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Optimal and Near-Optimal Signal Detection in
Snapping Shrimp Dominated Ambient Noise
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Abstract—The optimal detection of signals requires detailed
knowledge of the noise statistics. In many applications, the as-
sumption of Gaussian noise allows the use of the linear correlator
(LC), which is known to be optimal in these circumstances.
However, the performance of the LC is poor in warm shallow
waters where snapping shrimp noise dominates in the range 2–300
kHz. Since snapping shrimp noise consists of a large number
of individual transients, its statistics are highly non-Gaussian.
We show that the noise statistics can be described accurately
by the symmetric -stable family of probability distributions.
Maximum-likelihood (ML) and locally optimal detectors based
on the detailed knowledge of the noise probability distribution
are shown to demonstrate enhanced performance. We also estab-
lish that the sign correlator, which is a nonparametric detector,
performs better than the LC in snapping shrimp noise. Although
the performance of the sign correlator is slightly inferior to that
of the ML detector, it is very simple to implement and does not
require detailed knowledge of the noise statistics. This makes it an
attractive compromise between the simple LC and the complex
ML detector.

Index Terms—Detection, impulse noise, snapping shrimp noise.

I. INTRODUCTION

SNAPPING shrimp (family Alpheus and Synalpheus) pro-
duce loud snapping sounds by extremely rapid closure of

their snapper claw. The closure produces a high-velocity water
jet leading to the formation of a cavitation bubble, which col-
lapses rapidly, causing a loud broadband snapping sound [1].
The shrimp are usually found in such large numbers that there is
a permanent crackling background noise in warm shallow wa-
ters throughout the world. The snapping shrimp source levels
can be as high as 190 dB (peak-to-peak) re 1 at 1 m [2].
At low frequencies, noise from shipping is significant; above

snapping shrimp noise dominate [3]. As ambient snap-
ping shrimp noise is composed of impulsive noise sources, the
resulting noise statistics are non-Gaussian [4], [5].

The problem of detecting a known signal with unknown
amplitude in noise is commonly encountered in areas such as
communications, target detection, ranging, and environmental
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sensing. If the noise statistics are known, an optimal detector
can be designed based on the maximum-likelihood (ML) crite-
rion. When the noise is Gaussian, the ML detector is the linear
correlator (LC) [6]. Unlike a general ML detector, the LC does
not require knowledge of the standard deviation of the Gaussian
distribution. In the presence of non-Gaussian noise, the LC
is no longer optimal. In spite of this, many signal processing
algorithms still use the LC for signal detection in non-Gaussian
noise due to its simple implementation and the lack of detailed
statistical information about the noise.

Since the LC is not optimal in snapping shrimp dominated
ambient noise, a significant potential exists for enhancing the
detection performance of signal processing algorithms in these
waters. Nielsen and Thomas explored the use of nonparametric
detectors in snapping shrimp noise [4], however, they concluded
that the LC performed better than nonparametric techniques.
This conclusion is not in agreement with the results obtained in
this paper. More recently, Bertilone and Killeen modeled snap-
ping shrimp noise using a Gaussian–Gaussian mixture, how-
ever, they concluded that there were some inconsistencies [7].
They found that locally optimal (LO) detectors performed better
than the LC at low signal-to-noise ratios (SNRs) but failed at
high SNRs.

In this paper, we show that snapping shrimp noise can be de-
scribed accurately by the -stable family of probability distri-
butions. We also demonstrate, via simulation and field experi-
ments, that optimal detectors based on the -stable distributions
perform well in such noise environment, and that the nonpara-
metric sign correlation (SC) detector is a near-optimal alterna-
tive. Since the SC detector shares the advantages of the LC de-
tector and yields better performance, it is suited to many signal
detection tasks in warm shallow waters.

II. AMBIENT NOISE STATISTICS

A. Ambient Noise Data

Two data sets collected at different locations in Singapore
waters at different times of the year were used as ambient noise
samples. At both locations, the water depth is about 15–20 m,
the seabed is sandy/muddy and the water is warm (25–30 C)
throughout the year. The data was acquired at a sampling rate
of 500 kilo samples per second (kSa/s) using a high-frequency
data acquisition system (HifDAQ) [8]. The acquisition system
has an analog bandpass filter that allows acoustic data between
1–180 kHz to be recorded. This data was prewhitened using a
64-order digital finite impulse response (FIR) filter. The analysis
and results presented in this paper are based on these data sets.
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Fig. 1. Normal probability plot of snapping shrimp dominated ambient noise
shows heavy-tails.

In addition to these two broadband data sets, lower frequency
(1–8 kHz) data collected at many different locations in Singa-
pore waters was used to confirm that -stable distributions de-
scribed the data accurately.

B. Non-Gaussian Statistics

In the design of detectors, it is important to take into ac-
count the statistics of the noise. The impulsive nature of snap-
ping shrimp sound leads to a non-Gaussian distribution. This
is clearly seen from the deviation from linearity in the normal
probability plot of the noise (Fig. 1). The snapping shrimp domi-
nated ambient noise has much heavier tails than Gaussian noise.
In spite of this clear deviation from Gaussian statistics, it is
common to use the Gaussian assumption to simplify signal pro-
cessing. We show in the following sections that this assumption
produces substantially inferior detection performance.

C. The -Stable Distribution

Impulsive noise tends to produce large-amplitude excursions
from the average more frequently than Gaussian signals. The
probability density function (pdf) for such noise decays less
rapidly than the Gaussian pdf, leading to heavy tails. The family
of stable distributions provides a useful theoretical tool for such
signals [9]. Stable distributions are a direct generalization of
the Gaussian distribution and include the Gaussian as a lim-
iting case. The characteristic exponent of the distribution
controls the heaviness of its tails. A small positive value for
represents highly impulsive distributions while close to 2 in-
dicates Gaussian-like behavior. When , the distribution
reduces to a Gaussian distribution. The stable family of distri-
butions arises from a generalized central limit theorem, which
states that the sum of independent and identically distributed
random variables with or without a finite variance converges to
a stable distribution by increasing the number of variables [10].
The defining feature of stable distributions is the stability prop-
erty, which states that the sum of two independent stable random

variables with the same characteristic exponent is stable with the
same characteristic exponent [9].

The stable distribution is described by four parameters: The
characteristic exponent , the scale parameter , the loca-
tion parameter , and the symmetry parameter . An impor-
tant subclass of the -stable distributions, known as the sym-
metric -stable distribution is characterized by
and . The distribution can be most conveniently de-
scribed by its characteristic function [11]

(1)

In the previous expression, is the characteristic exponent con-
trolling the heaviness of the tails. The scale parameter , also
known as dispersion, determines the spread of the distribution
in a similar way to the variance in a Gaussian distribution. When

, equals half the variance. For all other values of , the
variance of the stable distribution is infinite. A related param-
eter often used with stable distributions is (defined as ),
which plays the same role as the standard deviation for Gaussian
random variables. The pdf of the distribution can be com-
puted from the characteristic function [12]

(2)

Unfortunately, no closed form expression exists for the general
density and distribution functions, except for the Gaussian

and Cauchy cases. However, there are efficient
numerical methods for computing the pdf [13].

We now describe the procedure to model ambient noise using
the distribution. For an acoustic signal, the mean noise
pressure must be zero; hence, the location parameter for the dis-
tribution must also be zero. The other parameters of the distribu-
tion have to be estimated. Several estimators for the parameters
of the have been developed [9]. Of these, fractile-based
estimators are easy to use and are known to be robust. A -frac-
tile is defined as the value larger than or equal to

observations from a set of observations. Fractile-based
estimators use various -fractiles of the observed samples to es-
timate the parameters of the underlying distribution. To estimate
the noise parameters, we use a fractile estimator for developed
by McCulloch [14] and a fractile estimator for developed by
Fama and Roll [15]. The fit for noise samples from var-
ious locations in Singapore waters were very good, with typical
values of in the range of 1.6–1.9. The value of is depen-
dent on the bandwidth of the recorded signal. For a bandwidth
of 200 kHz, typical values of were in the range of 50 000 to
150 000 . Sample fits for two ambient noise samples
from two different locations are shown in Fig. 2. The Gaussian
fit is also shown in the same figure for comparison. The devi-
ation of the data from the Gaussian is highly systematic and
cannot be attributed to sampling.

A Kolmogorov–Smirnov test [16] was applied to 10 000 sam-
ples randomly chosen from the data to test the goodness of fit
of the specified probability distribution to the data. The hypoth-
esis that the data was obtained from a Gaussian distribution was
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Fig. 2. Amplitude probability plot of snapping shrimp dominated ambient
noise showing that the probability distribution can be well approximated
using S�S distribution. (a) Location 1 (fit parameters: � = 1:86,
c = 7:9 � 10 �Pa). (b) Location 2 (fit parameters: � = 1:82,
c = 1:5 � 10 �Pa).

rejected for both data sets at a 1% level of significance. The hy-
pothesis that the data was obtained from an distribution
was accepted for both data sets at a 1% level of significance.
Similar tests for lower frequency data from other parts of Sin-
gapore waters led to the same conclusion.

III. PARAMETRIC DETECTION

Having modeled the ambient noise using an distribu-
tion, we can estimate its parameters using the fractile estima-
tors. Once the noise distribution is known, optimal detectors can
be designed. As the pdf of the distribution does not have
a closed form solution, the detectors make use of the numerical

approximations of the pdf. Two optimal parametric detectors are
described below.

A. Maximum-Likelihood Detector

An ML detector can be developed for signals of arbitrary
strength in noise. Letting be the signal, the signal
strength and the noise, the observed data can be
written as

(3)

Given the noise pdf of , a likelihood ratio function
can be written as a function of the estimated signal strength

(4)

Maximizing the likelihood ratio , or equivalently, minimizing
the negative log-likelihood ratio then gives us the best esti-
mate of signal strength

(5)

The estimated signal strength is expected to be close to zero
when no signal is present.

In the case of the distribution, the minimization of
does not yield a closed-form solution in general. Numerical min-
imization of leads to an optimal estimate of signal strength,
but typically is computationally intensive. Although its compu-
tational complexity makes the ML detector impractical for most
real-time applications, we use the ML detector as a benchmark
for the performance of other detectors in ambient noise.

For the special case of , the distribution reduces
to a Gaussian distribution and the minimization in (5) results in
the familiar LC estimator

(6)

B. Locally Optimal Detector

The development of detectors in the presence of noise
has been investigated by several researchers [6], [9], [17]. A
globally optimal (commonly known as uniformly most powerful
or UMP) receiver does not exist in the general case. However,
locally optimal receivers can be designed for the detection of
weak signals by introducing a nonlinear transfer function before
a standard LC detector. The nonlinear transfer function ,
can be determined from the noise pdf

(7)
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Fig. 3. (a) Structure of a locally optimal detector in S�S noise. (b) Sample
nonlinear transfer function for a locally optimal detector in S�S noise.

Since is not available in closed form, we resort to nu-
merical methods to compute the transfer function. The structure
of the detector and a typical transfer function for noise is
shown in Fig. 3. For small values, the transfer function is ap-
proximately linear. For large values, the transfer function van-
ishes. The improved performance of the LO detector can be un-
derstood by observing that the transfer function retains weak
signals with minimal distortion while suppressing large ampli-
tude noise.

IV. NONPARAMETRIC DETECTION

Parametric detection schemes require that the statistical dis-
tribution and parameters of the noise be determined before de-
tection. On the other hand, nonparametric detectors are designed
without knowledge of the exact noise distribution. Although
this can be considered an advantage, we expect a penalty in
performance resulting from the lack of detailed information of
the noise distribution. Nonparametric detectors are often useful
when it is not possible or convenient to determine the noise dis-
tribution before detection.

The SC detector is obtained by the introduction of a simple
nonlinearity (the sign function, sgn) before the standard LC es-
timator. The denominator of the LC estimator (6) is simply a
scale factor and, therefore, can be dropped. The output of the
SC detector is thus given by

(8)

Fig. 4. Detection curves for ML, LO, SC, and LC detectors at SNR of 5 dB.

where

if
if
if .

The SC detector is a locally optimal detector in double exponen-
tial density noise and also exhibits robust performance in many
other types of non-Gaussian noise [18]. It is an attractive de-
tector since it is nonparametric and numerically very simple to
implement.

V. DETECTOR PERFORMANCE

A. Numerical Simulation

We tested the effectiveness of LC, ML, LO, and SC detectors
for detecting a signal in additive ambient noise using Monte
Carlo simulations with 50 000 iterations. During each iteration,
a direct-sequence spread spectrum signal (50-kHz center fre-
quency, 15-kHz spread, 2-ms length) was randomly added to
a recorded ambient noise sample . The detection
performance of the detectors was then computed based on
their ability to correctly determine the presence or absence of
the signal. The simulations were repeated for varying values
of signal strength to test performance as a function of SNR.
Usually SNR is defined as the ratio of the signal power to noise
power. Since noise has theoretically infinite variance
and hence infinite power, the usual definition of SNR is not
meaningful for our analysis. We adopt the ratio of signal power
to noise dispersion as a measure of SNR [9] since dispersion
plays a similar role in noise as variance does in Gaussian
noise. When and the noise reduces to Gaussian
noise, the dispersion is equal to half the variance.

Fig. 4 shows the detection curves for the detectors at a low
SNR of 5 dB. It is clear that the ML and LO detectors display
the best performances with the SC detector slightly worse than
these optimal detectors. The LC detector is the worst as it is
unable to achieve low false alarm probabilities . At high

, the LC detection probability is sometimes slightly better
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Fig. 5. Detection curves for ML, LO, SC, and LC detectors at SNR of 10 dB.

than the SC. However, it is more common to operate the detector
at low values of .

Fig. 5 shows the detection curves at a moderate SNR of 10 dB.
The same trend is clearly visible; the ML and LO detectors are
the best, followed by the SC, and then the LC. The LC again
cannot achieve as low a as the others. At high values of de-
tection probability and consequently , the LC performance
is somewhat worse than the other detectors. At intermediate
values of , the SC and LC performances are similar, but not
as good as the ML and LO detectors.

At a high SNR of 15 dB, the SC performs only slightly worse
than the ML and LO (Fig. 6). The LC is consistently inferior; it
fails to achieve low and this trend continues at even higher
SNRs.

Fig. 7 shows the performances of the detectors over a SNR
range 0–30 dB for a probability of false alarm rate of se-
lected by choosing a detection threshold empirically. Although
the detection curves suggest that the ML and LO detectors are
significantly better than the SC detector, the low perfor-
mance of the SC detector is only slightly inferior to the ML and
LO detectors. The LC detector is considerably poorer, with a re-
quirement of about 5–10 dB higher SNR for the same detection
level.

The near-optimal performance and low complexity of the SC
detector at low SNR makes it attractive for use as a detector in
snapping-shrimp dominated ambient noise. When performance
requirements are critical and the noise probability distribution
parameters are known, an ML or LO detector may be used. The
LO detector is simpler to implement and computationally less
intensive than the ML detector. However, the latter has the ad-
vantage that it also provides an estimate of the signal amplitude,
which the LO and SC detectors cannot do.

B. Experimental Validation

Although the simulations used ambient noise data recordings
from the sea, actual mixing of the noise with the signal was per-
formed numerically. The tests suggested that the SC detector

Fig. 6. Detection curves for ML, LO, SC, and LC detectors at SNR of 15 dB.

Fig. 7. Performance of a detector based on ML, LO, SC, and LC.

should have a superior performance to the LC detector for data
recorded in Singapore waters. To test whether this is indeed true,
we tested both detectors with field data. The ML and LO detec-
tors were not tested due to computational limitations and the
unavailability of independent ambient noise samples to obtain
detailed noise statistics.

A spread-spectrum signal with center frequency 40 kHz,
spread 40 kHz and duration 30 ms was transmitted and recorded
over a distance of 550 m in Singapore waters. Fig. 8 shows
the experimental setup. The signal was repeated 100 times at a
repetition rate of 10 transmissions per second. The signal was
acquired at a sampling rate of 250 kSa/s and stored for later
analysis.

Before detection, the received signal was prewhitened and
bandpass filtered to reduce out-of-band noise. The filtered signal
was then passed through LC and SC detectors with a threshold
chosen to satisfy a of . For this false alarm rate and
a 10-s data set sampled at 250 kSa/s, one would expect 2.5
false alarms. Of the 100 transmissions, the LC detector correctly
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Fig. 8. Schematic representation of the experimental setup during sea trials.

identified 40 transmissions with three false alarms. The SC de-
tector correctly identified 59 transmissions with one false alarm.
The performance of the SC was clearly better than the LC in
terms of detection probability and number of false alarms.

VI. CONCLUSION

We have demonstrated that snapping shrimp dominated am-
bient noise can be represented accurately by the proba-
bility distribution. The parameters of the distribution can
be determined using fractile-based estimators. The knowledge
of the noise probability distribution enables us to develop op-
timal ML and LO detectors. The performance of these detectors
was found to be significantly better than the more conventional
LC detector. For weak signals, a lower SNR could produce the
same detection performance if an optimal detector was used in-
stead of an LC detector. When the noise distribution parameters
are unknown, a nonparametric SC detector may be used. The
performance of this detector was found to be comparable but
slightly inferior to the optimal detectors. The simple implemen-
tation and near-optimal performance of the SC detector make it
an attractive choice for many applications.

The SC has subsequently been successfully used in several
experiments [19]. On certain occasions, we have used the SC
and ML detectors cooperatively. The SC detector was used with
a high false alarm rate to identify potential detections. The po-
tential detections were then passed through the ML detector for
a more accurate detection and estimation of signal strength. As
the SC detector is computationally faster, it was used to screen
the data before the computationally complex ML estimator was
invoked.
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