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Abstract. We present an overview of the results of the project “Beyond
Timed Automata” of the Collaborative Research Center AVACS (Auto-
matic Verification and Analysis of Complex Systems) during the period
2008–2011, which advances the automatic verification of high-level spec-
ifications of systems exhibiting the three dimensions of process behavior,
complex infinite data, and continuous real-time—beyond the capabilities
of Timed Automata.

1 Introduction

Computers are needed to control the behavior of complex systems, for instance
in the traffic domain, where assistance systems should guarantee the collision
freedom of traffic agents such as cars, trains, and planes. Such applications are
safety critical, i.e., a malfunction of the computers is costly and dangerous. These
applications necessitate the use of formal models of the overall system and of
formal verification for establishing the relevant safety properties. The models
must be able to represent various aspects of the systems such as state spaces
and their transformation, communication between system components, real-time
constraints, interfaces to a continuously evolving physical environment, and dy-
namically changing system structures. To cope with such models in a manage-
able way, combined specification techniques have been proposed, integrating well
researched specification techniques for individual system aspects. It is a major
research challenge to develop methods for the automatic verification and analysis
of such combined specifications modeling complex real-life systems.

To address this challenge the research center AVACS (Automatic Verifica-
tion and Analysis of Complex Systems) was founded in 2004. In this center,
researchers of the Universities of Oldenburg, Freiburg and Saarbrücken as well
as the Max-Planck-Institute for Informatics in Saarbrücken collaborate. AVACS
brings together experts in semantic modeling and specification with experts in
verification and analysis techniques.
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In the following we give an overview of the results of one of the projects in the
research area R (Real-Time) achieved during Phase 2 of AVACS (2008–2011):
the project R1 “Beyond Timed Automata” that advances the automatic veri-
fication of high-level specifications of systems exhibiting the three dimensions
of process behavior, complex infinite data, and continuous real-time—beyond
the capabilities of Timed Automata. To this end, transformation and decom-
position techniques are combined with enhanced proof procedures resting on
the paradigms of abstraction refinement and local theory extensions. This paper
complements the more technical overview of Phase 1 of R1 presented in [32].

2 Overview of the Project R1

The general set-up of the project is as follows. For the specification of real-time
systems, the language CSP-OZ-DC (or COD for short) integrating aspects of
Communicating Sequential Processes (CSP), Object-Z (OZ), and Duration Cal-
culus (DC) has been developed [23]. We use the automata-theoretic approach for
automatic verification of systems against real-time requirements, whereby both
the system and the requirement are transformed into a semantically equivalent
parallel composition of Phase-Event-Automata (PEA), which allow for complex
data in their phases [21]. PEA are the stepping stone for further transforma-
tions into the input languages of verification engines developed in the project.
These engines are the model checkers ARMC [35] and SLAB [11], and the tool
H-PILoT [25] for dealing with complex data; they implement the paradigms of
abstraction refinement and local theory extensions. The graphical tool Syspect
realizes a tool chain from COD down to these verification engines [15].

The publication [31] reflects the state of automatic verification in R1 at the
start of Phase 2. Then a subclass of DC—involving counterexample formulae and
allowing for Boolean combinations of timed phases—could be used as real-time
conditions inside CSP-OZ-DC (COD) specifications. In particular, the transla-
tion of counterexample formulae into PEA involves a sophisticated power set
construction to cope with the nondeterminism arising from overlapping phases.
PEA are translated further into Transition Constraint Systems (TCS) serving
as input to the model checkers ARMC (Abstraction-Refinement Model Checker)
and SLAB (Slicing-Abstraction Model Checker) that use Craig interpolation and
decision procedures for data in order to refine their abstractions. Some reduc-
tions of the state spaces were achieved by applying a priori slicing techniques to
COD specifications [4,5].

The viability of the whole approach has been demonstrated on the case study
of Emergency Messages between two trains and a radio block center (RBC)
in the context of the European Train Control System (ETCS) at Level 3 [31].
Besides continuous real-time, this case study involved infinite scalar data types
for the position and speed, communications of these data between trains and
the RBC, as well as parameters for the length and target speed of the trains.
We could automatically verify real-time requirements of the system with ARMC
and SLAB. Collision freedom could not be proven push-button, but required a
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manual decomposition into real-time requirements that in turn could be verified
automatically [31].

While each of the ETCS real-time requirements depends only on a subset
of all the parallel PEA, the requirement of collision freedom depends on the
full set of parallel PEA. During Phase 1, the parallel product of PEA needed
to be computed before translating the result into TCS because neither ARMC
nor SLAB could process a parallel composition directly. Thus for large real-time
systems, the state space explosion arising from the parallel product of the PEA
limited the applicability of the approach.

In Phase 2, the project R1 advanced automatic verification of real-time sys-
tems with complex data in the following directions.

– Explicit durations. The class of real-time requirements amenable to auto-
matic verification has been extended to formulae with explicit durations.

– Structural optimization. Two approaches to counteract the problem of state
space explosion arising from the calculation of the parallel composition of
PEA have been developed, employing layered composition and verification
architectures.

– Automating verification. Novel concepts supporting the automatic verifica-
tion of systems have been developed, based on subsequence invariants, re-
finement of trace abstraction, and nested interpolants.

– Complex data. The scope of data that can be handled automatically has been
extended considerably by the method of local theory extension.

– Verification tools. The model checker SLAB, pioneered in Phase 1 of R1,
has been extended to exploit structural information. The new tool H-PILoT
supports hierarchical reasoning in chains of local theory extensions. The
graphical tool Syspect builds bridges from COD to these verification tools.

– Case studies. We mastered the state space explosion problem in the case
study involving ETCS Emergency Messages and succeeded in the auto-
matic verification of parametric specifications with complex railway network
topologies.

We now describe these achievements in some more detail.

2.1 Explicit Durations

Explicit durations are a potential source of undecidability in the time dimension
of the system specifications, and correspond to the (un-)decidability frontier be-
tween Timed Automata (TA), for which location reachability is decidable, and
Linear Hybrid Automata (LHA), for which reachability happens to be undecid-
able. This frontier has been populated by variants of Priced Timed Automata
(PTA)—a continuous-time variant of weighted automata—and stopwatch au-
tomata (SWA). Whereas PTA augment TA with continuous observer variables
that may neither be reset nor be queried in guards and invariants, SWA do allow
such resets and queries. As a consequence, some PTA variants admit decidability,
while SWA are as expressive as LHA and thus not decidable.
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A generalization of the translation of test formulae into PEA to a translation
of formulae with explicit durations into PEA with integrators (a variant of SWA
with possibly infinite data) was pursued. While doing so, we discovered that
the basic structure of this translation can be isolated even in the setting of dis-
crete time and formal languages, leading to the concepts of availability automata
and corresponding regular availability expressions [22]. Availability automata are
similar to weighted automata. However, the availability counters therein may also
be queried and reset as for SWA. Availability automata provide an alternative
language-theoretic characterization of request-response scenarios formalized by
means of weighted automata in Henzinger’s quantitative languages [7].

PTA, on the other hand, have only observer variables termed as costs in
addition to the clocks of TA, and thus permit the analysis and optimization of
phenomena (such as scheduling) beyond the scope of TA within certain decidable
model classes lying at the frontier between TA and LHA. The PTA variants lying
at this frontier correspond to explicit durations, owing to earlier AVACS work
[16] on a decision procedure (that involves reduction to PTA having multiple
positively valued cost variables) for model-checking TA against DC requirements
having constraints on positive linear combinations of explicit durations with only
upper bound duration constraints.

2.2 Structural Optimization

To avoid state space explosion, we pursued two different approaches. We struc-
turally optimized the system specifications at the design-level, prior to verifica-
tion. To this end, the operator of layered composition was lifted from the setting
of (hierarchical) process graphs in [27] to that of TA extended with data [33].
Layered composition (intermediate between sequential and parallel composition)
allows for the transformation of the system from a parallel representation into an
equivalent layered and finally sequential one, provided certain conditions (con-
cerning the independence of transitions wrt. variables accessed or the precedence
of transitions enforced by timing in guards and actions) hold. The equivalence
between the parallel and sequential representations induces an a priori design-
level partial order reduction of the system’s state space, with the preservation of
stutter-invariant (i.e., next-free) temporal requirements. As an illustrative ap-
plication, we revisited in [33] the UPPAAL case study of a collision avoidance
protocol for an audio/video system by Bang & Olufsen [18]. We could show
in [33] a possible a priori design level reduction by a factor of 300 of the number
of discrete locations in the composite system representing the collision avoidance
protocol of [18].

The concept of verification architectures (VA) was introduced in [12] (and
elaborated in the PhD thesis [13]). VA have as parameters component processes
with data constraints and timing requirements, and offer an abstract behavioral
protocol view on complex real-time systems. In combination with COD, the
component processes of VA formalize parametric version of CSP-OZ-DC and are
represented as unknown processes satisfying certain local real-time requirements.
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A VA splits system runs into several phases, formalized as unknown processes
satisfying local real-time assumptions. Once a desired global requirement for a
VA protocol is verified by proof rules of a dedicated dynamic logic, it is also
guaranteed by all instances of that protocol satisfying local real-time assump-
tions. Thus, given a correct VA, we verify global safety requirements of concrete
models by combining local analyses: for a concrete model—usually given as a
complex specification in a combined language like COD—(1) the protocol struc-
ture needs to be an instantiation of that of the VA (entailing a purely syntactic
check), and (2) the validity of local real-time assumptions for the corresponding
components of the concrete specification needs to be model-checked by ARMC
or SLAB. The VA approach thus provides: (1) a formal framework of design
patterns for complex, combined real-time specifications, and (2) a decomposi-
tional approach that reduces global verification to local proof tasks. In contrast
to our behavioral protocol-based VA patterns, previous approaches on formal
design patterns either focus on handling standard design patterns that consider
static analysis of code and structures in object-oriented languages, e.g., [28], or
do not incorporate real-time aspects [37] or infinite data [17]. As a large-scale
application of this VA approach, the Phase 1 case study of ETCS Emergency
Messages has been revisited in [13].

2.3 Automating Verification

K. Dräger and B. Finkbeiner [10] introduced subsequence invariants that char-
acterize the behavior of a concurrent system in terms of the occurrences of syn-
chronization events. Unlike state invariants that refer to the state variables of
the system, subsequence invariants are defined over auxiliary counter variables
that reflect how often the event sequences from a given set have occurred so far.
A subsequence invariant is a linear constraint over the possible counter values
that is preserved when a given process is composed with additional processes.
Subsequence invariants can therefore be computed individually for each process
and then be used to reason about the full system. Subsequence invariants can
be computed efficiently by a fixed point iteration. In his PhD thesis, K. Dräger
extended the results of [10] to include more general synchronization patterns,
and showed how to integrate the fixed point iteration for subsequence invariants
with the SLAB refinement loop, making it possible to check the validity of a
proposed invariant for an infinite-state system.

M. Heizmann, J. Hoenicke and A. Podelski [19] presented refinement of trace
abstractions as a method to extend the scalability of automatic verification.
A known bottleneck of automatic verification based on the classical CEGAR
(counterexample-guided abstraction refinement) approaches is the intensive use
of a theorem prover. This bottleneck was addressed using the following two tech-
niques. First, a precise abstraction is obtained given several coarse abstractions.
The crux of the technique is that only automata theoretic operations are used,
but no theorem proving is needed. Second, a coarse abstraction is obtained given
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an infeasibility proof of a spurious counterexample from an interpolating theo-
rem prover. In this construction, a theorem prover is queried only to prove the
inductivity of several selected transitions.

M. Heizmann, J. Hoenicke and A. Podelski [20] introduced a novel technique
for the verification of a sequential system that consists of several procedures.
While constructing an abstraction in a CEGAR based automatic verification,
two contrasting requirements arise. On one hand, the refined abstraction should
be precise; on the other hand, the refined abstraction should be small. Using the
information obtained from interpolants of an unsatisfiability proof for an infeasi-
ble counterexample has shown to be useful tradeoff. In [20], a nested interpolation
scheme was presented, where interpolants are not only tailored to a trace but
also local to a procedure. This interpolation scheme allows one to represent the
whole system by one abstraction, but analyzes the system in a modular way.
Calls of procedures are summarized and reused in the further analysis. Further-
more, the interpolants obtained satisfy an inductiveness property, which allows
one to combine this with the abstraction techniques from [19].

2.4 Complex Data

V. Sofronie-Stokkermans, together with S. Jacobs and C. Ihlemann, identified
a large number of theories—in particular theories of data structures related
to CSP-OZ-DC specifications—for which efficient reasoning procedures exist.
For this, they used and extended their results on local theory extensions [26].
The locality property of a theory extension allows them to replace universally
quantified clauses by a set of ground instances. This makes a reduction to a
satisfiability test in the underlying theory possible.

Decidable fragments of theories of data structures were studied before, e.g.,
a fragment of the theory of arrays [3] and a theory of pointers [30]. Sofronie-
Stokkermans et al. [24] presented and generalized these results in a locality
framework. In [14] and the PhD thesis of C. Ihlemann, a more general fragment
of the theory of pointers was considered, which turned out to be extremely useful
for the verification of systems of trains with a complex track topology.

2.5 Verification Tools

To demonstrate applications of R1 techniques, we developed a tool chain. It
takes a graphical UML model of a real-time system as input, applies property-
preserving translations to COD specifications and via PEA into Transition Con-
straints Systems, following the R1 verification approach. The resulting transition
system is then passed to the verification tools SLAB, H-PILoT, or ARMC.

The SLAB (Slicing Abstraction) model checker [6,11] was completely re-
designed during Phase 2. In order to automatically verify the requirements
of layered networks of PEA, it now incorporates a specialized abstraction re-
finement procedure. In contrast to the approach in Phase 1, where the model
checker accepted a product of system processes, the new version accepts a struc-
tured description of the analyzed system represented in terms of parallel, se-
quential and layer composition. The tool initializes the refinement cycle with an
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abstraction that accurately represents the control structure of the system but
over-approximates its behavior with respect to complex data.

During the abstraction refinement cycle, SLAB inspects the current abstrac-
tion to find a counterexample. From the counterexample, the tool constructs a
Craig interpolant, and uses it to split the abstraction locally, thus refuting the
counterexample. In order to reduce the size of intermediate abstractions, SLAB
applies two sets of rules. The first set consists of slicing rules [6] applied locally to
some process in the abstraction, eliminating its inconsistent or irrelevant parts.
The second set consists of parallel reduction rules tracing inconsistencies based
on the synchronization between parallel processes. The two sets of rules mutually
benefit from each other: slicing irrelevant parts in a process reduces its synchro-
nization capabilities, and thus opens the way to apply the parallel reduction
rules; and, vice versa, parallel reductions result in additional slicing steps.

The verification tool H-PILoT (Hierarchical Proving by Instantiation in Local
Theory Extensions) [25] implements the method for hierarchical reasoning in
extensions of logical theories and chains thereof. By this method, the satisfiability
of constraints over specific theory extensions identified to be local are reduced
to the satisfiability of constraints in a base theory for which a dedicated prover
exists. Standard SMT solvers can then be used to check the satisfiability of the
formulae of the base theory. With this approach, the invariant checking problem
for local theory extensions becomes decidable. H-PILoT has been used to verify
requirements of COD specifications with rich data types like arrays or pointer
data structures.

We developed the graphical tool Syspect (System Specification Tool) [15] for
modeling, specifying, and automatically verifying reactive systems with contin-
uous real-time constraints and complex, possibly infinite data. It represents the
R1 tool chain. For modeling these systems, a UML profile comprising component
diagrams, protocol state machines, and class diagrams is used; for specifying the
formal semantics of these models, the combination CSP-OZ-DC is employed; for
verifying requirements of these specifications, translators are provided to the in-
put formats of the model checkers ARMC and SLAB as well as the tool H-PILoT.
By this means, Syspect bridges the gap between informal modeling techniques
from software engineering and formal analysis of real-time systems.

2.6 Case Studies

We first revisited the case study of ETCS Emergency Messages between two
trains considered in Phase 1 of R1. While it is still not possible to verify the
global requirement of collision freedom entirely in a push-button fashion, we are
now able to structure the proof into two formal parts: (1) A verification archi-
tecture with real-time assumptions on the “unknown processes” describes the
abstract protocol of the case study. The global requirement of collision freedom
is verified manually using the proof rules of a dedicated dynamic logic. (2) An
instantiation of that verification architecture yields the full case study. The as-
sumptions made for the “unknown processes” are verified fully automatically
using the model checkers ARMC or SLAB. The verification architecture, the
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instantiating model, and the automatic verification of the instantiation are real-
ized with the Syspect tool. We then considered a variant of the ETCS case study
without communication aspects and with a simplified control structure, but a
complex track topology. In this case study, an arbitrary number of trains drive
along a track network, specified by first-order formulae with data in doubly-
linked lists. Invariant requirements like keeping a safe distance could be verified
automatically. For this, the high-level COD specification with these data, mod-
eled with Syspect, was at the semantic level of PEA automatically translated
into the input format of the tool H-PILoT [14].

3 Conclusion

We presented an overview of the achievements of the AVACS project R1 “Beyond
Timed Automata” during the period 2008–2011. While there have been some
works outside of AVACS dealing with real-time systems augmented with data,
these works do not cover the scope of the specification and verification techniques
considered within R1.

– The works in [2,8,29] consider (variants of) timed automata augmented with
(possibly unbounded) data structures (such as a push-down stack). However,
these works deal predominantly with theoretical decidability results and do
not present techniques amenable to automated verification.

– The works [1,9,34,36] present techniques for the automated reasoning of con-
tinuous real-time systems with data. The techniques in [9,1,36] are compo-
sitional and modular, but involve timed automata variants enriched with
finite data. The techniques in [34] deal with complex (and possibly infinite)
data, but involve equational reasoning based on rewriting logics, and are not
compositional, and thus not amenable to modular verification.

– Furthermore, the timing requirements that can be handled in each of the
above works are much more confined than the (explicit) duration require-
ments considered within R1.

In the coming third phase of AVACS, the project R1 will emphasize verification
“beyond yes/no” by considering parametric systems and requirements. We will
also pursue the paradigm “design meets verification” to find design styles and
transformations for real-time systems that optimize their structure to ease their
automatic verification.
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