218.9 1.13

Spartan-3 (×8) 342 125.5 1004.0 2.94

Spartan-3 (×16) 445 124.5 1992.0 4.48

Spartan-3 (×32) 849 125.0 4000.0 4.71

Spartan-3 (×64) 1302 95.0 6080.0 4.67

keystream generation functions (for v(·)), and add n− 1 bits to the NLFSR A.
The increase of registers for the DLFSR is not required for parallelization up to
64 times, since the input for the nonlinear filter does not include any of the last
63 bits of DLFSR.

The design of rakaposhi has been optimised for 32 times parallelization:
the last 15 bits of the DLFSR are not used in the feedback function f(·). We
note however that 64 times parallelization is also possible by a design criterion
for NLFSR: the last 65 bits of NLFSR are not used for execution of the feedback
function g(·).

6.2 Circuit Size and Performance

We present here the evaluation results of hardware implementations using an
FPGA simulator. We implemented rakaposhi targeted towards the Xilinx Spar–
tan-II, Spartan-3, and Virtex-II FPGAs. We used Xilinx ISE 9.1 for post-place
and route simulation and static timing analysis. Circuit sizes of the DLFSR,
NLFSR, Nonlinear Filter function on Spartan-II are 1575 gates, 1060 gates, and
147 gates respectively. The circuit size of the whole algorithm is 3130 gates4.

We have also implemented parallelized versions of the algorithm that pro-
duce 8-bit, 16-bit, 32-bit, and 64-bit outputs for each clock cycle. Table 2 shows
evaluation results of circuit size, maximum clock frequency, throughput, and ef-
ficiency for each implementation. The efficiency is computed as throughput per
slice. The efficiency improves due to circuit parallelization and it reaches its max-
imum by 32-times parallelization. The maximum throughput is approximately
6 Gbps using the 64-times parallelized circuit on Spartan-3.

4 This corresponds to approximately one tenth of the circuit size of the K2 stream
cipher [23], a predecessor of rakaposhi which targets however software applications
with high throughput requirements.
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Table 3. Comparison on Spartan-3

Algorithm Key Len IV Len Internal Cir. Size Max. Cl. Thr/ # Cyc.
State (Slices) Freq(MHz) Slices for Init.

Grain [13] 80 64 160 122 193 1.58 160

Grain (opt.) [22] 80 64 160 44 196 4.45 160

Trivium [13] 80 80 288 188 206 1.10 1152

Trivium (opt.) [22] 80 80 288 50 240 4.80 1152

MICKEY-128 [13] 128 128 320 261 156 0.60 416

MICKEY-128(opt.)[22] 128 128 320 176 223 1.27 416

Grain-128(opt.)[22] 128 96 256 50 196 3.92 256

DECIM-128(opt.)[22] 128 128 352 89 43.5 0.49 1584

Rakaposhi 128 192 320 194 120.1 0.62 448

Rakaposhi (opt.) 128 192 320 63 155.9 2.47 448

6.3 Comparison with other Stream Ciphers

As stated in Section 3, one of the design goals of the rakaposhi stream ci-
pher is to complement the eSTREAM portfolio in profile 2. As such, we present
a comparison between various aspects of the rakaposhi implementation and
some of the eSTREAM ciphers in Table 3. We use in this comparison the evalu-
ation results of circuit sizes and maximum clock frequency presented in [13, 22].
We can note that rakaposhi presents a competitive performance profile when
compared with MICKEY-128[5] with regards to throughput per slice. Grain v1
and Trivium are however more efficient than rakaposhi. We note however that
these algorithms do not provide 128-bit security level, which as noted earlier,
we consider a particularly attractive feature when aiming for long-term deploy-
ments. Furthermore, given those ciphers’ state/key/IV sizes, they would appear
to be susceptible to more recently proposed TMTO attacks (see Section 5.1).
We note that the latter remark is also applicable to Grain-128 [17]).

7 Conclusion

In this paper we propose a new stream cipher, called rakaposhi. The algorithm
presents a simple and elegant design, and is particularly suitable for hardware
applications with restricted resources. We have presented a provisional secu-
rity evaluation of the cipher, which indicates that it is secure against the most
common attacks against stream ciphers. Furthermore, evaluation of several im-
plementation and performance aspects shows that rakaposhi is a competitive
alternative to ciphers in the final eSTREAM portfolio. We believe therefore that
rakaposhi can complement the current eSTREAM portfolio in profile 2, while
presenting some attractive additional features, increasing thus the choice of se-
cure lightweight stream ciphers suitable for hardware applications with restricted
resources.
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A Rakaposhi Non-Linear Function

The rakaposhi stream cipher uses the following Boolean function to produce
the keystream output.

v(x0, x1, x2, x3, x4, x5, x6, x7) =
x0x1x2x3x4x5x6 + x0x1x2x3x4x5 + x0x1x2x3x4x6 + x0x1x2x3x5x6x7+
x0x1x2x3x5x6 + x0x1x2x3x5x7 + x0x1x2x3x5 + x0x1x2x3x6x7+
x0x1x2x4x5x6 + x0x1x2x4 + x0x1x2x5x6 + x0x1x2x5x7 + x0x1x2x7+
x0x1x2 + x0x1x3x4x5x6x7 + x0x1x3x4x5x7 + x0x1x3x4x5 + x0x1x3x4x7+
x0x1x3x4 + x0x1x3x6 + x0x1x4x5x6x7 + x0x1x4x5x6 + x0x1x4x5x7+
x0x1x4x6x7 + x0x1x4x7 + x0x1x5x6x7 + x0x1x5x6 + x0x1x5 + x0x1x6+
x0x1 + x0x2x3x4x5x6 + x0x2x3x4x5x7 + x0x2x3x4 + x0x2x3x5x6x7+
x0x2x3x5x6 + x0x2x3x5x7 + x0x2x3x6 + x0x2x4x5x6x7 + x0x2x5x6+
x0x2x5 + x0x2x6x7 + x0x2x7 + x0x3x4x5x6x7 + x0x3x4x5x6 + x0x3x4x5x7+
x0x3x4x5 + x0x3x4x7 + x0x3x5x6x7 + x0x3x5 + x0x3x6 + x0x3 + x0x4x5x6+
x0x4x6x7 + x0x5x6 + x0x6 + x0 + x1x2x3x4 + x1x2x3x5x6 + x1x2x3x5x7+
x1x2x3x5 + x1x2x3 + x1x2x4x5x6 + x1x2x4x6 + x1x2x4 + x1x2x5 + x1x2+
x1x3x4x5x6x7 + x1x3x4x5x7 + x1x3x4x6x7 + x1x3x4x6 + x1x3x4+
x1x3x5x6 + x1x3x5 + x1x3x6 + x1x3x7 + x1x4x5x6x7 + x1x4x5x7+
x1x5x6 + x1x5x7 + x1x5 + x1x6x7 + x1x6 + x1 + x2x3x4x5x6 + x2x3x4x5x7+
x2x3x4x5 + x2x3x4x6x7 + x2x3x4 + x2x3x5x7 + x2x3x6x7 + x2x3x6+
x2x4x5x6 + x2x4x5x7 + x2x4x5 + x2x4x6x7 + x2x4x6 + x2x4x7 + x2x4+
x2x5x6x7 + x2x6x7 + x2x6 + x2x7 + x3x4x5x6x7 + x3x4x5 + x3x4x6x7+
x3x4x6 + x3x4x7 + x3x5x6x7 + x3x6x7 + x3x6 + x3x7 + x4x5x6 + x4x5+
x5x6x7 + x5x6 + x5 + x6 + x7.

B Test Vector

Key: 00000000000000000000000000000000

IV: 000000000000000000000000000000000000000000000000

Internal State Bits after the Initialization:

(NLFSR-A) 3c12b227eccb28a0baf327a7d42a51e5

(DLFSR-B) 619344585ae94087412e9863bd028f18f42eefe6378c5011

Keystream:

7a72bd702002121880960ed4ae0c054ecad09b0459c334866fbbd8

84aa0ff5585497943c6095d427c96eeb8719f87a02761465d0f62a

1e0faad849302104827e6db2e0b81e49a7b81ce170e4cf261468d6

6b2e6e13cfcabca1073f2077298b2c0fe0da1feb8c1e20b27f5907

b883eb17c5165113acfb2a7ca7a0c6cf3578f87c


