
�

�

�

�

�

�

�

�

4

Exploiting Redundancies and Deferred Writes to Conserve Energy
in Erasure-Coded Storage Clusters

JIANZHONG HUANG and FENGHAO ZHANG, Huazhong University of Science and Technology
XIAO QIN, Auburn University
CHANGSHENG XIE, Huazhong University of Science and Technology

We present a power-efficient scheme for erasure-coded storage clusters—ECS2—which aims to offer high en-
ergy efficiency with marginal reliability degradation. ECS2 utilizes data redundancies and deferred writes
to conserve energy. In ECS2 parity blocks are buffered exclusively in active data nodes whereas parity nodes
are placed into low-power mode. (k + r, k) RS-coded ECS2 can achieve �(r + 1)/2�-fault tolerance for k active
data nodes and r-fault tolerance for all k+r nodes. ECS2 employs the following three optimizing approaches
to improve the energy efficiency of storage clusters. (1) An adaptive threshold policy takes system configu-
rations and I/O workloads into account to maximize standby time periods; (2) a selective activation policy
minimizes the number of power-transitions in storage nodes; and (3) a region-based buffer policy speeds up
the synchronization process by migrating parity blocks in a batch method. After implementing an ECS2-
based prototype in a Linux cluster, we evaluated its energy efficiency and performance using four different
types of I/O workloads. The experimental results indicate that compared to energy-oblivious erasure-coded
storage, ECS2 can save the energy used by storage clusters up to 29.8% and 28.0% in read-intensive and
write-dominated workloads when k = 6 and r = 3, respectively. The results also show that ECS2 accomplishes
high power efficiency in both normal and failed cases without noticeably affecting the I/O performance of
storage clusters.

Categories and Subject Descriptors: B.4.5 [Input/Output and Data Communications]: Reliability,
Testing, and Fault-Tolerance

General Terms: Design, Performance

Additional Key Words and Phrases: Clustered storage system, power efficiency, erasure codes, selective
activation policy

ACM Reference Format:
Huang, J., Zhang, F., Qin, X., and Xie, C. 2013. Exploiting redundancies and deferred writes to conserve
energy in erasure-coded storage clusters. ACM Trans. Storage 9, 2, Article 4 (July 2013), 29 pages.
DOI:http://dx.doi.org/10.1145/2491472.2491473

This work is supported in part by the National Basic Research Program of China under Grant No.
2011CB302303, the NSF of China under Grant No. 60933002, the National High Technology Research
and Development Program of China under Grant No. 2013AA013203, and Fundamental Research Funds
for the Central Universities (No. 2012QN100). X. Qin’s work was supported by the U.S. National Science
Foundation under Grants CCF-0845257(CAREER), CNS-0917137(CSR), and CCF-0742187(CPA).
Authors’ addresses: J. Huang and F. Zhang, Wuhan National Laboratory for OptoElectronics, Huazhong
University of Science and Technology, China; X. Qin, Department of Computer Science and Software
Engineering, Shelby Center for Engineering Technology, Samuel Ginn College of Engineering, Auburn
University, AL 36849-5347; C. Xie (corresponding author), Department of Computer, Huazhong University
of Science and Technology, China; email: cs xie@hust.edu.cn.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1553-3077/2013/07-ART4 $15.00
DOI:http://dx.doi.org/10.1145/2491472.2491473

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:2 J. Huang et al.

1. INTRODUCTION

Nowadays, data availability of cost-effective storage clusters is a key design issue for
large-scale data centers. For example, both Google File System (GFS) [Ghemawat et al.
2003] and Hadoop Distributed File System (HDFS) [Borthakur 2008] have adopted the
3-way replication mechanism to maintain a high data survival rate. Although the N-
copy mechanism is of low computational complexity and high performance, it may
significantly increase overall cost (e.g., capacity and power) of storage systems when
they scale up. Erasure-coded storage is a practical solution for multiple concurrent fail-
ures in storage devices [Plank 2005; Storer et al. 2008], because it can tolerate multi-
ple failures using less storage space compared to replica-based storage [Weatherspoon
and Kubiatowicz 2002]. Erasure codes have therefore been adopted in real-world stor-
age systems. For instance, erasure codes are incorporated into Hadoop clusters in the
following three studies: (1) DiskReduce stores data chunks in the background using
erasure codes [Fan et al. 2009]; (2) Hadoop-EC [Zhang et al. 2010] performs erasure
coding online instead of 3-way replication; (3) HDFS-RAID [Borthakur 2010] provides
a RAID-like data layout for the source file in HDFS.

Apart from the two key metrics of reliable storage systems—performance and
reliability—cost of building large-scale storage systems must be seriously considered.
Typical cost of storage systems in data centers includes hardware and operational
costs, of which energy is a significant contributor. The estimated normalized annual
cost is about $1500/TB (1TB = 1012Bytes) for SATA disk storage systems in data cen-
ters [Moore et al. 2007]. For a large-scale storage system, neither hardware nor energy
costs should be overlooked. Many existing fault-tolerant storage solutions like RAID
are very expensive; thus, cost-effective erasure-coded storage clusters using commodity
components are considered an alternative. An erasure-coded storage cluster requires
fewer storage devices (e.g., disks and servers) to store redundant data, which leads to
good energy efficiency. Furthermore, redundant components, which are logically envi-
sioned as erased devices, can be powered off to save energy [Greenan et al. 2008].

Storage systems account for approximately 27% of the total energy consumed by
typical data centers, which usually employ expensive RAIDs to store massive amounts
of data [Zhu et al. 2004]. Existing power-aware storage solutions, especially those for
RAIDs, normally conserve energy with caching schemes or powering-off disks during
idle periods. Unfortunately, such energy-saving approaches in RAIDs can put only a
few disks (e.g., one disk in case of RAID5) into standby mode, limiting energy-saving
percentage in storage systems. For example, the power of an enterprise-level SAS disk
of model ST3146855SS is around 14.9W in the active mode [Seagate 2011], while the
power of a 5-disk EMC CX600-Series RAID is at least 370W [Yang et al. 2011].

We also measured the power consumption of both nodes and disks in our exper-
iments (see Section 5.1). The measurements show that a node’s power-consumption
discrepancy between the standby and active mode is larger than that of a disk (see
Table I). This is the evidence that managing power at the node level is more efficient
than that at the disk level in storage clusters. Cluster-oriented energy management
has been addressed to achieve high scalability and cost effectiveness of data storage
[Lang and Patel 2010; Lang et al. 2010]. Thus, we focus on conserving the energy of
erasure-coded storage clusters by managing the power of storage nodes rather than
disks.

In an erasure-coded storage cluster, redundant data nodes (parity nodes) can be de-
ployed to achieve fault tolerance. Importantly, redundant nodes can be placed into an
energy-saving mode to reduce power consumption. Many power-aware schemes pro-
vide energy savings at the cost of performance and reliability, however, high relia-
bility is required in modern storage systems. It is important that a system be able to

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:3

Table I. Comparison of Power Consumption (Node vs. Disk)

Node (Server) Disk
State Standby Idle Active Standby Idle Active

Power (in Watts) 5.4 61.8 70.8∼75.6 0.8 7.2 10.2∼11.0

tolerate at least two failures [Hafner 2005; Rao et al. 2011]. Consequently, we designed
and implemented an erasure-coded storage cluster: ECS2 (Energy-Conservation
Scheme in Erasure-coded Clustered Storage) that relies on data redundancies and
deferred writes to conserve energy in clusters. Our ECS2 system is a (k+r,k) erasure-
coded storage cluster offering �(r + 1)/2�-fault tolerance for k active data nodes and
r-fault tolerance for all k + r storage nodes.

As to erasure codes, we adopted the Reed-Solomon codes (abbreviated RS codes
[Plank et al. 1997; Reed and Solomon 1960]), where each file is encoded into k+r blocks:
k data blocks and r parity blocks. The k data nodes exclusively keeping k data blocks
are active at all times. Since RS codes belong to systematic codes, the read requests
can be directly and efficiently serviced by the active data nodes. To shift r parity nodes
to the low-power mode, all parity blocks must be temporarily buffered in the RAM of
the active nodes and then flushed to the inactive parity nodes after reaching a prede-
termined buffer threshold.

Our major contributions made in this study are summarized in the following.

— We design a power-efficient erasure-coded storage cluster that offers high energy
efficiency by exploiting redundancies and deferred, writes (see Section 3.1). Data
nodes are kept active to sustain high I/O performance, while parity blocks are
buffered in active nodes to keep parity nodes in the energy-saving mode.

— We develop the following three techniques to improve energy efficiency: (1) an
adaptive threshold policy that maximizes the standby duration via considering the
system configuration and workload (see Section 3.4), (2) a selective activation pol-
icy that minimizes the number of node power transitions by selectively activating
standby nodes (see Section 3.5), and (3) a region-based buffer policy that speeds up
synchronization by migrating parity data in a batch manner (see Section 3.3).

— We build a model (see Section 4.1) to evaluate the impact of ECS2 on system relia-
bility. We also construct a model (see Section 4.3) to predict the power consumption
of the ECS2-based system.

— We comprehensively evaluate the performance and energy efficiency of ECS2 un-
der real-world workloads. Our results show that compared with energy-oblivious
erasure-coded storage, the ECS2-based system improves energy efficiency by about
30% and 28% for read-intensive and write-dominated applications without notice-
ably affecting I/O performance when k = 6 and r = 3, respectively.

The remainder of the article is organized as follows. We briefly describe the back-
ground and related work in Section 2. Section 3 details the design of ECS2. Section 4
presents the models of ECS2’s reliability, buffer thresholds, and energy consumption.
We describe our experimental methods and results in Section 5. Further discussions
can be found in Section 6. Section 7 concludes the article.

2. BACKGROUND AND RELATED WORK

Our work described in this article is related to erasure codes and power-aware storage
systems.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:4 J. Huang et al.

2.1. Erasure Coding

Fault-tolerant storage systems offer high data reliability through redundant storage
devices. For example, in a (k + r, k) erasure-coded scheme, each data set is divided into
k blocks, and k + r encoded blocks are stored on separate storage nodes. Given a (k + r,
k) erasure code that is maximum distance separable (MDS), one can recover lost data
from any k blocks. Reed-Solomon (RS) codes, which have the MDS property, are widely
adopted in the field of erasure correcting. In coding theory, RS codes usually utilize a
linear code construction using finite-field arithmetic (a.k.a., Galois Field arithmetic).
For example, in Vandermonde RS coding, the addition operation over a Galois Field is
equivalent to bitwise exclusive-or (XOR), and multiplication is relatively complex (e.g.,
it can be implemented via the logarithm and inverse logarithm).

In (n = k + r, k) RS coding, one can create n result words by multiplying a k × n
Generator Matrix by k source words. The generator matrix is a k × k Identity Matrix
followed by a k × r Redundancy Matrix; the identity matrix causes RS codes to have
a systematic form. The generator matrix can be constructed from a Vandermonde Ma-
trix. Any k × k submatrix in a k × n Vandermonde matrix is invertible, allowing all
elements to be reconstructed from any k result words, viz. the MDS property [Plank
et al. 2009]. Because each element of the (k + 1)th column in the Vandermonde ma-
trix is 1, the first encoded parity word is the XOR sum of k source words. Hence, it is
highly efficient to recover a faulty data node using the first parity node in an RS-based
storage cluster.

2.2. Power-Aware Storage Systems

In the last few years, there has been a great deal of work focusing on energy conserva-
tion techniques in storage systems. For example, caching mechanisms are used to save
power in storage systems, because the mechanisms can direct major I/O accesses to a
small set of disks while allowing other disks to stay in the low-power mode [Ganesh
et al. 2007; Pinheiro and Bianchini 2004; Zhu et al. 2004]; on the other hand, the de-
ferred update (a.k.a., buffered write) methods use a persistent device like NVRAM
[Pinheiro et al. 2006; Yao and Wang 2006], Flash Drive [Chen et al. 2006] or log vol-
ume [Narayanan et al. 2008] to temporarily handle writes, thereby avoiding spinning
up disks in the low power mode. Table II summarizes the major differences between
our proposed ECS2 and the existing energy-saving techniques for storage systems.

Colarelli and Grunwald designed the MAID [Colarelli and Grunwald 2002] storage
system, in which recently used data blocks are cached in a subset of disks while the
other disks are spun down to save energy. MAID offers significant energy savings for
archival storage systems equipped with thousands of disks. Pinheiro and Bianchini
proposed PDC [Pinheiro and Bianchini 2004], in which frequently accessed data is
migrated to a subset of disks so that other disks in the RAID-based network servers
can be put into low-power mode.

Wang et al. [2007] developed ERAID and EERAID [Li and Wang 2004] systems
to save energy in RAIDs by exploiting redundant data. ERAID contains a request-
redirecting module for RAID1 to spin down disks in a mirror group. A transformable
read policy is introduced in EERAID, which transforms disk requests from active disks
in RAID5.

Yao and Wang [2006] proposed a two-level redundancy-based I/O cache (storage
cache and parity cache) architecture called RIMAC, which can significantly improve
both energy efficiency and performance. RIMAC uses NVRAM as parity cache; UPS-
supported RAM in RIMAC serves as storage cache. RIMAC exploits inherent re-
dundancy of RAID5 to perform power-aware request transformations for reads and
writes. Yao and Wang implemented two power-aware read request transformation

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:5

Table II. A Comparison of Existing Power-Aware Storage Systems

Power-efficient Deactivated Transient Place of Application or Reliability
Scheme Unit Write Data Scenario

MAID Disk drive Cache drive Archival storage
PDC Disk drive Cache drive(Concentrating hot data) RAID-based network servers

EERAID,ERAID Disk drive NVRAM,(and active disks for ERAID) RAID1, RAID5
RIMAC Disk drive Both Storage and Controller Cache RAID5
PARAID Disk drive Spare regions at RAID (specifically RAID0

active disks and RAID5)
Diverted Access(DIV) Disk drive NVRAM Replication-based, RAID,

or Erasure code
Power-aware Coding Disk drive NO, Parity updates never be staged Erasure code (specifically

non-MDS code)
Pergamum Disk drive NVRAM(holding metadata) Archival Storage

Chained Declustering Entire Node NO, Directly update the active replica Data-intensive Cluster
(2X Replication)

Hadoop Covering Set Entire Node NO. Always reading for data analysis Read-intensive Cluster
(3X Replication)

Rabbit Entire Node Disk at active nodes(Write offloading) N-way Replication
ECS2 (in this paper) Entire Node DRAM in active nodes MDS code (specifically

RS code)

schemes and a power-aware write request transformation policy in RIMAC. Unlike
RIMAC, our ECS2 makes use of active data nodes to directly serve read requests; both
new and updated parity blocks are buffered in preallocated DRAM of the active data
nodes.

Weddle et al. [2007] developed PARAID, which utilizes skewed striping patterns to
adapt to different load levels by varying the number of powered disks. In PARAID,
disks can be organized into overlapping sets of RAIDs; each set can serve all requests
via either data blocks or their replicas. PARAID exploits unused disk space to replicate
data blocks in order to form the overlapping sets of RAIDs.

Greenan et al. [2008] designed ‘power-aware coding’, a power-efficient erasure-coded
storage system. In this system, reads are completed via a partial or whole-stripe re-
construction. Our ECS2 system is different from power-aware coding, because writes
in power-aware coding are served by deterministic disk activations. Our system con-
serves energy through deferred writes.

Pinheiro et al. [2006] introduced Diverted Accesses (DIV)—a technique that relies
on redundant disks to save energy in disk systems. Redundant disks are placed in
low-power mode under light or moderate loads. They are activated when the I/O load
becomes high or when any disk in the systems fails. Redundant data is buffered in
NVRAM and propagated to redundant disks when they are activated.

Storer et al. [2008] designed a distributed network of intelligent, disk-based, stor-
age appliances (Pergamum). In this system, NVRAM is integrated into each node to
store data signatures, metadata, and other small data items, allowing deferred writes,
metadata requests, and interdisk data verification to be performed while a disk is pow-
ered off. Pergamum provides reliability using two levels of Reed Solomon encoding:
intradisk redundancy and interdisk redundancy.

Many energy-saving techniques achieve power savings through hardware configu-
rations (e.g., Hibernator [Zhu et al. 2005]) and data layout (e.g., DIV [Pinheiro et al.
2006], ERAID [Wang et al. 2007], and PARAID [Weddle et al. 2007]). Existing energy-
efficient reliable storage schemes at the disk level have the following major limita-
tions: (1) energy dissipation in disks accounts for a small fraction of the total system
power; (2) the number of spun-down disks is limited by the encoding pattern; (3) some

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:6 J. Huang et al.

XOR-based codes (e.g., EVENODD [Blaum et al. 1995] and RDP [Corbett et al. 2004])
generate parity data using a diagonal mode that potentially lengthens the recovery
time.

Apart from disk-level energy-conservation schemes, there are a few node-level
power-saving solutions. For example, Leverich and Kozyrakis [2010] designed a mech-
anism to recast the data layout to power down some nodes in Hadoop clusters; Lang
et al. [2010] leveraged the Chain Declustering-based replication strategy to take nodes
off line in the event of low system utilization.

Amur et al. [2010] designed a power-proportional distributed file system, called
Rabbit, which arranges data-layout to minimize the number of powered-up nodes
in case of any primary replica failure. PowerNap is an energy-saving solution that
can rapidly transition blade servers between ultra-low power state and active state
[Meisner et al. 2009]. Idle power consumption usually accounts for 50∼60% of the
peak server power; three main hardware components (CPU, RAM, and system-board
components) contribute to energy waste [Meisner et al. 2009; Tsirogiannis et al. 2010].
Table VI on Page 19 lists the power of a real-world storage node on three states (ac-
tive, idle, and standby).1 The power consumption of nodes is markedly more than that
of disks; therefore, we are motivated in this study to conserve energy by transitioning
storage nodes to a near-zero-power state.

Our DRAM-based ECS2 is ultimately more cost-effective than the existing NVRAM-
based solutions. Because DRAM is cheaper than NVRAM, ECS2 makes it affordable to
increase DRAM space to buffer an enormous number of parity blocks. At first glance,
parity blocks buffered in the DRAM of active data nodes may be lost in the event of
power outage. Nevertheless, the lost parity blocks can be generated from data blocks
stored in the disks of the active nodes after power recovery.

Our proposed ECS2 system is different from the aforementioned energy-efficient
storage systems (see Table II), because ours—tailored for node-level erasure-coded
storage clusters—utilizes data redundancies and deferred writes to conserve energy.
Parity nodes in ECS2 are logically envisioned as “erased ones,” which are switched
to the ultra-low-power mode. A group of active data nodes buffer parity blocks while
serving incoming data requests, and therefore ECS2 can achieve high energy efficiency
and reliability without adversely affecting I/O performance.

3. DESIGN OF ECS2

In this section, we present the design of ECS2, which aims to offer high energy-
efficiency, reliability, and I/O performance.

3.1. Overview

Unlike most existing techniques that save energy at the disk level, ECS2 offers an en-
ergy conservation solution at the storage-node level; all components of storage nodes,
including RAM, CPU, Disk, and so on, are sent to the low-power mode. In this study,
we first build a (k + r, k) RS-coded storage cluster, which has k + r storage nodes, each
data or parity block is stored to an individual node, and data nodes {DN1, DN2, ..., DNk}
and parity nodes {PN1, PN2, ..., PNr} are segregated. All data nodes are kept active to
maintain high I/O performance, and all parity blocks are buffered in the active nodes
before being synchronized to corresponding parity nodes that are in the low-power
mode. Figure 1 illustrates such a power-efficient framework for RS-coded storage.

1In this article the term “standby” refers to the hibernate mode; and a node can be remotely awakened via
magic packet.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:7

Fig. 1. A power-efficient framework that exploits redundancy of RS-coded storage cluster. All parity blocks
are buffered at the active nodes so the remaining parity nodes can stay in the low-power mode. (a) no parity
node is active; (b) a parity node is active; (c) all parity nodes are active.

Fig. 2. Three parity-block layouts of the (9,6) RS-coded storage cluster, where all parity nodes are in the
low-power mode. (a) Parity blocks are kept in the NVRAM of a helper node (similar to the DIV scheme); (b)
Parity blocks are stored in unused disks on the data nodes (similar to the PARAID scheme); (c) our ECS2

scheme stores parity blocks to preallocated memory on the data nodes.

Figure 1(a) illustrates a case where energy efficiency is maximized by transitioning
all r parity nodes into low-power mode at the cost of reliability. Figure 1(c) represents
a power-oblivious case, in which the storage cluster achieves high reliability without
saving power. In the case of Figure 1(a), the parity blocks can be buffered in NVRAM
(see Figure 2(a)) or stored in the active data nodes (see Figure 2(b)). The data layout
using NVRAM can be regarded as the deployment of DIV [Pinheiro et al. 2006] or
EERAID [Li and Wang 2004] on a storage cluster. The layout scheme keeps updated
parity blocks at the disks of active nodes and is similar to PARAID [Weddle et al. 2007].

Note that PARAID relies on spare space on active disks to replicate data blocks. Un-
like PARAID, ECS2 buffers parity blocks in main memory of active nodes, allowing all
r parity nodes to be placed into the low-power mode (see Figure 2(c)). To reinforce the
fault-tolerance of an active group, we propose a data-layout scheme that enables the
active group to tolerate �(r + 1)/2� concurrent node failures. ECS2 deploys an adaptive
threshold strategy to selectively activate inactive nodes to optimize power efficiency.

3.2. Data Layout Scheme

Active data nodes that exclusively buffer r parity blocks can provide �r/2�-fault
tolerance. One or two extra parity blocks ({Q1} or {Q1, Q2}) can make the active group
tolerate �(r + 1)/2� concurrent node failures. A matrix-based construction scheme for
extra parity blocks is described in Appendix 7, where (k + r + �r, k) RS codes are used
to generate the extra parity blocks and �r ∈ {1, 2}. This matrix-based construction
scheme for extra parity blocks is CPU-expensive, so we adopt an efficient XOR-based
construction method to enable the active group 2-fault tolerant when r is set to 2 or 3.

If r equals 2, two extra parity blocks {Q1, Q2} must be generated to tolerate two
concurrent node failures, e.g. Q1 = P1 ⊕ D[ P2] and Q2 = D[ P1] ⊕ D[ P2], D[ Pj] denotes
the data block stored in the node that buffers parity block Pj.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:8 J. Huang et al.

Fig. 3. The data layout of an active group that can tolerate 2 faults when r = 3. An extra parity block Q1 =
P1 ⊕ D[ P2] = P1 ⊕ D4 is exclusively buffered in an active node.

Table III. Available Blocks in Case of Double Node Failures

1st Failed Node 2nd Failed Node Available Blocks Auxiliary Block
DN1 or DN5 There are still 9 surviving blocks, so can tolerate one node failure

DN2

DN3 D1, D4, D5, D6, P2, P3 -
DN4 D1, D3, D5, D6, P1, P3 -
DN6 D1, D2, D3, D4, D5, P1 -

DN3
DN4 D1, D2, D5, D6, Q1, P3 D∗

3
DN6 D1, D2, D4, D5, Q1, P2 P∗

1
DN4 DN6 D1, D2, D3, D5, Q1, P1 D∗

4
D∗

3: D3 = P1 ⊕ D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D6 = Q1 ⊕ D1 ⊕ D2 ⊕ D5 ⊕ D6
P∗

1: P1 = Q1 ⊕ D4; D∗
4: D4 = P1 ⊕ Q1

See Figure 3 for the data layout.

When r is set to 3, only an extra parity block, Q1, needs to be generated, where
Q1 = P1 ⊕ D[ P2], or Q1 = P1 ⊕ D[ P3]. For space reasons, we limit our study to the case
of r = 3. Figure 3 shows a data layout of ECS2 using the (9,6) RS codes.

We use an exhaustive method to quantify the fault-tolerance of an active group.
Table III illustrates available blocks in the case of two-node failures. We observe from
Table III that the active group can tolerate two-node failures using the data layout
plotted in Figure 3. In addition, the active group can tolerate two-node failures with a
redundancy configuration, where k ≥ r + �r (k ≥ 4 when r = 3).

3.3. Power-Aware Access Policies

Since ECS2 adopts the RS coding scheme, the features of RS codes must be exploited to
improve I/O performance and data availability. In this section, we describe the access
policies that allow ECS2 to avoid unnecessary power-state transitions in the inactive
storage nodes.

3.3.1. The Read Policy. Responding to read requests with an active data node does not
introduce any extra decoding overhead, because RS codes are systematic in nature.
When it comes to read requests, parity blocks stored in main memory do not consume
any disk bandwidth; thus, the read performance of the ECS2 system is arguably close
to that of an energy-oblivious erasure-coded storage cluster.

In case of storage node failures, it is critical and challenging to make trade-offs
between performance and reliability. Because the MTTDL value (Mean Time To Data
Loss) of a reliable storage system is inversely proportional to the r-th power of recov-
ery time [Rao et al. 2011] (r is the number of failures tolerated by the storage system),
speeding up the recovery process can substantially enlarge the MTTDL value. The fol-
lowing two methods can potentially accelerate the reconstruction procedure by exploit-
ing the structural feature of RS codes. First, if inactive parity node PN1 is activated
in response to a data node failure, then the node will join other active data nodes to

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:9

Fig. 4. A data layout of buffer regions among the active group.

quickly rebuild a replacement node by reconstructing data stored on the failed node
with expression “P1 = D1 ⊕ D2 ⊕ · · · ⊕ Dk”. Second, when a node failure occurs, an
inactive parity node will be activated according to the Selective Node Activation Policy
(see Section 3.5). Such a node activation introduces disk-spin-up overhead, ultimately
increases user response times, and delays the data recovery procedure. To amortize
such overhead, our ECS2 continues to serve read requests using surviving active data
nodes. Such a continuous service is feasible, because parity blocks buffered in nonfailed
nodes may help to rebuild data requests directed to the failed data node. Furthermore,
data rebuilt for read requests can be stored on the corresponding replacement node
to speed up the reconstruction process. If two concurrent failures occur, two inactive
parity nodes will be powered on, and these approaches still work.

In the process of synchronizing parity blocks among active and inactive nodes, I/O
bandwidths of data nodes are shared between user I/O requests and the data syn-
chronization module in ECS2. To reserve a sufficient amount of I/O bandwidth for the
synchronization process, user I/O requests can be asynchronously processed (a.k.a.,
Asynchronous I/O) because disk I/O is time-consuming.

3.3.2. The Write Policy. Minimizing the number of power-state transitions can substan-
tially improve the energy efficiency of storage clusters. The goal of the write policy in
ECS2 is to avoid unnecessary power transitions of inactive nodes. All parity blocks
including extra ones are buffered on a set of active data nodes. Usually, distributing
parity blocks across the active nodes has an impact on the synchronization perfor-
mance. For example, if all parity blocks are evenly and randomly distributed among
the active nodes, then their localities are ignored. In the ECS2 system, we preallocate
a set of memory regions on certain data nodes, where each region is allocated to a
specific parity block-region-based buffer policy, thus constituting a mapping between a
RAM region and a parity node (see Figure 4).

Algorithm 1 shows the pseudocode for the implementation of the write policy, un-
der which write operations of file data (e.g., {D1, D2, ..., Dk, P1, P2, ..., Pr}) are always
synchronized to maintain data consistency. Buffering parity blocks to active nodes can
shorten write response time by shortening the synchronization chain. On the other
hand, this region-based buffer policy enables the buffered parity blocks to be migrated
to the activated parity nodes in a batch manner, which speeds up the synchronization.
Small writes can benefit more than large writes from such a batch synchronization
process.

3.3.3. The Update Policy. When any data block is modified, its parity block also must
be updated accordingly, however it is not energy efficient to wake up the standby par-
ity nodes at this time. To address this problem, we apply the read-modify-write parity
update scheme [Aguilera et al. 2005; Hafner et al. 2010], where existing parity blocks
are not immediately accessed. This keeps parity nodes in the standby mode for an
increased period of time. Under this update policy, active data nodes buffer the differ-
ences between old data blocks and new data blocks. When standby parity nodes are

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:10 J. Huang et al.

Algorithm 1: The Write Algorithm. See Figure 3 for the Data Layout

/* Let Sdata be data node set, Sdata =
{
DN1, DN2, ..., DNk

}
; Let Ri,j be a buffer region at data node DNi for

parity block Pj. */

/* Refer to Pr+1 as the extra parity block Q1. */

Input: Di, Pj (Di is ith data block and Pj is jth parity block)

// Dispatch the data blocks;
foreach Di ∈ {D1, D2, ..., Dk} do

Store Di to the disk of data node DNi;
end

// Buffer the all parity blocks among data nodes;
foreach Pj ∈ {P1, P2, ..., Pr, Pr+1} do

if Ri,j has free space then
Buffer Pj to the region Ri,j;

else
Insert node DNi to the node set Sdata;
Select a new node DNi from node set Sdata;
Remove node DNi from node set Sdata;
Allocate a new buffer region Ri,j at data node DNi;

end
end

activated, the active data nodes push the differences to the activated parity nodes in
parallel. These differences along with existing parity blocks are used by each parity
node to create new parity blocks.

3.4. Adaptive Buffer Threshold

Since I/O load may fluctuate due to variation in application characteristics and daily
cycles, erasure-coded storage clusters may encounter unexpected events like bursts of
traffic and TCP throughput collapse [Phanishayee et al. 2008]. To address these issues,
we incorporate an adaptive buffer threshold Vthreshold into the ECS2 system to dynam-
ically manage buffers according to changing I/O workload conditions. In particular, we
set an extra deviation Vdeviation for buffer threshold Vthreshold. Hence, an inactive par-
ity node can be activated when the buffer utilization reaches (Vthreshold − Vdeviation) in
the case of heavy I/O loads.

We can allocate the buffer according to the I/O performance of an individual active
node. For example, weight wi is assigned to the ith active data node; the sum of all the
weights equals 1 (

∑k
i=1 wi=1). The ith data node offers the buffer whose size is Sbuf,i,

which is derived from weight wi and the total buffer size Sbuf (Sbuf,i = wi × Sbuf). On
the other hand, We develop a buffer threshold model (see Section 4.2), which suggests
that the value of Vthreshold can be set to 1-Rreq wTupSreq buf(r + 1)/Sbuf. Table IV sum-
marizes the notation used in the model, where Rreq w is the average arrival ratio of
write requests issued to active data nodes; it takes Tup to power up an inactive node.
The buffer threshold policy implemented in ECS2 is adaptive, because both the buffer
size and threshold are judiciously adjusted based on node configurations and workload
characteristics.

Although one can set various buffer thresholds for different active nodes, customized
thresholds may cause three problems: (1) The overall synchronization time is deter-
mined by the highest buffer threshold; the highest threshold delays deactivating time
points of parity nodes. (2) Activating time points of inactive nodes are affected by
the lowest threshold, which may increase activation frequency. (3) Managing memory
resources for the customized thresholds is nontrivial.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:11

To solve the aforementioned three problems, we design a simple yet effective
threshold-setting policy, in which all active nodes uniformly deploy an upper bound
of buffer threshold determined by Formula (5).

3.5. The Selective Node Activation Policy

We design a selective activation policy to minimize the overall number of node-power
transitions. It is expensive to activate all inactive nodes in response to an active-node
failure, because an activated parity node can join the active group to serve both fore-
ground user I/Os and background reconstruction I/Os. We propose a node-activation
algorithm to optimize both power efficiency and cost effectiveness. Algorithm 2 details
the selective activation policy adopted in our ECS2 system. Thus, if one or two node
failures occur, one or two inactive parity nodes will be activated respectively. Then,
corresponding replacement nodes can be reconstructed.

Algorithm 2: The Node Activation Algorithm in (k + r, k) RS-based ECS2-based System
/* Assume there are Nfailed failures in active group, and Nfailed ≤ �(r + 1)/2� */

if Buffer utilization does not reach threshold Vthreshold then
switch Nfailed do

case One
Prepare a replacement node;
Activate the parity node PN1; break;

endsw
case Two

Prepare two replacement nodes;
Activate two parity nodes (including PN1); break;

endsw
otherwise

Prepare Nfailed replacement nodes;
Activate all r parity nodes; break;

endsw
endsw

// Using the surviving data nodes;
Recover parity blocks and associated data blocks;
Buffer the recovered parity blocks to replacement nodes(s);
Store the recovered data blocks to replacement nodes(s)
// Using the surviving data nodes and parity node(s);
Reconstruct the disk data for replacement node(s);

else
Activate all inactive parity nodes;
Synchronize the buffered parity blocks.

end

All inactive parity nodes will be activated when buffer utilization reaches a specified
threshold. After the parity nodes are activated, buffered parity blocks are synchronized
to the parity nodes {PN1, PN2, ..., PNr} via TCP connections. Duration (T/Ntransit) be-
tween two consecutive state changes (active/inactive) is determined by several factors:
average arrival ratio Rreq w of write requests, average write request size Sreq w, total
buffer size Sbuf, and number Np of parity nodes (see Equation (10)).

If the buffer size of all active nodes is smaller than the amount of parity data pro-
duced by writes during the node-state-transitioning period, then the parity nodes could
not be placed into the standby mode; parity-buffering operation would introduce extra
write latency; and new write requests could not be served immediately during the
parity-synchronization process. Such a deadlock case accomplishes no power efficiency
and degrades write performance. In Section 4.2, we model the lower bound of the buffer

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:12 J. Huang et al.

Fig. 5. Data layouts of both before-synchronization and after-synchronization blocks.

size (see Sbuf in Equation (4)) as well as the upper/lower bounds of buffer utilization
threshold (see Vthreshold in Equations (5) and (6)).

With the threshold-based synchronization policy in place, all requests can be served
by existing active nodes prior to the synchronization phase; therefore, this synchro-
nization approach defers the time at which inactive nodes are powered up. In addition
to the synchronization policy, the selective activation policy helps to prevent unneces-
sary power-state transitions in storage nodes, thereby improving the power efficiency
of storage clusters.

3.6. Buffering Parity Blocks

Unlike the existing power-aware schemes (e.g., PARAID [Weddle et al. 2007] and
ERAID [Wang et al. 2007]) that keep redundant data in active disks, our ECS2 buffers
parity blocks in the memory of active nodes. This strategy allows ECS2 to achieve high
I/O performance because of two reasons. First, writing parity blocks to disks of active
nodes (write-through) consumes extra disk bandwidth and increases write response
time. Second, migrating parity blocks from disks in active nodes slows down the syn-
chronization process and compromises the energy efficiency.

In the (k + 3, k)RS-coded ECS2, buffered blocks (a.k.a., before-synchronization
blocks) in the active group can tolerate double node failures. Written blocks (a.k.a.,
after-synchronization blocks) among all k + r nodes can be reconstructed when any
triple nodes fail. Figure 5 shows the data layouts of both before-synchronization and
after-synchronization blocks. Although the MTTDL of an entire system is higher
than that of an active group (see Section 4.1 for a quantitative reliability analysis),
the data-loss probability of before-synchronization blocks is lower than that of after-
synchronization blocks; on the other hand, the chance of having three concurrent fail-
ures is extremely low (MTTDLActive−Group ≈ 7.54×105 years when k = 6). We conclude
that our ECS2 achieves power efficiency with marginal degradation in reliability.

4. MODELS

In this section, we describe models for system reliability, buffer threshold, and power
consumption respectively. For simplicity without loss of generality, we consider homo-
geneous storage clusters where all nodes are identical.

4.1. Reliability Model

We evaluate the impact of our ECS2 on system reliability using a reliability model.
Given k available blocks, it is able to rebuild any failed blocks simultaneously. We
make use of traditional Markov modeling with reconstruction-in-parallel [Hafner and
Rao 2006]). Let us assume that nodes in the ECS2 system are enclosed entities, where
all disks attached to each node are organized in the form of internal RAIDs [Rao et al.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:13

Fig. 6. The Markov model for an ECS2-based active group with the concurrent reconstruction policy in
which r is 3.

2011]. We build a high-level Markov model for erasure codes among data nodes in
ECS2. After analyzing the data flow of ECS2, we observe that only the failure of an in-
ternal RAID can result in permanent data loss; RAM data error or node outage simply
leads to transient loss of data. Therefore, we construct a reliability model of MDS codes
for permanent data loss (see Figure 6). In this model, λN is the failure rate of a node; λD
and λd represent the failure rate of an internal RAID and that of disks, respectively;
λS is the sector error rate during the restripe of the internal RAID; λM is the RAM
error rate during reconstruction; μ is the recovery rate at which the ECS2 system can
be recovered back to the zero loss state. Typically, the internal RAID’s failure rate (λD)
is much smaller than the recovery rate μ (λD � μ).

In ECS2, k data nodes constitute the active group that can tolerate two concur-
rent failures when r is set to 3. Figure 6 shows the Markov model for the active
nodes with internal RAIDs. The MTTDL of the active group can be calculated by
Equation (1).

MTTDLActive−Group ≈ μ2

k(k − 1)(k − 2)(λN + λD)2(λN + λD + λS + λM)
(1)

Similarly, the entire system’s MTTDL can be expressed as Equation (2),

MTTDLEntire−System ≈ μ2

(k + 3)(k + 2)(k + 1)k(λN + λD)3(λN + λD + λS + λM)
(2)

Let us consider a simple case where each node has one disk, so the internal RAID
failure rate equals the disk failure rate (λD = λd). Suppose that the mean time to fail-
ure of a node, MTTFnode, follows an exponential distribution. The node failure rate,
λN , is inversely proportional the mean time to failure MTTFnode (λN = 1/MTTFnode).
The node mean time to failure equals approximately one fifth of the disk mean time to
failure (MTTFnode ≈ 0.2 × MTTFdisk = 100,000hrs), because the annual failure rate
(AFR) of disks is about 20% of the AFR of the storage node [Jiang et al. 2008], and
MTTFdisk ≈500,000hrs [Hafner and Rao 2006]. Recovery rate μ is inversely propor-
tional to the mean time to repair of nodes MTTRnode; thus, we have μ = 1/MTTRnode.
The mean time to repair MTTRnode is approximately equal to 10 hours, because a stor-
age node with 1TB data can be reconstructed with a recovery rate of 100GB/hour [Xin
et al. 2003].

We neglect the RAM-error rate λM in our model because the error rate of DDR2
SDRAM is extremely low (e.g., one per 100 years) [Samsung 2008]. Latent sector
errors affect system reliability during the reconstruction process [Bairavasundaram
et al. 2007]. We set λS to 1/13245 hours [Storer et al. 2008]. The active group MTTDL
(MTTDLActive−Group) is approximated as 7.54 ×105 years when k is 6 (see Equation (1)),
indicating that the probability of having triple-node failures is extremely low.

The probability of data loss in a time period T can be calculated as follows (see
Holland et al. [1994] for the details of computing this probability).

PT = 1.0 − e−T/MTTDL (3)

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:14 J. Huang et al.

Table IV. Notation

Symbol Definition
Nd number of the data nodes
Np number of the parity nodes

Sstrip size of the strip unit
Sreq w average size of the write request

Sreq buf size of parity in buffer at an active data node, for write request of size Sreq w
Rreq w average arrival ratio of the write requests of the system
Sbuf total buffer size of all active data nodes
Tup average activating time of an inactive parity node

Tdown average deactivating time of an active node
Tfull time of full transition, Tfull = Tup + Tdown

Tstandby standby time of an inactive node
Tsyn time of synchronization
Eup average activating energy (in Joules) of an inactive node

Edown average deactivating energy (in Joules) of an active node
Efull energy (in Joules) of full transition, Efull = Eup + Edown

Pstandby average power (in Watts) of a standby node
Ppower average power (in Watts) of a powered-on node

P(active,T) power consumption (in Watts) of active nodes at time T
P(inactive,T) power consumption (in Watts) of inactive nodes at time T

Bnode average synchronization bandwidth
Vthreshold threshold of buffer utilization, 0 < Vthreshold < 1

If the lifetime of a before-synchronization block is 1 hour and MTTDLActive−group is
7.54 × 105 years, the probability of losing data is about 1.54 × 10−10 for the before-
synchronization block (see Equation (3). Let the lifetime of a after-synchronization
block be 10 years—an optimistic estimate of RAID’s lifetime [Holland et al. 1994]),
the probability of losing data is around 3.34 × 10−8 for the after-synchronization block.
In this estimation, the MTTDL of the entire system (k + r nodes) is 2.99 × 108 years
when using the aforementioned assumptions.

This reliability model confirms that (k + 3, k) RS-coded ECS2 can provide sufficient
reliability for both the active group (k nodes) and storage cluster (k + r nodes).

4.2. Buffer Threshold Model

We summarized the notation used throughout this article in Table IV.
During a standby and transitioning period, the buffers of all active nodes must be

sufficiently large to accommodate all parity blocks generated by write requests. Con-
sequently, the lower bound Sbuf of the buffer size can be calculated by Equation (4),
where the right-hand side represents the amount of data produced by writes during
the standby and transitioning period. The lower bound Sbuf is a product of the arrival
rate of writes, the standby and transitioning time, the number of parity blocks, and
parity block size.

Sbuf ≥ Rreq w(Tfull + Tstandby)Sreq buf(Np + 1) (4)

To increase the standby time of inactive parity nodes, we have to buffer a large
number of parity blocks to reduce power-transition penalties. Increasing the number of
buffered parity blocks can compromise the reliability of storage clusters; therefore, we
need to make a good trade-off between energy efficiency and reliability by determining
the most appropriate buffer size.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:15

Inactive nodes will be powered up if the buffer utilization reaches the threshold
Vthreshold; thus, (1 − Vthreshold) ∗ 100% is the percentage of the buffer space available
to handle writes during the course of the powering-up process. Note that the buffer
in active nodes should be large enough to contain redundant data even when inactive
nodes are in the power-transition process. In our proposed data layout scheme (see
Section 3.2), the ratio of parity blocks to data blocks is (Np + 1)/Nd before the synchro-
nization process is triggered. Thus, the data amount of parity blocks to be buffered
during the activating time Tup of an inactive node is Rreq wTupSreq buf(Np + 1). Since
the data amount of the buffered parity blocks must be smaller than the available buffer
space ((1 − Vthreshold)Sbuf ), the upper bound of the threshold Vthreshold can be given via
the following expression.

Vthreshold ≤ 1 − Rreq wTupSreq buf(Np + 1)/Sbuf (5)

Let Pstandby (in Watts) be the power of a storage node in the standby mode, and let
Ppower be the average power of an active storage node in the powered-on mode. Eup is
the energy overhead caused by transitioning a storage node from the standby mode
to the powered-on mode; whereas Edown is the energy overhead incurred by placing
the powered-on node into the standby mode. A full transition from the standby to the
powered-on mode and back consumes energy Efull = Eup + Edown.

According to the break-even strategy, conserved energy yielded during the standby
period must be equal to the energy consumed by a full transition. We derive the min-
imal standby duration as Efull/(Ppower-Pstandby), which suggests the minimal standby
time that can offset the energy overheads caused by power transitions. In order to
achieve energy savings, Vthreshold of the buffer space should be large enough to con-
tain parity blocks during any powering-down and standby period of a parity node. The
lower bound of the threshold, Vthreshold, is given as Expression (6), where the right-
hand side represents the amount of data to be buffered during the powering-down and
standby period.

Vthreshold ≥ Rreq w(Tstandby + Tdown)Sreq buf(Np + 1)/Sbuf (6)

4.3. Power Consumption Model

In this section, we build a power consumption model for storage clusters by incorpo-
rating the characteristics of storage nodes and fault-tolerance features.

4.3.1. Energy Consumption of ECS2. The total energy consumption E(ECS2,T) (measured
in Joules) of the ECS2 system is the sum of the energy (E(active,T), see Equation (8))
consumed by the active group and the energy (E(inactive,T), see Equation (15)) caused
by the inactive nodes. Thus, we have

EECS2,T = E(active,T) + E(inactive,T). (7)

Let Pstandby be the average power (in Watts) consumed by a standby storage node.
When a node is running, it has two different average power levels, namely, Plight and
Pheavy (in Watts) under light and heavy loads, respectively. For simplicity, we assume
that nodes respond to I/O requests at the average power level Ppower (see Figure 7(a)).

Initially, we keep data nodes in the power-on mode to achieve high I/O performance,
while placing parity nodes in the standby mode to achieve good energy efficiency.
Figure 7(b) illustrates that a parity node stays in the standby mode at time-point
T = 0, and it is powered on when the buffer utilization reaches threshold Vthreshold.
The parity node is transitioned into the standby mode after completing the par-
ity synchronization process. That is, the parity node’s power state is switched in a
standby→activating→synchronization→deactivating→standby cycle.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:16 J. Huang et al.

Fig. 7. The power curve of a storage node as a function of time. (a) Power fluctuation between Pheavy and
Plight in the power-on mode; (b) Power transitions of a parity node.

There are Nd active data nodes in the active group. The energy dissipation in each
storage node during the time period T is PpowerT. The overall energy E(active,T) (in
Joules) consumed by the active group is the sum of the energies consumed by all the
active nodes. Thus, we have

E(active,T) = Ppower × Nd × T. (8)

The write data can be striped across Nd data nodes with the strip size of Sstrip. As to
a write request of size Sreq w, it may occupy the buffer space of size Sreq buf,

Sreq buf = ⌈
Sreq w/(NdSstrip)

⌉ × Sstrip. (9)

If the buffer utilization reaches a predetermined threshold, all inactive parity nodes
will be activated. A full transition includes powering up and powering down, and the
number of full transitions Ntransit can be expressed as

Ntransit =
⌊

Rreq wSreq bufT(Np + 1)

Sbuf

⌋
. (10)

The total transition time depends on the number of full transitions and time spent
in each transition; therefore, the total transition time Ttransit can be written as

Ttransit =
{

TfullNtransit + Tup, Case1
TfullNtransit, Otherwise

. (11)

The total energy overhead Etransit (measured in Joules) caused by power-state tran-
sitions can be derived from the total transition time and power in the transitions.
Hence, we have:

Etransit =
{

NpEfullNtransit + Eup, Case1
NpEfullNtransit, Otherwise

. (12)

where Case1 represents the synchronization occurring at time point T.
The average time spent in synchronizing buffered parity blocks is the maximum

value of reading time of parity blocks from Nd data nodes and the writing time of
parity blocks to Np parity nodes. Thus, we have the following equation where reading
time is expressed as the first item on the right-hand side of the first line, and writing
time is written as the second item on the right-hand side of the first line.

Tsyn = MAX
{

Rreq wSreq bufTNp

(NdBnode)
,

Rreq wSreq bufTNp

(NpBnode)

}
= MAX

{Np

Nd
, 1

}
× Rreq wSreq bufT

Bnode
(13)

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:17

The energy (in Joules) caused by synchronizing parity blocks to the parity nodes is
expressed as PpowerNpTsyn. In Equation (13) the synchronization time is the maximum
of the reading and writing times, so the data nodes can offer a portion of data transfer
bandwidth for user I/O requests in addition to synchronization if Np < Nd.

The total standby time can be calculated as T − Ttransit − Tsyn. Therefore, the energy
(in Joules) consumed by Np parity nodes in the standby mode is

PstandbyNp(T − Ttransit − Tsyn) (14)

The overall energy E(inactive,T) (in Joules) incurred by the inactive nodes is con-
tributed by three factors: standby energy (see the first item on the right-hand side
of Equation (15)), synchronization energy (see the second item on the right-hand side
of Equation (15)), and transition energy (see the third item on the right-hand side of
Equation (15)). Thus, the overall energy E(inactive,T) can be expressed as

E(inactive,T) = PstandbyNp(T − Ttransit − Tsyn) + PpowerNpTsyn + Ptransit. (15)

Equation (9) represents cases where all written data is striped across Nd data nodes.
If a write request is smaller than the strip unit, i.e. Sreq w < Sstrip, then such a striped
layout can cause relatively high disk and network bandwidth. When it comes to small
writes, written data can be stored in a single active node to improve write performance.
Therefore, in this model we replace Equation (9) with Equation (16).

Sreq buf =
{⌈

Sreq w/(NdSstrip)
⌉ × Sstrip, Sreq w > Sstrip

Sreq w, Otherwise
(16)

4.3.2. Energy Consumption of Non-ECS2. For comparison purpose, we model the energy
consumption of the power-oblivious (non-ECS2) system, which maintains the number
Nd + Np of active nodes. Hence, the overall energy Eoblivious,T (in Joules) consumed by
non-ECS2 during the time period T can be derived from power Ppower and the number
Nd + Np of data/parity nodes as shown below:

Eoblivious,T = Ppower(Nd + Np)T (17)

4.3.3. Energy Consumption in the Case of Failures. As mentioned in the preceding, we
model the energy consumption of both the non-ECS2 system and our ECS2 system
without considering node failures. In the case of any node failure, the power Ppower is
increased due to node reconstruction. The increase of power Ppower in ECS2 is close to
that in non-ECS2, because the same reconstruction process is employed in both sys-
tems. The parameters in the energy consumption model of ECS2 are given as follows.

— When a failure occurs, an inactive parity node is awakened to join the active group.
The failed node is replaced by a spare functional node. As a result, the active group
size is increased by one from Nd and the inactive group size is reduced by one (i.e.,
Np-1). The energy E(active,T) (in Joules) consumed by the active group increases to
Ppower × (Nd + 1) × T from Ppower × Nd × T (see Equation (8))

— Upon double failures, two parity nodes are activated. The active group size is in-
creased by 2 (Nd + 2); the inactive group size is decreased by 2 (Np − 2).

— When the number of concurrent node failures is i (3 ≤ i ≤ Np), the ECS2 system
must activate all standby parity nodes, and the total power is the same as that of a
non-ECS2 system (see Equation (17)).

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:18 J. Huang et al.

Fig. 8. Experimental Testbed. Red lines represent that the power analyzer records the current of each
storage node through a probe. The power state of a parity node is transitioned between Standby and Active
(Standby Mode ↔ Active Mode).

5. EVALUATION

5.1. Experimental Environment

In our experiment, we employ a server-level machine as a client node, and 12 PC-level
machines as storage nodes. Each storage node is composed of a 3.2GHz Intel Core Duo
processor(E5800), with 2GB of DDR3 RAM, Seagate disk model ST31000525SV with
1TB capacity, and Linux Ubuntu 10.04 X86 64 (Kernel 2.6.32) as its operating sys-
tem. The client is a SuperMicro server with two Intel(R) Xeon(R) X5560 @2.67GHz (6
cores) CPUs, 12GB DDR3 RAM, and its operating system is Fedora 12 X86 64 (Kernel
2.6.32). All machines are connected to a WS-C3750G-24TS-S Cisco(R) switch with 24
Ethernet 10/100/1000 ports. To measure power consumption, we use an Electric Power
Analyzer model ZH-101 [Zyhd 2010], which can record the current of each storage node
in a sample range of 1∼10Hz.

Figure 8 shows the experimental testbed.

5.2. Prototype and Evaluation Methodology

5.2.1. Prototype. To create the power-efficient erasure-coded environment, an
application-level trace player is implemented on the client node, which serves as
multiple concurrent users. The trace player issues I/O requests according to the times-
tamps of the workload trace and records the request duration between sending re-
quests and receiving the required data via TCP connections. If it is a read request,
the request duration is the read response time; otherwise, it is the write response
time. Here, we measure the duration of I/O requests in terms of average user re-
sponse time. When a data node fails, and the I/O requests are located on the failed
node, the user response time includes the duration of rebuilding the lost data. The
data nodes not only respond to the I/O requests from the client node, but also period-
ically provide status info, such as buffer utilization, which is used to activate inactive
parity nodes. As to the underlying erasure codes, we use the Zfec library [Wilcox-
O’Hearn 2011], which is the implementation of the fastest Vandermonde-RS codes
[Plank et al. 2009].

As shown in Algorithm 1, Ri,j is a buffer region at node DNi for block Pj, thus Ri,j can
hold a set of parity blocks that will be migrated to jth parity node PNj. We encapsulate
several parity blocks into a large request unit that can use the spare link capacity and
maximize disk head utilization of the parity node, improving synchronization.

5.2.2. Evaluation Methodology. We compare the energy efficiency and performance of the
ECS2 system with those of a power-oblivious system in both normal and failure cases.
In the power-oblivious (non-ECS2) case, all the k + r storage nodes are active; parity

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:19

Table V. The Characteristic of the Four Traces

Trace Write Rate IOPS Avg. Req. Size Avg. Write Req. Size Data Set Size (1 Hour)
Web-2 0.02% 287 14.02KB 8.28KB 13.81GB
Fin-2 17.8% 128 2.89KB 3.05KB 1.27GB
DTRS 36.44% 57 27.87KB 30.47KB 5.45GB

RAD-BE 81.6% 91 25.25KB 10.67KB 7.89GB

blocks are stored in corresponding parity nodes. The primary evaluation metrics used
in our experiments are the percentage of power savings and average user response
time. We divide our experiments into the following four groups:

— under four different application scenarios;
— in the case of a data node failure;
— using the workload of different intensities;
— sensitivity to the number of data nodes.

To evaluate our ECS2 system, we replay four real-world traces representing dif-
ferent workloads on the client node. These traces include WebSearch2.spc (Web-2),
Financial2.spc (Fin-2), Developer Tools Release Server (DTRS), and RADIUS Back-
end Server (RAD-BE). The Web-2 and Fin-2 traces were respectively collected from a
popular search engine and an OLTP application server by the Storage Performance
Council(SPC) [Application 2007]. The DTRS and RAD-BE were collected by the Mi-
crosoft Corporation in 2008. The DTRS trace was obtained from a file server accessed
by more than 3000 users downloading various daily builds of Microsoft Visual Studio;
the RAD-BE trace was derived from a back-end SQL server of the RADIUS authentica-
tion server that is responsible for worldwide corporate remote access and wireless au-
thentication [Kavalanekar et al. 2008]. We choose a segment of each trace that covers
a 1-hour period. Table V summarizes the I/O characteristics of the traces. Web-2 rep-
resents read-intensive workloads; Fin-2 resembles applications issuing small writes;
both DTRS and RAD-BE represent write-dominated workloads. DTRS contains re-
quests issued by large-write applications; RAD-BE consists of requests from write-
intensive workloads (write rate is 81.6%).

To evaluate ECS2 in terms of user response time, we adopt the open-loop model
[Lumb et al. 2000], which aims to test the service capability of an underlying system
where the I/O arrival rate is independent of I/O request completions. To illustrate node
transitions, we configure the buffer space and buffer threshold according to the dataset
size (see Table V). In the experiments, we allocate 200Mbytes of memory space in
each data node to buffer parity blocks; we also set the buffer threshold as 0.9. That is,
Sbuf = 1200MBytes. Evidence shows that a configuration of r = 3 allows ECS2 to achieve
sufficient MTTDL for 10PB of archival storage [Storer et al. 2008], so we set Np to be
3 in our experiments.

5.3. Experimental Results

We measure system parameters (see Table VI) of a storage node in a real-world cluster
in our laboratory. The node power Plight is 70.8W when the node’s I/O throughput is
10MBps; the power Pheavy is increased to 75.6W when the node’s throughput goes up
to 80MBps. Hence, the parameter Ppower is set to 73.2W in our experiments. Because
both user and synchronization I/Os are sharing the storage and network bandwidth,
the value of Bnode varies with dynamic workload conditions.

5.3.1. Four Different Scenarios. Figure 9(a) shows the power consumption of ECS2 pro-
cessing the Web-2 trace. In the non-ECS2 system, parity nodes can stay in the idle

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:20 J. Huang et al.

Table VI. Parameters and Their Values

Symbol Value
Nd, k 6
Np, r 3

Sbuf(MB) 1200
Sstrip(KB) 16
Vthreshold 0.9

Symbol Value
Bnode(MB/s) 40

Tup(Sec) 13
Tdown(Sec) 7
Eup(Joule) 1270

Edown(Joule) 569

Symbol Value
Pidle(Watt) 61.8

Pstandby(Watt) 5.4
Plight(Watt) 70.8
Pheavy(Watt) 75.6
Ppower(Watt) 73.2

Fig. 9. Power-consumption comparison between ECS2 and non-ECS2 under four different workloads. The
threshold in the Fin-2 case is set to 0.75; a node transition takes place within 3600 seconds. In (b), the
activation and deactivation processes are marked in the partially enlarged curve. In (c), the theoretical
power consumption is plotted as the red dotted line.

mode until a write request arrives. ECS2 activates standby parity nodes when buffer
utilization reaches threshold Vthreshold. Table VII shows that ECS2 can save energy
by up to 29.8%—an energy-saving rate close to the optimal value Np × (Ppower −
Pstandby)/(Ppower × (Nd + Np)) (e.g., 30.9% when Nd = 6 and Np = 3).

Figure 9(b) shows the power consumption of both the ECS2 and non-ECS2 systems
driven by the Fin-2 trace. The energy-saving rate of ECS2 in the OLTP scenario can be
as high as 30.3% (see Table VII), which is very close to the optimal value. High energy
efficiency of ECS2 is possible, because parity nodes stay in the standby mode for a
longer time period than power-transition and data synchronization times. Although
buffered parity blocks can be migrated to activated parity nodes in a batch way, it
takes about 19 seconds due to small writes.

Figures 9(c) and 9(d) show the power consumptions of ECS2 under the DTRS
and RAD-BE traces, respectively. The energy-saving rates of ECS2 in the DTRS and
RAD-BE cases are up to 28.0% and 28.4%, respectively. The energy-saving rates for
DTRS and RAD-BE are lower than those for Web-2 and Fin-2, because both DTRS and
RAD-BE have high write load (e.g., Rreq w × Sreq w), which leads to a large number of

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:21

Table VII. Average Power Consumption and Savings

Trace Web-2 Fin-2 DTRS RAD-BE
non-ECS2(Watt) 648.68 654.09 660.37 657.56

ECS2(Watt) 450.6 451.42 475.64 470.80
Power Saving 29.8% 30.3% 28.0% 28.4%

Fig. 10. Comparison of average user response time between ECS2 and non-ECS2 under different workload
conditions.

node-power transitions. The synchronization time in the DTRS case is approximately
8 seconds—smaller than that of Fin-2 thanks to large data requests.

The discrepancy of power consumption between light and heavy loads is small (e.g.,
Plight = 70.8W and Pheavy = 75.6W); therefore, the fluctuation of the power consump-
tion curve is small during the regular I/O access (see Figure 9(a)). The peak power
consumption takes place during the parity-synchronization and node-transitioning pe-
riods (see the partially enlarged curve in Figure 9(b)).

Both experimental and theoretical results (see Figure 9(c)) indicate that there ex-
ists deviation in activation time points of inactive nodes in ECS2, because DTRS has
fluctuating workloads. Nevertheless, the partially enlarged curve shows that the theo-
retical results derived from the power model are consistent with the empirical results.

The average write throughput of DTRS is 61.80MB/s, compared to which, the
RAD-BE trace has higher write throughput (77.37MB/s). Therefore, the RAD-BE trace
causes more node transitions than DRTS does (see Figure 9(d)).

Figure 10 depicts the average response time in various scenarios. In read-intensive
cases like Web-2, the average response times offered by ECS2 are almost identical
to those provided by the non-ECS2 system. ECS2 improves energy efficiency without
affecting I/O performance, because read requests are directly served by data nodes.
When it comes to small writes (e.g., the Fin-2 trace), requests are quickly responded
to in ECS2. This is because the writes are synchronized I/O. There are Nd = 6 and
Nd + Np = 9 writes in ECS2 and non-ECS2, respectively, thus the average response
time in ECS2 is less than that in non-ECS2. On the other hand, the requested data
in Fin-2 is very small, and the data stored close to the data that has been already
requested will be cached owing to spatial locality; consequently, the average response
time of Fin-2 is less than that of Web-2.

Under write-dominated workloads, the ECS2-based system may lead to longer re-
sponse times than the non-ECS2 system (see Figure 10), because ECS2 tends to issue
more I/O requests to data nodes than non-ECS2 does. For example, to create a file in
the (9,6) RS-coded system, there are 10 I/Os (6 disk writes and 4 memory writes) is-
sued to data nodes in ECS2, as apposed to 6 in the non-ECS2 system. To modify a data

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:22 J. Huang et al.

Fig. 11. The impact of reconstruction bandwidths on power consumption. The experiment is driven by the
Web-2 trace.

block, there are 6 requests (1 disk read, 1 disk write, and 4 memory writes2) to the
data nodes in ECS2, but only 2 requests (1 disk read and 1 disk write) in non-ECS2.
Thus, data nodes in ECS2 may face heavy I/O loads.

5.3.2. Handling Failures. Erasure-coded storage systems must efficiently deal with data
recovery while providing regular storage services. We are now in a position to evaluate
the energy efficiency and performance of ECS2 when a data node fails. While han-
dling any failure in ECS2, both user and reconstruction I/Os must be responded to by
surviving data nodes as well as an activated parity node (e.g., PN1).

Upon a failure of any data node, the ECS2 system enables a replacement node to
sustain a certain reconstruction bandwidth (via bandwidth limiting using iptables).
The replacement node first issues read requests to k-1 surviving data nodes and an
activated parity node; then, the replacement node rebuilds lost data stored on the
failed node. Figure 11 plots the power consumption of ECS2 driven by the Web-2 trace
under various reconstruction bandwidths (450Mbps and 750Mbps). We observe that
when the reconstruction bandwidth is set to 450Mbps, the average powers of ECS2

and non-ECS2 are 538W and 677W, respectively. In this case, ECS2 conserves power
by 20.5%. When the reconstruction bandwidth becomes 750Mbps, the average powers
of ECS2 and non-ECS2 are 541W and 678.5W, respectively. The power saving rate in
the second case is 20.3%. The power-saving rate of approximately 20% is attributed
to the fact that only Np − 1=2 parity nodes are kept in the standby mode during the
reconstruction process. The power-saving rate’s optimal value is (Np − 1) × (Ppower −
Pstandby)/((Nd + Np) × Ppower) (e.g., optimal power-saving rate is 20.6% when Nd = 6
and Np = 3).

Figure 12 depicts that average response times processed by both ECS2 and
non-ECS2 for a failure. The results suggest that regardless of ECS2 or non-ECS2, the
reconstruction process can slow down response times. If an aggressive reconstruction
scheme is adopted (e.g., the reconstruction bandwidth is set to 750Mbps), the system
will experience much higher response times than the same system using a nonaggres-
sive scheme (e.g., the reconstruction bandwidth is only set to 450Mbps).

5.3.3. Impacts of Workload Intensities. To examine the sensitivity of ECS2 to I/O work-
loads, we increase the workload intensity (e.g., ×1.5, ×2.0, ×2.5) of the DTRS trace

2The parity block can be updated within the memory.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:23

Fig. 12. The impact of reconstruction bandwidth on average user response time in the ECS2 and non-ECS2

systems. The experiment is driven by the Web-2 trace.

Fig. 13. The impact of workload intensity on average user response time in the ECS2 and non-ECS2 sys-
tems. The experiment is driven by the DTRS trace.

by shrinking its time-stamps. To make ECS2 handle heavy I/O workloads (e.g., ×2.5
intensity), threshold Vthreshold is set to 0.8 so that there is sufficient buffer space to
hold the parity blocks (see Equation (5)). Thus, the parameter Vdeviation becomes 0.1.

Figure 13 shows that the average response times in both ECS2 and non-ECS2

systems increase with I/O load. The response time of ECS2 is more sensitive to I/O
intensity than that of non-ECS2. From Figures 14 and 9(c), it is indicated that with
the increase of I/O intensity, the number of power transitions of parity nodes is
increasing, because large values of Rreq w and Sreq w lead to more power transitions
(Ntransit). Therefore, I/O workload conditions noticeably affect the energy efficiency
of ECS2.

Compared to read-intensive or small-write loads, write-dominated workloads give
rise to a large number of power transitions of parity nodes in ECS2. Such a high power-
transition frequency not only adversely affects the life-cycle of parity nodes, but also
reduces the energy efficiency of ECS2 because the standby duration of the parity nodes
is shortened (see Table VIII). Write throughput, buffer size, and buffer threshold have
impacts on the energy efficiency of ECS2, therefore, the deployment of ECS2 to write-
intensive applications should be carefully considered.

5.3.4. Impact of Data Node Number. In this experiment, we focus on the sensitivity of
ECS2 to the number of data nodes. We set the fault-tolerance parameters k and r to
be 9 and 3, respectively. Figure 15 shows the average user response times in the ECS2

and non-ECS2 systems with both (9,6)RS and (12,9)RS codes. The trace replayed in
this experiment is DTRS.

We observe from Figure 15 that the average user response time of the ECS2-based
system decreases when the number of data nodes increases. This trend is reasonable,
because a large number of nodes gives rise to large available buffer space. As such,

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:24 J. Huang et al.

Fig. 14. The impact of workload intensity on power consumption. The experiment is driven by the DTRS
trace.

Table VIII. Average Power Consumption of the System Under
Different Workload Intensities

Workload Intensity ×1.0 ×1.5 ×2.0 ×2.5
non-ECS2(Watt) 660.37 665.10 672.87 675.85

ECS2(Watt) 475.64 492.79 517.58 526.39
Power Saving 28.0% 25.9% 23.1% 22.1%

The experiment is driven by the DTRS trace.

the impact of synchronization on I/O performance is weakened. On the other hand, the
average user response time of the non-ECS2-based system increases sightly when the
number of nodes increases, because the overhead incurred by synchronized writes may
go up with increasing node numbers.

6. FURTHER DISCUSSION

In this study, we leverage memory space in active nodes to buffer parity blocks, which
are flushed to activated parity nodes when the I/O buffer’s utilization reaches a spec-
ified threshold. In the worst case, a second node fails when the system is recovering
the first failed node. Although all buffered parity blocks can be rebuilt without loss of
data, the system will experience high I/O response times due to the fact that a portion
of the active nodes’ disk bandwidth is reserved for data reconstruction. To alleviate the
performance degradation due to the data recovery process, one can simply lower the
buffer threshold when the system is in the process of reconstructing data.

Our study shows that ECS2 can significantly improve the energy efficiency of stor-
age clusters, because all r parity nodes are placed into an inactive group. Although
one or two extra parity blocks may require additional I/O bandwidth and memory
space, this data layout is worthwhile, because the extra parity blocks can be used to

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:25

Fig. 15. The impact of data node number on average user response time in the ECS2 and non-ECS2 sys-
tems. The experiment is driven by the DTRS trace.

reconstruct data upon double node failures, and the fault tolerance level of the active
group increases.

It is critical to synchronize parity updates to persistent storage in a timely man-
ner during the synchronization process, which can interfere with system performance
due to shared disk and network bandwidth. The aforementioned experimental results
(see Section 5) indicate that the synchronization process in our ECS2 is fairly efficient;
synchronizations are completed in a short time with marginal periodic effects on sys-
tem performance.

During a utility power outage in which buffered data may be lost, we can extend
ECS2 to employ per-server battery back-ups (see, for example, Ongaro et al. [2011]).
This approach provides power long enough for ECS2 to synchronize all the buffered
parity blocks.

When data nodes fail, parity node PN1 is activated to boost the reconstruction per-
formance. Alternatively, all the parity nodes in ECS2 can be activated in a round robin
mode to offer longevity of PN1.

If parity nodes fail, the reconstruction process is equivalent to encoding operations.
In other words, the following three phases are involved in the reconstruction. First,
data blocks are retrieved from k active data nodes. Second, the failed parity blocks are
produced according to the Generator Matrix. Finally, the recovered parity blocks are
written to the corresponding replacement parity nodes.

Each node may store both data and parity blocks simultaneously, meaning that some
nodes can be transitioned into the low-power mode via scheduling the I/O requests.
This alternative process allows us to balance load and lengthen the life of data nodes
compared to ECS2, but it may cause high response time and recovery time without
exploiting the systematic feature of RS codes. Such a scheduler is not incorporated into
our system, because ECS2 aims to offer energy savings with marginal degradation of
reliability and performance.

If the loss of user data is not affordable and desirable, one or more parity nodes
in ECS2 can be placed in the active mode all the time (see Figure 1(b)) to en-
hance system reliability. Such a configuration improves the system reliability at the
cost of energy efficiency, that is, there is a trade-off between energy efficiency and
reliability.

7. CONCLUSIONS AND FUTURE WORK

This article shows that existing energy conservation techniques for storage clusters
reduce energy consumption at the cost of performance or reliability of the systems. To

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:26 J. Huang et al.

overcome this limitation, we design an energy-efficient erasure-coded storage cluster
or ECS2 for high-performance data-intensive scenarios. Compared to energy-oblivious
reliable storage systems, our ECS2 has four salient characteristics: (1) ECS2 achieves
high energy efficiency by keeping all parity nodes in the power-saving mode while
exclusively buffering new parity blocks in active nodes to handle deferred writes;
(2) to improve reliability, ECS2 transitions the fault-tolerance level of an active group
from �r/2� to �(r + 1)/2� by buffering one or two extra parity blocks; (3) ECS2 is cost
effective, because new parity blocks are temporarily buffered to preallocated memory
space of active nodes without requiring extra dedicated devices (e.g., cache disks); and
(4) ECS2 maintains good I/O performance as I/O requests are quickly and directly ser-
viced by powered-on data nodes, fully utilizing the systematic feature of RS codes.

Our quantitative analysis indicates that ECS2 can achieve high reliability of the
active group. Our evaluation shows that for the (9,6) RS-coded prototype, ECS2

effectively saves power by up to 29.8% and 20.4% under normal conditions and one
failure, respectively, while achieving similar I/O performance of energy-oblivious
erasure-coded storage for read-intensive workloads. Our experimental results also
show that ECS2 improves energy efficiency by 28.0% for write-dominated applications.

In the future, we plan to extend this work by designing an energy-efficient non-MDS-
coded storage cluster. This is because relative to (k + r, k) MDS codes, non-MDS codes
have many opportunities to reconstruct the data directed to standby nodes from less
than k active nodes.

APPENDIX

Matrix-Based Scheme to Construct Extra Parity Blocks
In a (k + r, k) RS-coded storage cluster, any k surviving blocks can rebuild the original

blocks. Assume r parity blocks are exclusively buffered at the k active data nodes, so
the active group can tolerate �r/2� node failures. Namely,

FTr = �r/2� . (18)

In order to improve the fault tolerance of the active group (e.g., FTr′ = FTr + 1), it is
normal to adopt a (k + r′, k) coding scheme, where r′ > r. According to Formula (18),

FTr′ = ⌊
r′/2

⌋
. (19)

To minimize encoding overhead, we get r′ = 2FTr′ from Formula (19), then

r′ = 2FTr + 2 = 2 �r/2� + 2 =
{ r + 1, r is odd,

r + 2, r is even
. (20)

From Formula (20), we find that

�r = r′ − r =
{ 1, r is odd

2, r is even,
(21)

FTr′ = �(r + 1)/2� . (22)

Thus, We can adopt (k + r + �r, k) RS codes to construct r + �r par-
ity blocks {P1, P2, ..., Pr +�r}, which can be exclusively buffered in data nodes
{DN1, DN2, ..., DNk}. The active groups can achieve �(r + 1)/2�-fault tolerance. Af-
ter synchronizing parity blocks {P1, P2, ..., Pr} to the corresponding parity nodes
{PN1, PN2, ..., PNr}, all k + r nodes can achieve r-fault tolerance. Figure 16 shows the
data flow.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:27

Fig. 16. Data flow of power-efficient (k + r, r)RS-coded storage cluster with �r extra parity blocks, with
�(r + 1)/2�-fault tolerance for k active nodes and r-fault tolerance for k + r nodes.

From Formula (21), it is seen that an extra parity block can make the active group
2-fault tolerant when r = 3.

ACKNOWLEDGMENTS

The authors would like to sincerely thank all the anonymous reviewers for their constructive comments in
reviewing this article. The authors also appreciate Shuaijun Han and Shenjie Cui for their assistance in the
development of the experimental platform for this study.

REFERENCES

Aguilera, M., Janakiraman, R., and Xu, L. 2005. Using erasure codes efficiently for storage in a distributed
system. In Proceedings of IEEE International Conference on Dependable Systems and Networks (DSN).
336–345.

Amur, H., Cipar, J., Gupta, V., Ganger, G., Kozuch, M., and Schwan, K. 2010. Robust and flexible power-
proportional storage. In Proceedings of the 1st ACM Symposium on Cloud Computing. 217–228.

Application, O. 2007. I/O and search engine I/O. umass trace repository. http://traces.cs.umass.edu/.
Bairavasundaram, L., Goodson, G., Pasupathy, S., and Schindler, J. 2007. An analysis of latent sector errors

in disk drives. In Proceedings of the ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems. 289–300.

Blaum, M., Brady, J., Bruck, J., and Menon, J. 1995. Evenodd: An efficient scheme for tolerating double disk
failures in raid architectures. IEEE Trans. Comput. 44, 2, 192–202.

Borthakur, D. 2008. Hdfs architecture guide. http://hadoop.apache.org/hdfs.
Borthakur, D. 2010. Hdfs and erasure codes (hdfs-raid).
Chen, F., Jiang, S., and Zhang, X. 2006. Smartsaver: Turning flash drive into a disk energy saver for mobile

computers. In Proceedings of the IEEE International Symposium on Low Power Electronics and Design
(ISLPED). 412–417.

Colarelli, D. and Grunwald, D. 2002. Massive arrays of idle disks for storage archives. In Proceedings of the
ACM/IEEE Conference on Supercomputing. 1–11.

Corbett, P., English, B., Goel, A., Grcanac, T., Kleiman, S., Leong, J., and Sankar, S. 2004. Row-diagonal
parity for double disk failure correction. In Proceedings of the 3rd USENIX Conference on File and
Storage Technologies (FAST). 1–14.

Fan, B., Tantisiriroj, W., Xiao, L., and Gibson, G. 2009. Diskreduce: Raid for data-intensive scalable comput-
ing. In Proceedings of the 4th Annual Workshop on Petascale Data Storage. 6–10.

Ganesh, L., Weatherspoon, H., Balakrishnan, M., and Birman, K. 2007. Optimizing power consumption in
large scale storage systems. In Proceedings of the 11th USENIX Workshop On Hot Topics In Operating
Systems.

Ghemawat, S., Gobioff, H., and Leung, S. 2003. The Google file system. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles. 29–43.

Greenan, K., Long, D., Miller, E., Schwarz, S., and Wylie, J. 2008. A spin-up saved is energy earned: achieving
power-efficient, erasure-coded storage. In Proceedings of the 4th USENIX Conference on Hot Topics in
System Principles. 4–10.

Hafner, J. 2005. Weaver codes: Highly fault tolerant erasure codes for storage systems. In Proceedings of the
4th USENIX Conference on File and Storage Technologies. 211–224.

Hafner, J. and Rao, K. 2006. Notes on reliability models for non-MDS erasure codes. IBM Res. rep. RJ10391.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

4:28 J. Huang et al.

Hafner, J., Pandey, P., and Thakur, T. 2010. Read-modify-write protocol for maintaining parity coherency in
a write-back distributed redundancy data storage system. US Patent App. 12/710,123.

Holland, M., Gibson, G., and Siewiorek, D. 1994. Architectures and algorithms for on-line failure recovery
in redundant disk arrays. Distrib. Par. Datab. 2, 3, 295–335.

Jiang, W., Hu, C., Zhou, Y., and Kanevsky, A. 2008. Are disks the dominant contributor for storage failures?:
a comprehensive study of storage subsystem failure characteristics. ACM Trans. Storage 4, 3, 7.

Kavalanekar, S., Worthington, B., Zhang, Q., and Sharda, V. 2008. Characterization of storage workload
traces from production windows servers. In Proceedings of the IEEE International Symposium on Work-
load Characterization (IISWC). 119–128.

Lang, W. and Patel, J. 2010. Energy management for mapreduce clusters. Proc. VLDB Endow. 3, 1–2,
129–139.

Lang, W., Patel, J., and Naughton, J. 2010. On energy management, load balancing and replication. ACM
SIGMOD Rec. 38, 4, 35–42.

Leverich, J. and Kozyrakis, C. 2010. On the energy (in) efficiency of hadoop clusters. ACM SIGOPS Oper.
Syst. Rev. 44, 1, 61–65.

Li, D. and Wang, J. 2004. Eeraid: Energy efficient redundant and inexpensive disk array. In Proceedings of
the 11th Workshop on ACM SIGOPS European Workshop.

Lumb, C., Schindler, J., Ganger, G., Nagle, D., and Riedel, E. 2000. Towards higher disk head utilization:
extracting free bandwidth from busy disk drives. In Proceedings of the 4th USENIX Conference on
Symposium on Operating System Design & Implementation-Volume 4.

Meisner, D., Gold, B., and Wenisch, T. 2009. Powernap: Eliminating server idle power. ACM SIGPLAN
Notices 44, 3, 205–216.

Moore, R., D’Aoust, J., McDonald, R., and Minor, D. 2007. Disk and tape storage cost models.
http://users.sdsc.edu/∼mcdonald/content/papers/dt cost.pdf.

Narayanan, D., Donnelly, A., and Rowstron, A. 2008. Write off-loading: Practical power management for
enterprise storage. ACM Trans. Storage 4, 3, 10.

Ongaro, D., Rumble, S., Stutsman, R., Ousterhout, J., and Rosenblum, M. 2011. Fast crash recovery in
ramcloud. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles. 29–41.

Phanishayee, A., Krevat, E., Vasudevan, V., Andersen, D., Ganger, G., Gibson, G., and Seshan, S. 2008.
Measurement and analysis of tcp throughput collapse in cluster-based storage systems. In Proceedings
of the 6th USENIX Conference on File and Storage Technologies (FAST).

Pinheiro, E. and Bianchini, R. 2004. Energy conservation techniques for disk array-based servers. In
Proceedings of the 18th Annual International Conference on Supercomputing (ICS). 68–78.

Pinheiro, E., Bianchini, R., and Dubnicki, C. 2006. Exploiting redundancy to conserve energy in storage
systems. ACM SIGMETRICS Perf. Eval. Rev. 34, 1, 15–26.

Plank, J. 2005. Erasure codes for storage applications. In Proceedings of 4th USENIX Conference on File
and Storage Technologies (FAST)–Tutorial slides.

Plank, J. et al. 1997. A tutorial on Reed-Solomon coding for fault-tolerance in raid-like systems. Softw. Pract.
Exper. 27, 9, 995–1012.

Plank, J., Luo, J., Schuman, C., Xu, L., and Wilcox-O’Hearn, Z. 2009. A performance evaluation and exam-
ination of open-source erasure coding libraries for storage. In Proccedings of the 7th Conference on File
and Storage Technologies (FAST). 253–265.

Rao, K., Hafner, J., and Golding, R. 2011. Reliability for networked storage nodes. IEEE Trans. Dependable
Sec. Comput. 8, 3, 404–418.

Reed, I. and Solomon, G. 1960. Polynomial codes over certain finite fields. J. Soc. Indus. Appl. Math. 8, 2,
300–304.

Samsung. 2008. Data sheet of Samsung ddr2 sdram. http://www.samsung.com/.
Seagate. 2011. Data sheet of seagate disk drive. http://www.seagate.com/docs/pdf/datasheet/.
Storer, M., Greenan, K., Miller, E., and Voruganti, K. 2008. Pergamum: Replacing tape with energy efficient,

reliable, disk-based archival storage. In Proceedings of the 6th USENIX Conference on File and Storage
Technologies.

Tsirogiannis, D., Harizopoulos, S., and Shah, M. 2010. Analyzing the energy efficiency of a database server.
In Proceedings of the International Conference on Management of Data. 231–242.

Wang, J., Zhu, H., and Li, D. 2007. eRAID: Conserving energy in conventional disk-based raid system. IEEE
Trans. Comput., 359–374.

Weatherspoon, H. and Kubiatowicz, J. 2002. Erasure coding vs. replication: A quantitative comparison. In
Peer-to-Peer Systems, 328–337.

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.



�

�

�

�

�

�

�

�

Exploiting Redundancies and Deferred Writes to Conserve Energy in ECS 4:29

Weddle, C., Oldham, M., Qian, J., Wang, A., Reiher, P., and Kuenning, G. 2007. Paraid: A gear-shifting power-
aware raid. In Proceedings of the 5th USENIX Conference on File and Storage Technologies (FAST).

Wilcox-O’Hearn, Z. 2011. Zfec 1.4.2. open source code distribution. http://pypi.python.org/pypi/zfec.
Xin, Q., Miller, E., Schwarz, T., Long, D., Brandt, S., and Litwin, W. 2003. Reliability mechanisms for very

large storage systems. In Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST). 146–156.

Yang, L., Li, X., and Zhang, X. 2011. Research on energy consumption of general storage network system.
Comput. Eng. (China) 37, 18, 53–58.

Yao, X. and Wang, J. 2006. Rimac: A novel redundancy-based hierarchical cache architecture for energy
efficient, high performance storage systems. ACM SIGOPS Oper. Syst. Rev. 40, 4, 249–262.

Zhang, Z., Deshpande, A., Ma, X., Thereska, E., and Narayanan, D. 2010. Does erasure coding have a role
to play in my data center? Tech. rep. MSR-TR-2010-52, Microsoft.

Zhu, Q., David, F., Devaraj, C., Li, Z., Zhou, Y., and Cao, P. 2004. Reducing energy consumption of disk
storage using power-aware cache management. IEE Proc. Softw., 118–118.

Zhu, Q., Chen, Z., Tan, L., Zhou, Y., Keeton, K., and Wilkes, J. 2005. Hibernator: Helping disk arrays
sleep through the winter. In Proceedings of the 20th ACM Symposium on Operating Systems Principles.
177–190.

Zyhd. 2010. Zh-101 portable electric power fault recorder and analyzer.
http://www.zyhd.com.cn/cN/Bs Product.asp.

Received May 2012; revised October 2012; accepted January 2013

ACM Transactions on Storage, Vol. 9, No. 2, Article 4, Publication date: July 2013.


