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Abstract—Determining the achievable rate region for and decoding functions simply copy specified input
networks using routing, linear coding, or non-linear coding  components to output componehtSpecial networks of
is thought to be a difficult task in general, and few are jnterest includemulticastnetworks, where there is only

known. We describe the achievable rate regions for three d d . d ds all of th
interesting networks and show that achievable rate regions One source node and every receiver demanas all ot the

for linear codes need not be convex. source messages, antlltiple-unicastnetworks, where
each network message is generated by exactly one source
. INTRODUCTION node and is demanded by exactly one receiver node.

In this paper, anetworkis a directed acyclic multi-  For eachi, the ratiok;/n can be thought of as the
graphG = (V, E), some of whose nodes are informatiomate at which source injects data into the network. If
sources or receivers. Associated with the sources ar@etwork has &k, . .., k., n) fractional solution over
m generatednessageswhere thei!” source message some alphabet, then we say that/n, ..., ky,/n)is an
is assumed to be a vector &f arbitrary elements of achievable rate vectoand we define thachievable rate
a fixed finite alphabetA, of size at leas. At any regior? of the network as the set
node in the network, each out-edge carries a vector of
n alphabet symbols which is a function (called eaige

function) of the vectors of symbols carried on the inyn this paper, we will sometimes restrict attention to
edges to the node, and of the node’'s message vectgépievable rate regions corresponding to using only
if it is a source. Each network edge is allowed to bgnear codes (perhaps over certain finite field alphabets)
used at most once (i.e. at mostsymbols can travel gf only routing codes.

across each edge). Itis assumed that every network ed9fetermining the achievable rate region of an arbi-
is reachable by some source message. Associated Willly network appears to be a formidable task. Alter-
each receiver arelemands which are subsets of thenatively, certain scalar quantities that reveal inforrati
network messages. Each receiver tlasoding functions gyt the achievable rates are typically studied. For any

S={r € Q™ :r is an achievable rate vecior

which map the receiver’s inputs to vectors of symbol 1., km,n) fractional solution, we call the scalar
in an attempt to produce the messages demandedqgéntity

the receiver. The goal is for each receiver to deduce 1 [k ko

its demanded messages from its in-edges and source m <g Tt 7)

messages by having information propagate from the . i
sourcegs; throa/gh the gnetwork propag an achievable average ratef the network. We define

A (ki,...,kn,n) fractional codeis a collection of the average coding capacitpf a network to be the

edge functions, one for each edge in the network, argPremum of all achievable average rates, namely

decoding functions, one for each demand of each node 1

. . . Cavcragc — o . S

in the network. A (k4,...,kn,,n) fractional solution =supy - Z”z‘ P(r1ye.,mm) € .

is a (ki,...,km,n) fractional code which results in i=1

every receiver being able to compute its demands v&imilarly, for any(ks, . .., k., n) fractional solution, we

its decoding functions, for all possible assignments of

length#; vectors over the alphabet to th€" source 1 g edge function for an out-edge of a node depends only on

message, for all. the symbols of a single in-edge of that node, then, withoss lof
Special codes of interest includieear codes where generality, we assume that the out-edge simply carriesatne vector

. . . . of symbols (i.e. routes the vector) as the in-edge it depemds
the_ e_dg_e functions E_md decoding functions are Ime‘_ar OVEBsome authors in the literature refer to this region by oteemt
a finite field, andouting codeswhere the edge functionsnology, such as the “capacity region”.
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call the scalar quantity a network is given that demonstrates that the achievable
ey k rate region for linear coding need not be convex. This
min (Z’ cel, 7’”) latter result was motivated by a discussion in [6].

The Generalized Butterfly network (studied in Sec-
an achievable uniform rateof the network. We define tign 11 and illustrated in Figure 1) has the same topology
the uniform coding capacityof a network to be the 5 the usual Butterfly network, but instead of one source
supremum of all achievable uniform rates, namely  at each of nodes; and n», there are two sources at
m) € S} eagh of these nodes. qu each of the source.nodes, one

of it's source messages is demanded by receiyesind
Note that for any- € S andr’ € R™, if each component the other by receivens. The usual Butterfly network is
of ' is nonnegative, rational, and less than or equee special case when messagemdd do not exist (or
to the corresponding component af thenr’ € S. In  are just not demanded by any receiver). A large majority

Cuniform = sup {min(rh cee ’I”m) : (7’1, ..

particular, if (r1,...,7,) € S andr; = min 7, then of network coding publications mention in some context

(ri,74,...,7:) € S, which implies == the Butterfly network, so it plays an important role in
B the field.

CUMN = sup {r; : (r1,...,7m) €S, T1="""=7Tm}.  The Fano network (studied in Section IIl and illus-

In other words, all messages can be restricted to haviligted in Figure 2) and the non-Fano network (studied in

the same dimensiok; = --- = k,, when considering Section 1V and illustrated in Figure 6) were used in [3]

cuiform - Also. note that as components of a larger network to demonstrate the

unachievability of network coding capacity. Specifically,
in [3] the Fano network was shown to be solvable if
and only if the alphabet size is a power »fand the
non-Fano network was shown to be solvable if and only
'ﬁthe alphabet size is odd. In [5], the Fano and non-
Fano networks were used to build a solvable multicast

, . . network whose reverse (i.e. all edge directions change,
If a network’s edge functions are restricted to purel

. . ) L average ¥nd sources and receivers exchange roles) was not solv-
routing functions, then we write the capamtlefag'{ﬁng able. In [2], the Fano and non-Fano networks were used

i
and Coyiing » and refer to them as thaverage rout- 1, consiruct a network which disproved a previously

) routing ° . ) A .
ing capacityand uniform routing capacityrespectively. ., hjished conjecture asserting that all solvable networks
Sare vector linearly solvable over some finite field and

uniform average
C <C .

The quantitiesCaveraee and curiferm gre attained by
points on the boundary of the closed $gtlt is known
that not every network has a capacity which is a
achievable rate [3].

we write C; %8¢ and Cpniform and refer to them as

linear inear < X _ 92 some vector dimension.
theaverage linear capacitanduniform linear capacity
respectively.
Given random variables,...z; andy,...,y;, we Il. GENERALIZED BUTTERFLY NETWORK
write x1,...2x; — yi1,...,y; to mean thaty,...,y;

L ] Theorem I11.1. The achievable rate regions for either
are deterministic functions of, ... z;. . o .
, " linear (over any finite field alphabet) or non-linear cod-
In this paper, we study three specific networks, namelyy are the same for the Generalized Butterfly network

the Generalized Butterfly network, the Fano network 4 are equal to the closed polytopeRt whose faces
and the non-Fano network. Various capacities of thegg o, theg planes:

networks have been computed in [4], however, the full

achievable rate regions of these networks have not been rq =0
previously determined, to the best of our knowledge. rp =0
In this paper, we give the exact achievable rate regions r. =0
(for routing, linear coding, and non-linear coding) for =0
each of the Generalized Butterfly, Fano, and non-Fano d
networks. The linear coding achievable rate regions rp =1
for the Fano and non-Fano networks depend on the re=1
characteristic of the finite field alphabet used. Proofs Po -7+ Te =2

are given for the Generalized Butterfly network, but are
omitted due to space for the Fano and non-Fano networks
(these proofs will appear in a future publication). Finally Ta + 7o+ 7Tc+1a=3

ry+ T+ 1rg=2
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Fig. 1. The Generalized Butterfly network. Source nadegenerates
messages and b, and source node, generates messagesand d.
Receiver noders; demands messagesand ¢, and receiver nodeg
demands messagésindd. The symbol vectors carried on edgess,
e2,4, andes ¢ are denotedr, y, and z, respectively.

and whose vertices are the points:

(07 07 07 O) (O’ 07 07 2) (2’ 07 07 O) (07 17 07 O)
(0,0,1,0) (2,0,0,1) (1,0,0,2) (0,0,1,1)
(1,1,0,0) (1,0,1,1) (1,1,0,1) (0,1,1,0).

Furthermore, the coding capacities and linear coding

capacities are given by:

uniform __ puniform __

¢ - Clinear - 2/3
average __ paverage __

c - Clincar - 3/4

ITA 2012

the solution must satisfy the following inequalities:

ko >0 )
ky >0 @)
ke >0 ©)
ka >0 (4)
ky = H(b) = H(yla,c,d) <n (5)
ke = H(e) = Hgla,bd) <n  (6)

ko + kp + k. = H(a,b,c) = H(z,y|d)
< H(z,y) <2n (7)

ky + ke + kg = H(b,c,d) = H(y, z|a)
< H(y,z) <2n (8)

ko + ky + ke + ka = H(a,b,¢,d) = H(z,y, 2)

< 3n. 9)

(1)-(4) are trivial; (5) follows because,d,y —
y,z — b,d (at nodeng), and therefores, c,d,y —
a,b,c,d and thusH(a,b,c,d) = H(a,c,d,y); Simi-
larly for (6); (7) follows becauser,y — a,c (at
node ns), ¢,d,y — b,d (at nodeng), and there-
fore d,x,y — a,c,d;y — a,b,c,d and thus
H(a,b,c,d) = H(d,x,y); similarly for (8); (9) follows
becauser,y,z — a,b,c,d (at nodesns and ng).
Dividing each inequality in (1)-(9) by: gives the9
bounding hyperplanes stated in the theorem.

Let r, = ko/n, vy = kp/n, re = ke/n, andry =
kq4/n, and letP denote the polytope iR* consisting
of all 4-tuples(rq, 1,7, 74) Satisfying (1)—(9). TherP
is bounded by (1)—(4) and (9). One can easily calculate
that each point ilR* that satisfies some set of four of
the inequalities (1)—(9) with equality must be one of the
12 points stated in the theorem. Now we show that all
12 such points do indeed lie i, and therefore their
convex hull equal®. The following5 points lie inP by
takingn = k, = ky, = k. = kq = 1 with the following
codes over, say, the binary field:

(2,0,0,1): z=y=a, 2=d
(1,0,0,2): x=a, y=2=d
(1,0,1,1): xz=a, y=c, z2=4d
(1,1,0,1): xz=a, y=b, z=d
(0,1,1,0): =b, y=b+c, z=c

and the remaining points are achieved by fixing certain
messages to be.

Proof: Consider a network solution over an alphabet Since the above codes are all linear, the achievable rate
A and denote the source message dimensiong.y regions for linear and non-linear codes are the same.

ky, ke, and k4, and the edge dimensions by. Let

By (9), we havec@verase < 3/4, and this upper bound

each source be a random variable whose componeistachievable by routing using the code given above for

are independent and uniformly distributed ovérThen

the point(2,0,0,1), namely takingr = y = a« and

Page 2 of 7
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z = d. By (8), we haveciferm < 2/3: since which were shown to have routing solutions in the proof
of Theorem II.1.
(2/3)(11,1,1) = (1/3)(1,0,1,1) By (10), we haveCimiom < 1/2, and this upper
+(1/3)(1,1,0,1) bound is achievable, for example, by taking a con-

+(1/3)(0,1,1,0) vex combination of codes that achiey&, 0,1,0) and
(0,1,0,1), as follows. Takek = 1 andn = 2 and use

the upper bound of2/3 is achievable by a convextehe routing code determined by:

combination of the linear codes given above for th
points(1,0,1,1), (1,1,0,1), and(0,1, 1,0), as follows. x = (a,a)
Take k = 2 andn = 3 and use the (linear) code y = (b,d)
determined by: 2 = (d,d)

v = (a1, 02,b2) The capacityCiooiies = 3/4 follows immediately from
y = (c1,b1,b2 + c2) the proof of Theorem II.1. [ ]
z = (dl,dg, 02).

IIl. FANO NETWORK

Theorem I11.2. The achievable rate region for routing for
the Generalized Butterfly network is the closed polytope
in R* bounded by th® planes in Theorem Il.1 together
with the plane

rp+ 1. =1
and whose vertices are the points:

(0,0,0,0)  (0,0,0,2) (2,0,0,0) (0,1,0,0)
(0717071) (07 07170) (27 0707 ]‘) (]‘307 072)
(0707171) (1707170) (17]‘7070) (]‘307]‘71)

(1,1,0,1).

Furthermore, the routing capacities are given by:

Cuniform _ 1/2

routing

Caverage _ 3/4

routing

Proof: With routing, in addition to the inequalities
(1)—(9), a solution must also satisfy

since all of the components of messageand ¢ must
be carried by the edge labeled One can show that
each point inR* that satisfies with equality some Sekig 2. The Fano network. Source nodes, no, andn; generate

of four of the inequalities (1)—(9) and (10) must be oneessages:, b, and ¢, respectively. Receiver nodesi2, ni3, and

of the 13 points stated in this theorem (i.e. one of th%;frigg”gﬁ”g | messages b, a;‘d “'E’eSpe;r“e"?%elTezeazmgo' vectors
points (1,0,1,0) and(0, 1,0, 1), together withi 1 of the & yeapestively. 0 7“1 oY

12 points stated in Theorem Il.1 by excluding the point

(0,1,1,0)). The proof of Theorem 1.1 showed that all

vertices of P except (0, 1,1,0) were achievable using Theorem Ill.1. The achievable rate regions for either
routing. The two new point$1,0,1,0) and (0,1,0,1) linear coding over any finite field alphabet of even
are achievable using routing by forcing a message to blkaracteristic or non-linear coding are the same for the
0 in the codes fo(1,0,1,1) and(1, 1,0, 1), respectively, Fano network and are equal to the closed polyhedron in
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R? whose faces lie on the planes (see Figure 3): Theorem 111.2. The achievable rate region for linear
—0 coding over any finite field alphabet of odd characteristic
Ta = for the Fano network is equal to the closed polyhedron
rp, =0 in R? whose faces lie on the planes (see Figure 4):
re =20 —
Ta = 1 Ty = 0
re=1 re =0
Ty + 1. =2 ,o—1
To+7p =2 e =1
and whose vertices are ttg&points: ro + 21y + 2r. = 4
(0,0,0)  (0,0,1)  (1,0,0)  (0,2,0) 2rq + 1y +2r. =4
(0,1,1) (1,0,1) (1,1,0) (1,1,1). 2rq +2rp + 1 =4
and whose vertices are thé points:
It was shown in [2] that for the Fano network,(0,0,0) (0,0,1) (1,0,0) (0,2,0)
Caverage — cuniform — 1 gngd cpniferm — 1 for all (0,1,1) (1,0,1) (1,1,0)

even characteristic fields ang»ifor™ = 4/5 for all odd (2/3,2/3,1) (1,2/3,2/3) (4/5,4/5,4/5).
characteristic fields. The calculation 6™ —= 4/5 T T Y

near

in [2] required a rather involved computation.

(1,0,1) (1,0,1)
-(1,213,213)
(1,000 A (1,00 A

(1,1,0)

Fig. 4. The achievable linear coding rate region over oddatdtaristic
finite fields for the Fano network is &-sided polyhedron with 8
vertices.

Fig. 3. The achievable coding rate region for the Fano nétima
7-sided polyhedron with 8 vertices.
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Theorem 111.3. The achievable rate region for routing a C
for the Fano network is the closed polyhedron R? 1 3
whose faces lie on thé planes (see Figure 5):

¢ =0

Ty = 0

re =0

re =1

re =1

T +7p+7.=2
and whose vertices are thepoints:

(0,0,0)  (0,0,1)  (1,0,0) (0,2,0)
(0,1,1) (1,0,1) (1,1,0). ) 3

@< D

(2

(1 0 0) A Fig. 6. The non-Fano network. Source nodgsno, andns generate

________ ~ messages, b, andc, respectively. Receiver nodesz, n13, n14, and
n15 demand messagesb, a, andc, respectively. The symbol vectors
carried on edgess o, €7,10, €8,11, €4,5 are labeled asv, z, y, and
z, respectively.

(1,0,1)

©

(o

non-Fano network and are equal to the closed cube in
R? whose faces lie on thé planes (see Figure 7):

re =0
Ty =
re =0
B - (0’2’0) Tq =
% Ty = 1
re =1

Fig. 5. The achievable routing rate region for the Fano ndtvima and whose vertices are tf&points:

6-sided polyhedron with 7 vertices.
(0,0,0) (0,0,1) (1,0,0) (0,1,0)

0’171 17071 171,0 1,171.
IV. NON-FANO NETWORK ( ) ) ) )

Theorem IV.1. The achievable rate region for either
linear coding over any finite field alphabet of oddrheorem IV.2. The achievable rate region for linear
characteristic or non-linear coding are the same for theoding over any finite field alphabet of even character-

Page 5 of 7
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istic for the non-Fano network is are equal to the closed A C
polyhedron inR? whose faces lie on the planes (see |
Figure 8): I
I
ra =0 1 (0,0,1)
=0 (1,0,1)
re =0 (2/2,1,1)
ro =1 ----(1,1/2,1)
b= 1 0,1,1
Te =
(1,0,0) A

Te+7Tp+7r.=5/2

and whose vertices are thd points:

(0,0,0)  (0,0,1) (1,0,0) (0,1,0)
0,1,1)  (1,0,1) (1,1,0) (0,1,0)
(1,1,1/2)  (1,1/2,1) (1/2,1,1). )/ // (1,1,0)
y o (1,1102)
B

Fig. 8. The achievable linear coding rate region over evearazh
teristic finite fields for the non-Fano network is7asided polyhedron
with 10 vertices.

R3 whose faces lie on thé planes (see Figure 9):

(1,0,2) re =0
Ty = 0
re =0

re +10+1.=1
and whose vertices are thepoints:

________ = (0,0,0), (05071)’ (170’0)’ (0’1’0)'

V. NON-CONVEX ACHIEVABLE RATE REGION FOR
LINEAR CODES
! (1,1,0)

// Theorem V.1. There exists a network whose achievable
rate region for linear codes is non-convex.

(Sketch):  Consider the network formed by
Fig. 7. The achievable coding rate region for the Fano néthimia taking the d|S]0|nt_un|0n of the Fano and non-
cube inR3. Fano networks (with separate messages, so the
union is a six-message network). It can be shown
that this network’s achievable rate region for lin-
ear codes contains the pointd/5,4/5,4/5,1,1,1)
and (1,1,1,5/6,5/6,5/6) but not their midpoint
Theorem IV.3. The achievable rate region for routing (9/10,9/10,9/10,11/12,11/12,11/12), and thus is
for the non-Fano network is the closed tetrahedron inon-convex. ]
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Fig. 9. The achievable routing rate region for the Fano netvi® a
tetrahedron inR32.
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