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ABSTRACT

The fields of pattern recognition and machine learning are on a fundamental

quest to design systems that can learn the way humans do. One important aspect of

human intelligence that has so far not been given sufficient attention is the capability

of humans to express when they are certain about a decision, or when they are not.

Machine learning techniques today are not yet fully equipped to be trusted with this

critical task. This work seeks to address this fundamental knowledge gap. Existing

approaches that provide a measure of confidence on a prediction such as learning

algorithms based on the Bayesian theory or the Probably Approximately Correct

theory require strong assumptions or often produce results that are not practical or

reliable. The recently developed Conformal Predictions (CP) framework - which is

based on the principles of hypothesis testing, transductive inference and algorithmic

randomness - provides a game-theoretic approach to the estimation of confidence

with several desirable properties such as online calibration and generalizability to

all classification and regression methods.

This dissertation builds on the CP theory to compute reliable confidence mea-

sures that aid decision-making in real-world problems through: (i) Development of

a methodology for learning a kernel function (or distance metric) for optimal and

accurate conformal predictors; (ii) Validation of the calibration properties of the CP

framework when applied to multi-classifier (or multi-regressor) fusion; and (iii) De-

velopment of a methodology to extend the CP framework to continuous learning, by

using the framework for online active learning. These contributions are validated

on four real-world problems from the domains of healthcare and assistive tech-

nologies: two classification-based applications (risk prediction in cardiac decision

support and multimodal person recognition), and two regression-based applications

(head pose estimation and saliency prediction in images). The results obtained

show that: (i) multiple kernel learning can effectively increase efficiency in the CP
iii



framework; (ii) quantile p-value combination methods provide a viable solution

for fusion in the CP framework; and (iii) eigendecomposition of p-value difference

matrices can serve as effective measures for online active learning; demonstrating

promise and potential in using these contributions in multimedia pattern recognition

problems in real-world settings.
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Chapter 1

INTRODUCTION AND MOTIVATION

Over the centuries of human existence, the recognition of patterns in observed data

has led to numerous discoveries, and has eventually paved the path to the develop-

ment of vast bodies of scientific knowledge. As pointed out by Bishop [10], the

study of observational data has led to the discovery of various phenomena in fields

ranging from astronomy to avian life to atomic spectra, including the understanding

of the laws of planetary motion, migratory patterns of birds and the development of

quantum physics. However, the field of pattern recognition has relied immensely on

manual expertise and experience over the bygone centuries. With the tremendous

growth of computing resources and algorithms, the last 50 years have re-defined the

field of pattern recognition as the automatic discovery of patterns in observed data

through the use of computer algorithms.

Over the last few decades, multimedia computing has experienced an explosive

growth in terms of generation of data in various modalities such as text, images,

video, audio and now, haptics (the sense of touch). This has led to the extensive use

of pattern recognition techniques in multimedia computing, but the rate of genera-

tion of multimedia data has sustained an equivalent increasing need for intelligent

computer algorithms that can automatically identify regularities in data - thereby

creating newer challenges that need to be addressed by researchers in pattern recog-

nition.

The success of automatic pattern recognition in recent decades has relied on the

use of machine learning techniques to automatically learn to categorize data. Ma-

chine learning aims at the design and development of algorithms that automatically



learn to recognize complex patterns and make intelligent decisions based on data.

Machine learning approaches have led to numerous successes in pattern recognition

in varied applications such as digit recognition, spam filtering, face detection, fault

detection in industrial manufacturing, and many others [11]. However, complex

real-world problems (such as face recognition or patient risk prognosis) are asso-

ciated with several factors causing uncertainty in the decision-making process, and

assumptions are often made to resolve the uncertainty. In order to help end users

with decision-making in such complex problems, it has become very essential to

compute a reliable measure of confidence that expresses the belief of the algorithm

in the predicted result. By this measure is meant a unique single numeric value

(∈ [0,1]) that is associated with a prediction on a given test data point, and provide

a measure of belief of the learning system on a hypothesis, given the evidence, as

defined by Cheeseman [12]. While earlier work in related areas use different, yet

closely associated, terms such as ’belief ’ or ’reliability’, the term ’confidence’ is

used in this work, and for this purpose, considered synonymous to belief or relia-

bility. The design and development of efficient algorithms for multimedia pattern

recognition that can compute a reliable measure of confidence on their predictions

is the underlying motivation of this work.

1.1 Uncertainty Estimation: An Overview

The estimation of uncertainty has been extensively studied from different perspec-

tives for over half a century now. The application of computational methods in

fields ranging from seismology to finance has made uncertainty quantification a

universally relevant topic. Existing literature in uncertainty quantification segre-

gates uncertainty into two main kinds, as listed in Table 1.1. The approaches typi-

cally used to address each of these kinds of uncertainty are also mentioned in Table

2



1.1. While aleatory uncertainty is difficult to resolve, most existing approaches in

related fields attempt to address epistemic uncertainty. A detailed review of these

sources is presented by Daneshkhah in [13].

Type of un-
certainty

Description Approaches used

Aleatory/
Statistical

Arises due to natural, un-
predictable variations in
the system under study.
Also called irreducible
uncertainty.

Techniques such as Monte Carlo sim-
ulation are used to capture statisti-
cal variations. Probability density
functions such as Gaussian are often
represented by their moments (such
as mean and variance). More re-
cently, Karhunen-Loeve and polyno-
mial chaos expansions are used for this
purpose.

Epistemic/
Systematic

Arises due to a lack of
knowledge about the be-
havior of the system, and
can be conceptually re-
solved.

Methods such as fuzzy logic or evi-
dence theory are used to resolve such
uncertainty.

Table 1.1: Types of uncertainty

Given these basic categories of uncertainty, we now present an overview of

the sources of uncertainty, the approaches to uncertainty estimation and the rep-

resentations of uncertainty (as commonly used in pattern recognition and machine

learning) in the following subsections.

Sources of Uncertainty

Uncertainty, in the context of multimedia pattern recognition, arises from many

sources, such as: (i) the inherent limitations in our ability to model the world, (ii)

noise and perceptual limitations in sensor measurements, or (iii) the approximate

nature of algorithmic solutions [14]. With respect to traditional pattern recognition

and machine learning approaches, these sources of uncertainty can be categorized

3



in the following manner (a similar categorization is also presented by Shrestha and

Solomatine in [15]):

• Data Uncertainty: Often, the data used in applications is a significant source

of uncertainty. Data may be noisy, may have missing values, may contain

anomalies (such as a particular data value exceeding the range suggested for

the attribute), or may contain attributes that are highly correlated (while the

algorithm assumes independence of the attributes).

• Model Uncertainty: The model structure, i.e., how accurately a mathemat-

ical model describes the true system in a real-life situation [16], is often a

source of uncertainty. Moreover, model issues such as whether the training

data and testing data are being generated by the same data distribution, or if

the portion of the data universe that is provided to an algorithm in the training

phase is substantially representative of the universe itself, bear a significant

impact on the uncertainty involved in the system [17].

• Algorithm Uncertainty: Lastly, the algorithm of choice may often use nu-

merical approximations that can result in uncertainty. Also, algorithm-related

issues such as the suitability of the initial/boundary conditions of the system,

or the choice of parameters in parametric methods, may add to this list of

potential sources of uncertainty.

Approaches to Uncertainty Estimation

Over the years, several methods and theories have evolved to estimate/resolve un-

certainty in pattern recognition. A broad categorization of these approaches is pre-

sented in Table 1.2.

4



Approach Description
Probabilistic The data is modeled as probability distributions, and the model

outputs are computed as probabilities that capture the uncertainty.
This is arguably the most popular approach, and used across var-
ious fields ranging from hydrology [18] to epidemiology [19].

Statistical Uncertainty is estimated by analyzing the statistical properties of
the model errors that occurred in reproducing observed data (as
stated in [15]). The estimate is typically represented as a predic-
tion interval (or a confidence interval), and is extensively used in
statistics and machine learning.

Simulation/
Resampling-
based

Methods such as Monte Carlo simulation use random samples of
parameters or inputs to explore the behavior of a complex system
or process, and thereby estimate the uncertainty involved [20].
This approach is once again widely used in financial model-
ing, robot localization, dynamic sensor networks and active vi-
sion [21].

Fuzzy This approach, introduced by Zadeh [22], provides a non-
probabilistic methodology to estimate uncertainty, where the
membership function of the quantity is computed. This approach
is widely used in consumer electronics, movie animation soft-
ware, remote sensing and weather monitoring [23].

Evidence-
based

Approaches such as the Dempster-Shafer theory [24], the more
recent Dezert-Smarandache theory [25], possibility theory [26],
and the MYCIN certainty factors [27] are approaches that are
commonly used to resolve uncertainty when there are multiple
evidences in the information fusion context.

Heuristic Many approaches use application-specific heuristics or method-
specific heuristics (such as measures based on the probability es-
timates produced by the k-Nearest Neighbor classifier [28], or
ranking-based measures [29]) as the measure of uncertainty in the
prediction.

Table 1.2: Categories of approaches to estimate uncertainty
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Representations of Uncertainty Estimates

Just as there have been different approaches for estimating uncertainty, there have

also been different representations of the estimate of a confidence measure (that

captures the uncertainty). A categorization of these representations (largely inspired

by the categorization presented by Langford1) is presented below:

• Probability as Confidence: This is easily the most common approach that

is adopted universally by researchers that apply machine learning techniques

to various applications. The probability of an event or occurrence is directly

considered to be the confidence in the predicted result. It would be beyond

the scope of this work to list all the earlier efforts that have adopted this ap-

proach, but a few examples can be found in [30], [31], [29], and [32]. Speech

recognition is an example of an application domain where the posterior prob-

ability is popularly interpreted as the confidence.

• Confidence Intervals: Classical confidence intervals are most popular in

statistics to convey an interval estimate of a parameter. Their usage in ma-

chine learning and pattern recognition has been relatively limited. Samples

of earlier work where the uncertainty in pattern recognition models are repre-

sented as confidence intervals include the input space partitioning approach

of Shrestha and Solomatine [15], the perturbation-resampling work of Jiang

et al. with SVMs [33], Set Covering Machines by Marchand and Shawe Tay-

lor [34], and the E3 algorithm for learning the optimal policy in reinforcement

learning by Kearns and Singh [35]. There are also variants of confidence

intervals such as asymptotic intervals (approximate confidence intervals for
1http://hunch.net/?p=317
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small samples, which become equivalent to confidence intervals when the

number of samples increases) .

• Credible Intervals: Credible intervals [36] are also called Bayesian confi-

dence intervals, since they are effectively the Bayesian ’subjective’ equiva-

lent of frequentist confidence intervals, where the problem-specific contex-

tual prior information is incorporated in the computation of the intervals. Al-

though this is treated as a separate category, the practical usage of credible

intervals is often the same as confidence intervals. An example can be found

in the work of Kuss et al. [37], where Markov Chain Monte Carlo (MCMC)

methods are used to derive Bayesian confidence intervals of the posterior dis-

tribution in the analysis of psychometric functions.

• Gamesman Intervals: One of the earliest proponents of this approach is the

new theory of conformal predictions proposed by Vovk, Shafer and Gam-

merman [38], where the prediction intervals/regions are based on game the-

ory/betting contexts. The output prediction interval contains a set of predic-

tions that contain the true output a large fraction of the time, and this fraction

can be set by the user. (This approach is the basis of this dissertation work,

and will be revisited in more detail later in the document).

Evaluating Uncertainty Estimates

A significant challenge for researchers in confidence estimation is the identifica-

tion of appropriate metrics that can evaluate the obtained values. While there have

been several approaches to overcoming this challenge, a few popular metrics are

presented below:

• Negative log probability: Related efforts in the past [32] [39] have used the

Negative Log Probability (NLP) as a metric of evaluating the ‘goodness’ of a
7



confidence measure. NLP is defined as:

NLP =
−∑i log p(ci|xi)

n

where cis are the class labels in a classification problem. In regression, NLP

is defined as:

NLP =
−∑i log p(yi = ti|xi)

n

This metric is known to penalize both under-confident and over-confident

predictions.

• Normalized Cross Entropy: Blatz et al. [32] pointed out that the NLP metric

is sensitive to the base system’s performance. To address this issue, they

introduced the Normalized Cross Entropy (NCE) metric which measures the

relative drop in log probability with respect to a baseline (NLPb). NCE is

given by:

NCE =
NLLb−NLL

NLLb

• Average Error: This metric, representing the proportion of errors made over

test data samples, is easily the most commonly used. This is defined as fol-

lows in the classification context [32]. Given a threshold τ and a decision

function g(x) which is equal to 1 when the classifier confidence measure is

greater than τ , and 0 otherwise, the Average Classification Error (ACE) is

given as:

ACE = ∑
i

1−δ (g(xi),ci)
n

where δ is 1 if its arguments are equal, and 0 otherwise. In regression, this is

defined as the Normalized Mean Square Error (NMSE):

ACE =
1
n ∑

i

(ti−mi)2

var(t)
8



where tis are the target predictions, and mi is the mean of the predictive dis-

tribution p(yi|xi).

• ROC Curves: Receiver Operating Characteristic (ROC) Curves [40] are also

used in some cases to obtain a normalized view of the performance of classi-

fiers and their confidence values.

In addition to the above metrics, there are several other metrics such as the LIFT

loss [39] which have also been used in evaluating measures of confidence or uncer-

tainty.

1.2 Understanding the Terms: Confidence and Probability

The terms ‘confidence’, ‘probability’, ‘reliability’, and ‘belief’ are often used inter-

changeably in the uncertainty estimation literature. There has been no explicit study

or investigation to understand the usage of these terms, and it may not be possible

to make conclusive statements about the meanings of any of these terms - since the

choice of usage of these terms in earlier work has largely been application-driven

or user-initiated, and hence, is largely subjective. However, a brief review of com-

monly accepted interpretations of the terms ‘confidence’ and ‘probability’, along

with their commonalities and differences, is presented below.

Probability: The classical definition of the probability of an event (as defined

by Laplace) is the ratio of the number of cases favorable to the occurrence of the

event, to the number of all cases possible (when nothing leads us to expect that

any one of these cases should occur more than any other, which renders them, for

us, equally possible). However, there are several competing interpretations of the

actual ‘meaning’ of probability values. Frequentists view probability simply as a

measure of the frequency of outcomes (the more conventional interpretation), while

Bayesians treat probability more subjectively as a statistical procedure that endeav-
9



ors to estimate parameters of an underlying distribution based on the observed dis-

tribution.

Mathematically, a probability measure (or distribution), P, for a random event,

E, is a real-valued function, defined on the collection of events, F , defined on a

measurable space Ω and satisfying the following axioms:

1. 0≤ P(E)≤ 1∀E ∈ F , where F is the event space, and E is any event in F .

2. P(Ω) = 1 and P( /0) = 0.

3. P(E1∪E2∪ . . .) = ∑i P(Ei), if Eis are assumed to be disjoint.

These assumptions can be summarized as: Let (Ω,F,P) be a measure space with

P(Ω) = 1. Then (Ω,F,P) is a probability space, with sample space Ω, event space

F and probability measure P. Note that the collection of events, F , is required to

be a σ -algebra. (By definition, a σ -algebra over a set X is a nonempty collection

of subsets of X , including X itself, which is closed under complementation and

countable unions of its members).

Confidence: Formally, confidence can be written as a measurable function:

Γ : Z∗×X× (0,1)→ 2Y

where Z is the set of all data-label pairs, X represents the new test data point, (0,1)

is the interval from which a confidence level is selected, and 2Y is the set of all

subsets of Y , the label space. However, while the label space in a classification

problem is a finite set, the label space in regression problems is the real line itself.

If a user were to go by the mathematical definitions stated above, there is not

much in common between confidence and probability, since the definitions clearly

show them to be distinctly different. However, in common usage, these are of-

ten considered the same, and this has led to the thin line between the terms. With
10



both probability and confidence, there are frequentist and subjectivist (Bayesian)

approaches. While the debate between these two schools of thought is more promi-

nent with the usage of the term ‘probability’, confidence has two similar schools of

thought too. These are represented as confidence intervals and Bayesian confidence

intervals (or credible intervals). Classical confidence intervals are most popular in

statistics to convey an interval estimate of a parameter. On the other hand, credible

intervals are effectively the Bayesian ‘subjective’ equivalent of frequentist confi-

dence intervals, where the problem-specific contextual prior information is incor-

porated in the computation of the intervals. The differences in the usages of these

two terms can be viewed from two perspectives:

• The term ‘confidence’ is often associated with the concept of confidence in-

tervals in statistics, which are interval estimates of a population parameter.

In this context, ‘confidence’ of an estimate does not suggest the probability

of the occurrence of the parameter estimate; rather, a range of estimates are

together said to represent the confidence value. In fact, the confidence inter-

val estimates indicate that if a value from the interval is chosen in the future,

the number of errors can be restricted to 100− c%, where c ∈ [0,100] is the

confidence value. In common usage, a claim to 95% confidence in some-

thing is normally taken as indicating virtual certainty. In statistics, a claim

to 95% confidence simply means that the researcher has seen something oc-

cur that only happens one time in twenty or less. This is very different from

probability, as defined earlier in this section.

• From another technical perspective, probability is a measure associated with

a particular random variable. Hence, the term probability is pertinent as long

as the random variable is not observed. Once the observation is seen, there

11



is no more uncertainty, and the concept of probability is irrelevant. However,

the confidence interval on the observation continues to provide an indication

of the number of errors in future trials.

It may not be possible to make conclusions on which term is more relevant in a

particular context, since there have been various perspectives to how these terms

are used. As a cursory remark, it can be stated that probability values are most

meaningful when the true distribution of the data is known. If not, it could be

considered a more practical approach to provide confidence intervals and measures.

1.3 Confidence Estimation: Theories and Limitations

Although there have been several efforts to the computation of a confidence mea-

sure in pattern recognition (as mentioned earlier), each of them has its own ad-

vantages and limitations. In the following paragraphs, the limitations of existing

approaches are presented, and a list of desiderata for a confidence measure is pre-

sented.

All approaches that provide confidence/probabilistic measures in machine learn-

ing algorithms that are used for pattern recognition (both classification and regres-

sion) and provide error guarantees can be broadly identified to be motivated by

two theories, as stated in [41]. The two major theories are: Bayesian Learning

and Probably Approximately Correct (PAC) Learning, each of which is discussed

below.

Bayesian Learning

Without a doubt, Bayesian learning methods constitute the most popular approach

to obtain probability values in pattern recognition applications. These methods are

12



based on the Bayes theorem:

P(A|B) =
P(B|A)P(A)

P(B)
(1.1)

where P(A|B) is the posterior distribution, P(B|A) is the likelihood, and P(B) is

the prior over the random variable B. A detailed review of Bayesian learning ap-

proaches can be found in [42], [43], and [10].

PAC Learning

PAC learning is a framework that was proposed by Valiant in 1984 [44] [45] to

mathematically analyze the performance of machine learning algorithms. As stated

in [46], “in this framework, the learner receives samples and must select a gener-

alization function (called the hypothesis) from a certain class of possible functions.

The goal is that, with high probability (the probably part), the selected function will

have low generalization error (the approximately correct part)”. In simpler words,

the PAC learning approach is based on a formalism that can decide the amount of

data required for a given classifier to achieve a given probability of correct predic-

tions on a given fraction of future test data [47]. Given a collection of data instances

X of length n, a set of target concepts C (class labels, for example), and a learner L

using hypothesis space L:

C is PAC-learnable by L using H if for all c ∈C, distributions D over

X , ε such that 0 < ε < 1
2 , and δ such that 0 < δ < 1

2 , learner L will

with probability at least (1− δ ) output a hypothesis h ∈ H such that

errorD(h)≤ ε , in time that is polynomial in 1
ε
, 1

δ
, n, and size(C).

PAC theory has led to several practical algorithms, including boosting.

13



Limitations

Although the Bayesian and PAC learning approaches are used extensively in ma-

chine learning algorithms, the values generated by these algorithms are often im-

practical, invalid or unreliable. The limitations of these theories in obtaining prac-

tical reliable values of confidence are detailed in [41], [48], [49], [50] and [1], and

are summarized below.

Bayesian learning approaches make a fundamental assumption on the prob-

ability distribution of the data. The values generated by Bayesian approaches are

generally correct only when the observed data are actually generated by the as-

sumed distribution, which does not happen often in real-world scenarios. When the

data correctly corresponds to the assumed distribution, probability values generated

by Bayesian algorithms are always valid. Validity, in this context, is defined as the

correspondence of the probability value with the actual number of errors made with

respect to the sample set, i.e. if the probability value is 0.73, there are exactly 27

errors if a similar data instance was picked from a data set of 100 instances. This

property is also called calibration, and will be discussed later in this work.

Melluish et al. [1] conducted experiments to demonstrate this limitation of

Bayesian methods when the underlying probability distribution of the data instances

is not known. As shown in Figure 1.1, they showed that the number of errors made

by the Bayesian ridge regression approach in the work varied as the a parameter

was changed, which in turn modified the prior distribution. This directly illustrated

the crucial role of the choice of the prior distribution to obtain valid measures of

probability in Bayesian approaches.

In summary, the probability values obtained using Bayesian learning approaches

face the following limitations:
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Figure 1.1: Bayesian tolerance regions on data generated with w ∼ N(0,1). The
figure plots the % of points outside the tolerance regions against the confidence
level (Figure reproduced from [1])

• Such approaches have strong underlying assumptions on the nature of dis-

tribution of the data, and hence become invalid when the actual data in a

problem do not follow the distribution.

• Many guarantees provided by the Bayesian theory are sometimes asymptotic,

and may not apply to small sample sizes.

On the other hand, PAC learning approaches rely only on the i.i.d (identically in-

dependently distributed) assumption, and do not assume any other data distribution.

However, the error bound values generated by such approaches are often not very

practical, as demonstrated by Proedrou in [41], and by Nouretdinov in [51]. For

example, Littlestone-Warmuth’s Theorem is known to be one of the most sound re-

sults in PAC theory. The theorem states that for a two-class Support Vector Machine

classifier f , the probability of mistakes is:

err( f )≤ 1
l−d

(
d ln

el
d

+ ln
1
δ

)
(1.2)

with probability at least 1− δ , where δ ∈ (0,1], l is the training size, and d is the

number of Support Vectors. For the USPS database from the UCI Machine Learn-
15



ing repository, the error bound given by this theorem for one out of ten classifiers

(one for each of the digits) can be written as (the number of Support Vectors are

274 from [52]):

err( f )≤ 1
l−d

(
d ln

el
d

+ ln
1
δ

)
≈ 1

7291−274
274ln

7291e
274

≈ 0.17 (1.3)

When extended to the ten classifiers, the error bound becomes 1.7, which is not

practically useful. Nouretdinov also illustrated in [51] that the error bound becomes

0.74 when the Littlestone-Warmuth theorem is extended to multi-class classifiers

for this dataset. In summary, the limitations of the PAC learning theory in the

context of obtaining reliable confidence measure values are:

• The usefulness of the error bounds obtained is highly subjective, based on the

dataset, classifier and the learning problem itself. There are settings where

the error bounds are practically not useful.

• The obtained error bound values cannot be applied to individual test exam-

ples.

Given the limitations of existing theories, it becomes essential to identify and list

the desired properties of confidence measures in machine learning applications.

1.4 Desiderata of Confidence Measures

A list of the desired features of ‘ideal’ confidence measures that are reliable and

practically useful can be captured as follows:

1. Validity: Firstly, a confidence measure value should be valid, i.e. the number

of errors made by the system is 1− t, if the confidence value is given to be t.

The measure is then said to be well-calibrated. In other words, the nominal

coverage probability (confidence level) should hold, either exactly or to a

good approximation [53].
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2. Accuracy: The confidence measure value should bear a high positive cor-

relation with the correctness of the prediction, i.e., an erroneous prediction

should ideally have a low confidence value, and a correct prediction should

typically have a high confidence value.

3. Statistical Interpretation: It would be useful if the confidence measure val-

ues obtained could be interpreted as confidence levels, as defined in tradi-

tional statistical models. This will allow seamless applications of mainstream

statistical approaches in machine learning and pattern recognition, and vice

versa.

4. Optimality: Given a confidence level, the methodology should construct pre-

diction regions whose width is as narrow as possible.

5. Generalizability: The design of the computation methodology for the confi-

dence measure should be generalizable to all kinds of classification/regression

algorithms, and also applicable to multiple classifier/regressor systems.

1.5 Summary of Contributions

This dissertation contributes to the field of uncertainty estimation in multimedia

computing by computing reliable confidence measures for machine learning algo-

rithms that aid decision-making in real-world problems. Most existing approaches

that compute a measure of confidence do not satisfy all the aforementioned desired

features of such a measure. However, there have been recent developments towards

a gamesman approach to the definition of confidence that satisfies many of the

important properties listed above, including validity, statistical interpretation and

generalizability. This theory is called the Conformal Predictions (CP) framework,

and was recently developed by Vovk, Shafer and Gammerman [54] [38] based on

the principles of algorithmic randomness, transductive inference and hypothesis
17



testing. This theory is based on the relationship derived between transductive in-

ference and the Kolmogorov complexity [55] of an i.i.d. (identically independently

distributed) sequence of data instances, and provides confidence measures that are

well-calibrated. This theory is the basis of this work, and more details of the theory

are presented in Chapter 2.1.

Confidence Estimation: Contributions

This dissertation applies the CP framework to multimedia pattern recognition prob-

lems in both classification and regression contexts. This work makes three specific

contributions that aim to make the CP framework practically useful in real-world

problems. These contributions, described in Chapters 3,5 and 6, are briefly summa-

rized below.

1. Development of a methodology for learning a kernel function (or distance

metric) that can be used to provide optimal and accurate conformal predic-

tors.

2. Validation of the extensibility of the CP framework to multiple classifier sys-

tems in the information fusion context.

3. Extension of the CP framework to continuous online learning, where the mea-

sures of confidence computed by the framework are used for online active

learning.

These contributions are validated using two classification-based applications (risk

stratification in clinical decision support and multimodal biometrics), and two re-

gression based applications (head pose estimation and saliency prediction in im-

ages). More details of these applications are presented in Chapter 2. In addition

to the contributions mentioned above, other related contributions have also been
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made as part of this dissertation in the respective application domains, and these

are detailed in later chapters. A summary of these contributions is presented below.

1. Efficiency Maximization in Conformal Predictors: The CP framework has

two important properties that define its utility, as defined by Vovk et al. [38]: va-

lidity and efficiency. As described in Chapter 2, validity refers to controlling the

frequency of errors within a pre-specified error threshold, ε , at the confidence level

1− ε . Also, since the framework outputs prediction sets at a particular confidence

level, it is essential that the prediction sets are as small as possible. This property is

called efficiency.

Evidently, an ideal implementation of the framework would ensure that the al-

gorithm provides high efficiency along with validity. However, this is not a straight-

forward task, and depends on the learning algorithm (classification or regression, as

the case may be) as well as the non-conformity measure chosen in a given context.

In this work, a framework to learn a kernel (or distance metric) that will maximize

the efficiency in a given context is proposed. More details of the approach and its

validation are discussed in Chapters 3 and 4.

2. Conformal Predictions for Information Fusion: The CP framework ensures

the calibration property in the estimation of confidence in pattern recognition. Most

of the existing work in this context has been carried out using single classifica-

tion systems and ensemble classifiers (such as boosting). However, there been a

recent growth in the use of multimodal fusion algorithms and multiple classifier

systems. A study of the relevance of the CP framework to such systems could

have widespread impact. For example, when person recognition is performed with

the face modality and the speech modality individually, how can these results be

combined to provide a measure of confidence? Would it be possible to maintain

the calibration property when there is multiple evidence, and these are fused at the
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decision level? The details of this contribution are discussed further in Chapter 5.

3. Online Active Learning using Conformal Predictors: As increasing amounts

of data are generated each day, labeling of data has become an equally increasing

challenge. Active learning techniques have become popular to identify selected

data instances that may be effective in training a classifier. All these techniques

have been developed within the scope of two distinct settings: pool-based and on-

line (stream-based). In the pool-based setting, the active learning technique is used

to select a limited number of examples from a pool of unlabeled data, and subse-

quently labeled by an expert to train a classifier. In the online setting, new exam-

ples are sequentially encountered, and for each of these new examples, the active

learning technique has to decide if the example needs to be selected to re-train the

classifier.

One of the key features of the CP framework is the calibration of the obtained

confidence values in an online setting. Probabilities generated by traditional induc-

tive inference approaches in an online setting are often not meaningful since the

model needs to be continuously updated with every new example. However, the

theory behind the CP framework guarantees that the confidence values obtained us-

ing this transductive inference framework manifest as the actual error frequencies

in the online setting, i.e. they are well-calibrated [56]. Further, this framework can

be used with any classifier or meta-classifier (such as Support Vector Machines, k-

Nearest Neighbors, Adaboost, etc). In this work, we propose a novel active learning

approach based on the p-values generated by this transductive inference framework.

This contribution is discussed in more detail in Chapter 6.
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Application Domains: Challenges and Contributions

The CP framework is most pertinent to risk-sensitive applications, where the cost

of an error in the decision is high. It would be imperative in such applications to

be able to control the frequency of errors committed. Medical diagnosis and se-

curity/surveillance applications are two such risk-sensitive applications, where an

error may be very costly to the protection of human life (or lives). These appli-

cation domains have been selected in this work to validate the three contributions

in the classification setting. The other two applications are selected to validate the

proposed contributions, when extended to the regression formulation.

A summary of the application domains used in this work is presented in Tables

1.3 and 1.4. More details of these application domains are presented in Chapter

2. In addition to the contributions based on the CP framework, there have been

other contributions based on machine learning and pattern recognition that have

been made, as part of this dissertation, towards solving the challenges in each of

the applications. These contributions are also outlined in these tables.

1.6 Thesis Outline

The remainder of this dissertation is structured as follows. Chapter 2 is divided

into two major sections: theory and application. Section 2.1 discusses the back-

ground of the Conformal Predictions framework, and its advantages and limita-

tions. Section 2.2 presents the background of the application domains considered

in this work, and also the corresponding datasets that have been used for all the

experiments in this dissertation. Chapter 2 concludes with a study of the empirical

performance of the Conformal Predictions framework. Chapters 3 and 4 present the

proposed methodologies for maximizing efficiency in the CP framework for classi-

fication and regression respectively. Chapter 5 details our findings on applying the
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Risk Prediction in Cardiac Decision Support (Classification)

Problem
description

∗ Classify a patient into one of two categories based on whether
the patient is likely to face complications following a coronary
stent procedure
∗ High risk-sensitivity
∗ Solution needs validity as well as high efficiency, to be useful

Proposed
solution

An appropriate kernel function that can maximize efficiency
within the CP framework, while maintaining validity, is learnt
from the data

Other con-
tributions

A clinically relevant inter-patient kernel metric has been devel-
oped combining evidence (using patient attributes) and knowl-
edge (using the SNOMED medical ontology)

Head Pose Estimation for the Social Interaction Assistant (Regression)
Problem
description

∗ Estimate the head pose of an individual, independent of the
identity, using face images
∗ In real-world scenarios, it may not be feasible to obtain the
absolute pose angle using computer vision techniques. It would
be a more practical approach to provide a region of possible head
pose angle values, depending on a confidence level that the user
chooses

Proposed
solution

∗An appropriate distance metric that maximizes efficiency in the
CP framework for regression, is learnt from the training data and
labels
∗ A new framework for supervised manifold learning called Bi-
ased Manifold Embedding has been proposed, and this has been
used for learning the required metric

Table 1.3: A summary of the applications and the corresponding contributions-I
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Multimodal Person Recognition in the Social Interaction Assistant (Classifi-
cation)

Problem
description

∗ Recognize an individual using both face and speech modalities,
and associate reliable measures of confidence for multimodal per-
son recognition results
∗ High risk-sensitivity in security/surveillance situations
∗ While there have been many existing efforts to estimate the
confidence of recognition in each modality individually, the com-
putation of confidence when there are two modalities involved is
not as well-studied

Proposed
solution

The decision obtained from each modality is considered as an
independent statistical test, and the combination of p-values ob-
tained from the CP framework is used to study the calibration of
the final results

Other con-
tributions

Online active learning algorithm using the CP framework has
been proposed for face recognition. A batch mode active learning
technique using numerical optimization, and a person-specific
feature selection method have also been proposed to enhance per-
formance in face recognition algorithms

Saliency Prediction in Images (Regression)

Problem
description

∗ Compute the saliency of regions in medical images (such as
X-rays) during diagnosis, using eye gaze data of radiologists
∗ High risk-sensitivity
∗ Solution needs validity as well as high efficiency, to be useful
∗ Multiple image features may need to be used to determine
saliency

Proposed
solution

∗ A regression model is developed to predict saliency based on
each relevant image feature. The result of each of these models is
considered as an independent statistical test, and the combination
of p-values obtained from the CP framework is used to study the
calibration of the final results
∗ The CP framework is thus used to identify salient regions in the
images, based on a specified confidence level

Other con-
tributions

An integrated approach to combine top-down and bottom-up per-
spectives for prediction of saliency in videos has been proposed
and implemented

Table 1.4: A summary of the applications and the corresponding contributions-II
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CP framework to information fusion in both classification and regression settings,

and Chapter 6 presents the novel Generalized Query by Transduction framework

for online active learning that has been proposed based on the theory of Conformal

Predictions. Chapter 7 summarizes the contributions and outcomes of this disserta-

tion, providing pointers to directions of future work.
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Chapter 2

BACKGROUND

This chapter lays down the background of this work from both theory and applica-

tion perspectives. The chapter begins by describing the theory behind the Confor-

mal Predictions framework, and the details of how it is used in both classification

and regression contexts. From the application perspective, this chapter introduces

the domains considered in this work, and describes the datasets used in this work.

2.1 Theory of Conformal Predictions

The theory of conformal predictions was recently developed by Vovk, Shafer and

Gammerman [54] [38] based on the principles of algorithmic randomness, trans-

ductive inference and hypothesis testing. This theory is based on the relationship

derived between transductive inference and the Kolmogorov complexity [55] of an

i.i.d. (identically independently distributed) sequence of data instances. Hypothesis

testing is subsequently used to construct conformal prediction regions, and obtain

reliable measures of confidence.

If l(Z) is the length of a binary string Z, and C(Z) is its Kolmogorov complexity

(the length of the minimal description of Z using a universal description language),

then:

δ (Z) = l(Z)−C(Z) (2.1)

where δ (Z) is called the randomness deficiency of the string Z. This definition pro-

vides a connection between incompressibility and randomness. Intuitively, Equa-

tion 2.1 states that lower the value of C(Z), higher the δ (Z), or the lack of random-

ness. The Martin-Lof test for randomness provides a method to connect random-

ness with statistical hypothesis testing. This test can be summarized as a function



t : Z∗→ N (the set of natural numbers with 0 and ∞), such that ∀n ∈ N,m ∈ N,P ∈

Pn:

P{z ∈ Zn : t(z)≥ m} ≤ 2−m (2.2)

where Pn is the set of all i.i.d. probability distributions. Equation 2.2 can also be

written as:

P{z ∈ Zn : t(z) ∈ [m,∞)} ≤ 2−m (2.3)

Now, if we use the transformation f (x) = 2−x, Equation 2.3 can in turn be written

in terms of a new function t ′(z):

P
{

z ∈ Zn : t ′(z) ∈ (0,1]
}
≤ 2−m (2.4)

Hence, a function t ′ : Z∗→ (0,1] is a Martin-Lof test for randomness if ∀m,n ∈ N,

the following holds true:

P
{

z ∈ Zn : t ′(z)≤ 2−m}≤ 2−m (2.5)

If 2−m is substituted for a constant, say r, and r is restricted to the interval [0,1],

Equation 2.5 is equivalent to the definition of a p-value typically used in statistics

for hypothesis testing. Given a null hypothesis H0 and a test statistic, p-value is

simply defined as the probability of obtaining a result at least as extreme as the

one that was actually observed, assuming that the null hypothesis is true. In other

words, the p-value is the smallest significance level of the test for which H0 is

rejected based on the observed data, i.e. the p-value provides a measure of the

extent to which the observed data supports or disproves the null hypothesis.

In order to apply the above theory to pattern classification problems, Vovk et

al. [38] defined a non-conformity measure that quantifies the conformity of a data

point to a particular class label. This non-conformity measure can be appropriately

designed for any classifier under consideration, thereby allowing the concept to
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be generalized to different kinds of pattern classification problems. To illustrate

this idea, the non-conformity measure of a data point xi for a k-Nearest Neighbor

classifier is defined as:

α
y
i =

∑
k
j=1 Dy

i j

∑
k
j=1 D−y

i j

(2.6)

where Dy
i denotes the list of sorted distances between a particular data point xi and

other data points with the same class label, say y. D−y
i denotes the list of sorted

Figure 2.1: An illustration of the non-conformity measure defined for k-NN

distances between xi and data points with any class label other than y. Dy
i j is the

jth shortest distance in the list of sorted distances, Dy
i . In short, α

y
i measures the

distance of the k nearest neighbors belonging to the class label y, against the k

nearest neighbors from data points with other class labels (Figure 2.1). Note that

the higher the value of α
y
i , the more non-conformal the data point is with respect to

the current class label i.e. the probability of it belonging to other classes is high.

The methodologies for applying the Conformal Predictions (CP) in classifica-

tion and regression settings are described in the following subsections.

Conformal Predictors in Classification

Given a new test data point, say xn+1, a null hypothesis is assumed that xn+1 belongs

to the class label, say, yp. The non-conformity measures of all the data points in

the system so far are re-computed assuming the null hypothesis is true. A p-value
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function (which satisfies the Martin-Lof test definition in Equation 2.5) is defined

as:

p(αyp
n+1) =

count
{

i : α
yp
i ≥ α

yp
n+1
}

n+1
(2.7)

where α
yp
n+1 is the non-conformity measure of xn+1, assuming it is assigned the

class label yp. In simple terms, Equation 2.7 states that the p-value of a data in-

stance belonging to a particular label is the normalized count of the data instances

that have a higher non-conformity score than the current data instance, xn+1. It is

evident that the p-value is highest when all non-conformity measures of training

data belonging to class yp are higher than that of the new test point, xn+1, which

points out that xn+1 is most conformal to the class yp. This process is repeated

with the null hypothesis supporting each of the class labels, and the highest of the

p-values is used to decide the actual class label assigned to xn+1, thus providing a

transductive inferential procedure for classification. If p j and pk are the two high-

est p-values obtained (in respective order), then p j is called the credibility of the

decision, and 1− pk is the confidence of the classifier in the decision. The p-values

Algorithm 1 Conformal Predictors for Classification
Require: Training set T = {(x1,y1) , ...,(xn,yn)}, xi ∈ X , number of classes M,

yi ∈ Y = y1,y2, . . . ,yM, classifier Ξ

1: Get new unlabeled example xn+1.
2: for all class labels, y j, where j = 1, . . . ,M do
3: Assign label y j to xn+1.
4: Update the classifier Ξ, with T ∪

{
xn+1,y j

}
.

5: Compute non-conformity measure value, α
y j
i ∀i = 1, . . . ,n + 1 to compute

the p-value, Pj, w.r.t. class y j (Equation 2.7) using the conformal predictions
framework.

6: end for
7: Output the conformal prediction regions Γ1−ε =

{
y j : Pj > ε,y j ∈ Y

}
, where

1− ε is the confidence level.

generated using this approach satisfy the modified Martin-Lof test in Equation 2.5.
28



The conformal prediction regions are presented as regions representing a specified

confidence level, Γε , which contain all the class labels with a p-value greater than

1− ε . These regions are conformal i.e. the confidence threshold, 1− ε directly

translates to the frequency of errors, ε in the online setting [54, 56]. The approach

is summarized in Algorithm 1. The CP framework can be used in association with

any classifier, with the suitable definition of a non-conformity measure. Sample

non-conformity measures for various classification algorithms are presented below

in Table 2.1.

Conformal Predictors in Regression

The CP framework has also been used in regression formulations to deliver predic-

tion regions that are calibrated [38] [48] [41] [66]. While the label space in a clas-

sification problem is a finite set, the label space in regression problems is the real

line itself. This needs a different methodology of applying the framework, since it

is not pragmatic to hypothesize each value on the real line as a possible class label,

and compute a corresponding p-value. The algorithm to define conformal predic-

tion regions for regression seeks to identify intervals (or neighborhoods) on the real

line that conform to a pre-specified confidence level. Evidently, a larger confidence

level (say 1−ε1) will result in a larger interval Γ1−ε1 that ensures the required con-

fidence, and a smaller confidence level (say 1−ε2) will result in a narrower interval

Γ1−ε2 . It should be noted here that Γ1−ε2 ⊆ Γ1−ε1 , as long as 1− ε2 ≤ 1− ε1.

In a regression problem, the non-conformity measure of a data-label entity, say

(x,y), can be defined as the absolute value of the difference between y and the

predicted value, ŷ, calculated from x and the old (training) examples [38] (Equation

2.8).

αi = |yi− ŷi| (2.8)
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Classifier Non-conformity measure Description
k-NN

∑
k
j=1 Dy

i j

∑
k
j=1 D−y

i j

Ratio of the sum of the distances to
the k nearest neighbors belonging to
the same class as the hypothesis y, and
the sum of the distances to the k near-
est neighbors belonging to all other
classes [38] [57] [58].

Support
Vector
Machines

Lagrange multipliers, or
e−adm

i

A suitable function of the distance
of a data point from the hyper-
plane [38] [59] [60] [61].

Neural net-
works ∑y′∈Y :y′ 6=y oy′

oy + γ

Ratio of the sum of the output values of
all output neurons except the winning
neuron and the output value of the win-
ning neuron itself. γ is a parameter that
can be varied [38] [62] [49] [63] [64].

Logistic re-
gression {

1+ exp−w.x ,y=1
1+ expw.x ,y=0

Reciprocal of the estimated probabil-
ity of the observed y given the ob-
served x for a given data instance. w is
the weight vector typically computed
using Maximum Likelihood Estima-
tion [38].

Boosting
T

∑
t=1

αtBt(x,y)

Weighted sum of the individual non-
conformity measures of each of the
weak classifiers Bt , and αt are the
weights learnt by the boosting algo-
rithm [38]

Random
forests

outraw−outraw
σ

, where
outraw(i) = nsample

p(i)
, and

p(i) = ∑ j |prox(i, j)|2

Scaled outlier measure of an observed
x with respect to label y ∈Y , and other
data instances belonging to the same
class [65]. nsample is the number of
samples in the class under considera-
tion, and prox(i, j) is the similarity be-
tween two data instances in a random
forest.

Table 2.1: Non-conformity measures for various classifiers
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Papadopoulos et al. [48] also suggested a modified non-conformity measure where

the predicted accuracy of the decision rule f on a training set is used, i.e. the

measure is defined as:

αi =
|yi− ŷi|

σi
(2.9)

where σi is an estimate of the accuracy of the decision rule f on xi.

An efficient algorithm to compute conformal prediction intervals in the case of

ridge regression (regularized least squares regression) was proposed by Nouretdi-

nov et al. [66], and is described below in Algorithm 4. For more details of the

method, please refer Chapter 4 of this dissertation or [66].

Algorithm 2 Conformal Predictors for Regression
Require: Training set T = {(x1,y1) , ...,(xn,yn)}, new example xn+1, confidence

level r, X = x1,x2, . . . ,xn+1

1: Calculate C = I−X(X ′X +αI)−1X ′ (for ridge regression).
2: Let A = C(y1,y2, . . . ,yn,0)′ = (a1,a2, . . . ,an+1)
3: Let B = C(0,0, . . . ,0,1)′ = (b1,b2, . . . ,bn+1)
4: for i = 1 to n+1, do do
5: Calculate ui and vi.

If bi 6= bn+1, then ui = min(ai−an+1
bn+1−bi

, −(ai+an+1)
bn+1+bi

); vi = max(ai−an+1
bn+1−bi

, −(ai+an+1)
bn+1+bi

)

If bi = bn+1, then ui = vi = −(ai+an+1)
2bi

.
6: end for
7: for i = 1 to n+1, do do
8: Compute Si according to Equation 2.10 below.
9: end for

10: Sort (−∞,u1,u2, . . . ,un+1,v1, . . . ,vn+1,∞) in ascending order, obtaining
ŷ0, . . . , ˆy2n+3

11: Output ∪i[ŷi, ˆyi+1], such that N(ŷi > r, where N(yi) = #S j : [ŷi, ˆyi+1]⊆ S j,
where i = 0, . . . ,2n, and j = 1, . . . ,n+1.

Si in Algorithm 4 is given by the following equation:

31



Si =



[ui,vi] if bn+1 > bi

(−∞,ui]∪ [vi,∞) if bn+1 < bi

[ui,∞) if bn+1 = bi > 0 and an+1 < ai

(−∞,vi] if bn+1 = bi > 0 and an+1 > ai

ℜ if bn+1 = bi = 0 and |an+1| ≤ |ai|
Φ if bn+1 = bi = 0 and |an+1|> |ai|

(2.10)

In addition to being used in classification and regression formulations, the CP

framework has also been used for feature selection, where an optimization problem

is formulated to minimize the strangeness (non-conformity) values [67]. This ap-

proach was found to be effective in bio-informatics for microarray classification. In

an interesting recent work, Hardoon et al. [68] proposed a model selection strategy

using non-conformity measures (as defined in the CP framework) that is compara-

ble to traditional strategies such as Cross-Validation and Leave-One-Out, but has

theoretical guarantees for success and faster convergence rates. They demonstrated

their work using SVMs.

Assumptions and Their Impact

The main (and only) assumption of the CP framework is that data should be i.i.d.

(identically independently distributed). This is defined as the randomness assump-

tion in the framework. There have been several efforts in recent years that have

focused on developing machine learning frameworks that are based on only this as-

sumption on the data. One example is the statistical learning theory of Vapnik and

Chervonenkis [69], whose manifestation is the Support Vector Machine algorithm.

All the theoretical results of the CP framework (for example, the frequency of er-

rors, ε , is always under a specified confidence threshold 1- ε) hold under this i.i.d.

(or randomness) assumption.
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However, many of the results in the framework can actually hold with an even

weaker assumption on the data model called exchangeability. Exchangeable dis-

tributions have also been used in machine learning, and the most popular example

is the bag-of-words modeling assumption in natural language processing. An ex-

changeable distribution P means that for every positive integer n, every permutation

π of 1,2, . . . ,n:

P(z1,z2, . . .) ∈ Z∞ : (z1,z2,zn) ∈ E = P(z1,z2, . . .) ∈ Z∞ :

(π(z1),π(z2), . . . ,π(zn)) ∈ E

where zi ∈ Z : X → Y , where X is the data samples and Y are the labels. In simpler

terms, an exchangeable sequence of samples is a sequence that future samples be-

have similar to samples that have already been observed, i.e. any order of samples

is equally likely in the observed sequence1. Every i.i.d. sequence is exchangeable,

but not vice versa (for example, sampling without replacement is exchangeable, but

not i.i.d.). Exchangeability implies that variables have the same distribution. On

the other hand, exchangeable variables need not be independent [70]. Most of the

results in the CP framework hold under this exchangeability assumption.

Impact of Assumptions: To study the impact of the above assumption on the CP

framework, a brief study to test the exchangeability of a data stream was carried

out using the USPS data set from the UCI Machine Learning repository [71]. Vovk

et al. [38] proposed a methodology to test the exchangeability of the observed data

sequence in an online manner. This methodology was based on the definition of an

exchangeability supermartingale. The usual statistical approach to testing (some-

times called the Neyman-Pearson-Wald theory) is essentially offline. However, this

approach is online, i.e., we constantly update the strength of evidence against the
1http://en.wikipedia.org/wiki/Exchangeable random variables
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null hypothesis of randomness. A brief introduction to martingales is presented

below.

Martingales: A martingale is a stochastic process such that the conditional ex-

pected value of an observation at some time t, given all the observations up to some

earlier time s, is equal to the observation at that earlier time s. A discrete-time mar-

tingale can be defined as a stochastic process X1,X2,X3, . . . such that for all n, the

following condition is satisfied:

E(Xn+1|X1, . . . ,Xn) = Xn

For the continuous-time equivalent, the martingale needs to satisfy the following

condition:

E(Yt |XT ,T ≤ s) = Ys,∀s≤ t

A (discrete-time) submartingale is a sequence X1,X2,X3, . . . satisfying the condi-

tion:

E(Xn+1|X1, . . . ,Xn)≥ Xn

and a supermartingale satisfies the condition:

E(Xn+1|X1, . . . ,Xn)≤ Xn

Testing for Exchangeability: The methodology of using martingales to test for

exchangeability was proposed by Vovk in [38]. After observing a new data point, a

learner outputs a positive martingale value reflecting the strength of evidence found

against the null hypothesis of data exchangeability. Finding evidence against the

null hypothesis is equivalent to gambling against it, and the strength of evidence

equals the gambler’s current capital. More details of this approach to testing are

presented in [72]. Vovk inferred that there existed a family of ‘exchangeability
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Figure 2.2: Example of a martingale sequence

martingales’, which can be successfully applied to detecting lack of randomness.

These are called the randomized power martingales, and are given by:

Mε
n =

n

∏
i=1

ε pε−1
i

where pis are the p-values provided by the CP framework, and ε ∈ [0,1] is a param-

eter that can be varied. As the martingale is evaluated for each new data example

in an online fashion, a higher value (tending towards infinity) suggests that the ex-

changeability condition is violated, and a lower value (tending to zero) suggests

that the data stream is indeed exchangeable.

Experiments with the USPS dataset: The exchangeability test was applied to

the UCI USPS dataset, on which the CP framework has been shown to demonstrate

valid results in earlier work [56] (when the data instances are randomly permuted).

The CP framework implemented in this study was based on the k-Nearest Neighbor

(k-NN), to replicate the settings of [56]. When the randomized power martingale

(RPM) is applied to the USPS dataset (as is, i.e. the data is not permuted), the result

is shown in Figure 2.3. This figure shows that the value of the RPM keeps increas-

ing as more examples are added. This suggests that the dataset is not exchangeable,

since the evidence collected against the null hypothesis of exchangeability is ex-

tremely high.
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Figure 2.3: Randomized power martingale applied to the USPS dataset. It is evident
that this dataset is not exchangeable

Figure 2.4: Results of the CP framework using kNN at the 95% confidence level.
Note that the number of errors are far greater than 5%, i.e., the CP framework is not
valid in this case

The results of applying the CP framework using k-NN (as considered above)

on the non-permuted USPS dataset at the 95% confidence level is presented below.

Evidently, the frequency of errors is far more than 5%, thus establishing that the

framework does not provide valid results, since the dataset is not exchangeable (or

i.i.d, which is a stronger assumption). On the other hand, when the USPS dataset

is randomly permuted, the results of the randomized power martingale are shown

below in Figure 2.5. This figure shows that the randomly permuted USPS dataset

is exchangeable. Note that the RPM tends to zero, as more examples are added.

As mentioned earlier, it was observed in [56] that the CP framework provided valid
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Figure 2.5: Randomized power martingale applied to the randomly permuted USPS
dataset. Notice that the data is now exchangeable, since the RPM tends to zero, as
more examples are added

results for such a randomly permuted USPS dataset. The above study clearly illus-

trates the impact of the exchangeability assumption on the CP framework. When

this assumption is not satisfied on the data stream, the validity property is affected,

i.e., there can be no guarantee provided on the frequency of errors made by the

framework at a given confidence level. However, since random permutation ad-

dresses this issue, batch learning problems can conveniently be permuted to yield

valid measures of confidence.

Advantages, Limitations and Variants

The desirable properties of the CP framework are summarized by Vovk et al. [38]

(in Chapter 1 of their book). We briefly review these properties, before discussing

the limitations, and the variants of the framework that have been introduced to offset

these limitations.

• Validity: This can be stated to be the most important property of the frame-

work. The conformal predictors are always valid, i,e. the frequency of errors

does not exceed a pre-specified error threshold, ε , at every confidence level

1− ε . This is often also called the calibration property.
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• Efficiency: Since the framework outputs prediction sets at a particular confi-

dence level, it is essential that the prediction sets are as small as possible. This

property is called efficiency. In case of classification, this would be equiva-

lent to having the least possible number of class labels in the prediction set.

In regression, the predicted interval must be as narrow as possible.

• Nested Prediction Sets: The output prediction set at a lower confidence level

is a subset of the prediction set at a higher confidence level, leading to nested

prediction sets. For example, as stated earlier, Γ0.65 ⊆ Γ0.9. Why is this im-

portant? On one hand, this helps statistically interpret the predictions, since

this property is similar to those of confidence intervals (as stated in Chapter

1). On the other hand, this provides for an intuitive presentation of results in

machine learning, at large.

• Conditionality: The output prediction set is constructed with complete con-

sideration of the current example being observed. This is a very essential

property for computing measures of confidence, since such frameworks (es-

pecially frameworks such as PAC learning which provide error bounds) often

do not consider the current observed data instance in the computations.

• Generalizability: (called flexibility in [38]) The framework is extensible to

any kind of machine learning algorithms for classification and regression, as

long as a suitable non-conformity measure is defined. Thus, if a particular

algorithm is suitable for an application (say neural networks), this framework

can be applied on top of the algorithm to obtain conformal prediction regions

as the output.

The framework has some limitations too, which are discussed below. These

have been elaborated in [38] (Chapter 4), and variants of the framework that address
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these limitations have also been proposed. Two of these limitations are mentioned

below.

• Computational inefficiency: A major limiting factor of the framework (in its

transductive form) is the seeming computational inefficiency of the frame-

work. Since the framework is based on transductive inference, the non-

conformity measure has to be recomputed for all the data instances when

a new data instance enters the system. This is a huge computational over-

head. This resulted in the design of the Inductive Conformal Predictors

framework [38] [48] [63], where the training set is divided into training and

calibration portions. The calibration portion is used to compute the p-values

when a new data example is observed, thus significantly reducing the required

computations. However, this approach trades off computational efficiency

for a loss in predictive efficiency (as defined earlier in this sub-section), and

hence has to be implemented after careful empirical evaluation.

• Conditional Validity: Conformal predictors are not automatically condition-

ally valid, i.e., data belonging to a particular class may be more difficult to

recognize than other data entities. Hence, it is natural to expect that at the

95% confidence level, the error rate will be significantly greater than 5% for

the difficult classes; validity only ensures that the average error rate over all

class labels will be close to 5%. The notion of Mondrian conformal predic-

tor is introduced to address this concern. For more details of this approach,

please refer [38].

2.2 Application Domains and Datasets Used

The contributions in this dissertation have been validated on problems from four

different application domains, representative of variety in the challenges to be ad-
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dressed. These application domains were chosen to validate the contributions in

both classification and regression contexts. These problems are listed below, and

each of them is further described in the following subsections.

• Risk prediction in cardiac decision support (Classification)

• Head pose estimation for a Social Interaction Assistant to help individuals

with visual impairments (Regression)

• Multimodal person recognition for the Social Interaction Assistant (Classifi-

cation)

• Saliency prediction in radiological images (Regression)

Risk Prediction in Cardiac Decision Support

Machine learning algorithms such as Support Vector Machines [73], genetic algo-

rithms [74], and neural networks [75] [76] have been used in cardiology to improve

the quality of care, stratify risk, and provide prognostications. Traditional learning

algorithms learn from data of past patients, and provide predictions on new patients,

without convincing information of the reliability or confidence in the predictions. In

medical diagnosis/prognosis, it is extremely essential to evaluate the performance

of such algorithms on the risk of possible error in supporting the decision-making

process. In this work, the CP framework has been used to achieve this purpose. Un-

like many conventional classification systems, this framework allows us not just to

risk classify new patients, but add valid measures of confidence in our predictions

for every individual patient. The objective of the work in this application domain

is to predict the risk of complications following a coronary Drug Eluting Stent

procedure (DES), using patient data provided by Advanced Cardiac Specialists, a

cardiology practice based in Arizona, USA.
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(a) Balloon Angioplasty (b) Bare Metal Stents (c) Drug Eluting Stents

Figure 2.6: Percutaneous Coronary Intervention procedures for management of
Coronary Artery Disease (CAD)

Drug Eluting Stents (DES) have emerged as the de facto option for Percutaneous

Coronary Intervention (PCI), with distinct advantages over bare metal stents [77].

Since restenosis rates are less than 10% with DES, there has been an explosive

growth in their use over a very short period. However, unanticipated complications

have been increasingly observed following a coronary DES procedure. In addition

to standard Major Adverse Cardiac Events (MACE) and procedural complications

associated with all PCI procedures, DES have resulted in additional complications,

including late Stent Thrombosis, increased incidence of early Stent Thrombosis,

and late restenosis, which could result in myocardial infarction (heart attack) or

death.

The predictive model proposed in this work helps to stratify the risk for a spe-

cific patient for post-DES complications, and thereby stratify patient populations

according to healthcare requirements, reducing the need for unnecessary invasive

procedures with their attendant risks and significant costs. The valid measures of

confidence can be used by the physician to make an informed, evidence-based de-

cision to manage a patient, choosing the most appropriate option from repeat PCI,

Coronary Artery Bypass Graft surgery (CABG), and/or maximized medical therapy

to minimize the possibility of occurrence/recurrence.
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CATEGORY ATTRIBUTES
Demographic
and Clinical
Presentation

Age, Gender, Ejection Fraction, Diabetes, Hypertension, Hy-
perlipidemia, Smoking, Race, Acute Coronary Syndrome
(Acute MI, Unstable Angina), Chronic Stable Angina, Car-
diogenic Shock, Congestive Heart Failure, Pulmonary Edema

History Previous Myocardial Infarction (Acute MI, Silent MI), Un-
stable Angina, Chronic Stable Angina, Previous PCI, Previ-
ous CABG, Previous Stroke, Cardiogenic Shock, Congestive
Heart Failure

Angiographic Vessel, No. of Lesions treated, Bifurcation lesion, Narrowed
Coronary Arteries, Multi-vessel Disease, Target Coronary
Artery (Left Anterior Descending, Diagonal Left Circum-
flex, Obtuse Marginal, Right Posterolateral,Right Posterior
Descending, Saphenous vein Graft), Coronary Lesion Char-
acteristics (Calcific, Eccentric, Diffuse Disease, Ostial Dis-
ease, Total Occlusion, Thrombus), Vessel Tortuosity, Refer-
ence Vessel Diameter, Lesion Length, Restenotic lesion, Le-
sion Type (A, B1, B2, C), Thrombus, Pre-procedure TIMI =
0

Procedural Urgent/Emergent, Balloon Predilatation (Diameter, Length,
Balloon to artery ratio, Maximal Predilatation Inflation Pres-
sure), Stent Implantation (Stent Length, Diameter, 2.25 mm
stent, Stent length / Lesion length ratio, Maximal Stent bal-
loon inflation pressure), Postprocedure TIMI flow < 3, Left
main Stenting, Multiple stents, Dissection, Acute reocclusion

Table 2.2: Patient attributes used in the Cardiac Patient dataset

Data Setup: Data was obtained from the central Percutaneous Coronary Inter-

vention registry maintained at Advanced Cardiac Specialists (ACS), consisting of

patient cases across the state of Arizona (including cases of different genders, races

and ethnic groups). 2312 patient cases who had a DES procedure performed during

the period 2003 to 2007, and who had followed up with the cardiac care facility dur-

ing the 12 months following the procedure, were selected from the PCI registry as

the dataset for the development of the model. The complications considered for this

model included: Stent Thrombosis and Restenosis, which manifest as chest pain,
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(a) Stent Thrombosis (b) Stent Restenosis

Figure 2.7: Complications following a Drug Eluting Stent (DES) procedure

myocardial infarction and sometimes even death. All patient particulars including

demographics, clinical parameters, patient history, angiographic, procedural and

follow-up details (a total of 165 patient attributes) were obtained as available in the

registry. These attributes are listed in Table 2.2. The dataset was extracted as a

Comma Separated Value (CSV) format file from the PCI registry which was main-

tained in SPSS. All patient data was handled in compliance with the U.S. Food and

Drug Administration’s (FDA) Protection of Human Subjects Regulations 45 CFR

(part 46) and 21 CFR (parts 50 and 56) and the U.S. Department of Health and

Human Services Health Insurance Portability and Accountability Act (HIPAA) of

1996.

The data was cleaned and missing values were handled in the most clinically

relevant manner, where appropriate. The data was subsequently normalized. Of the

selected patient cases, only 182 (only 7.87% of the total data) had a complication at

12 months following DES. To handle class imbalance (approximately, 92% to 8%)

in the patient data, our experiments illustrated the effectiveness of the Synthetic Mi-

nority Over-sampling Technique (SMOTE) [78] to obtain good performance with
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Figure 2.8: Results of the randomized power martingale on the non-permuted car-
diac patient data stream. Note that this figure is inconclusive; the martingale value
does not tend towards infinity, nor towards zero

imbalanced data. All steps of data extraction, pre-processing, and model develop-

ment were carried out in MATLAB R2007b. The SVM-KM toolbox [79] was used

for the algorithm implementation. The results of this work are discussed further in

Chapter 3.

Testing Exchangeability: As mentioned in the previous section, the only as-

sumption for the CP framework to provide valid results is that the data should be

i.i.d.; rather, the data should be exchangeable (a weaker assumption, as stated ear-

lier) i.e. the order in which the data samples arrive is random and can be permuted.

To study the validity of the assumption for this dataset, a randomized power martin-

gale (described in Chapter 1) is constructed and used to test the exchangeability of

the data. We present the results of the randomized power martingale (without ran-

dom permutation of the data) in Figure 2.8. Note that the martingale value is very

low (around 4-5), and hence, makes the study inconclusive. Since the martingale

does not tend towards infinity or towards zero, it is not possible to state conclusively

about the exchangeability of the dataset.

However, when the dataset is randomly permuted, the results obtained are pre-

sented in Figure 2.9. Note that the martingale tends towards zero in this case. This

figure shows that when the data stream is randomly permuted, the exchangeability
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Figure 2.9: Results of the randomized power martingale on the randomly permuted
Cardiac Patient dataset. Note that the martingale tends towards zero

condition is satisfied. It is acceptable to assume that the data can be randomly per-

muted before applying the CP framework in this application (even in the real-world

setting), since the patient data that has already been collected and stored can conve-

niently be permuted before using the CP framework. Hence, the guarantees of the

CP framework will hold true in this application.

Head Pose Estimation in the Social Interaction Assistant

Head pose estimation has been studied as an integral part of biometrics and surveil-

lance systems for many years, with its applications to 3D face modeling, gaze di-

rection detection, and pose-invariant person identification from face images. With

the growing need for robust applications, face-based biometric systems require the

ability to handle significant head pose variations. In addition to being a component

of face recognition systems, it is important to determine the head pose angle from a

face image, independent of the identity of the individual. This can be of significant

use in applications ranging from driver monitoring to 3D face recognition. While

coarse pose angle estimation from face images has been reasonably successful in

recent years [80], accurate person-independent head pose estimation from face im-

ages is a more difficult problem, and continues to elicit effective solutions.

The Social Interaction Assistant: The objectives of this work are anchored on
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Figure 2.10: A first wearable prototype of the Social Interaction Assistant

the design and development of an assistive system that can help individuals with

visual impairments in daily social interactions, called the Social Interaction Assis-

tant. People who are blind are often at a disadvantage in daily interactions, for they

are not aware of the presence of people around them, their identities or where they

are looking. A group of researchers at the Center for Cognitive Ubiquitous Com-

puting (CUbiC) at Arizona State University have been working towards a solution

for this problem [81] [82] [83]. This dissertation forms a significant component of

these efforts.

In order to identify unmet needs of the visually impaired community, two focus

groups consisting primarily of people who are blind, as well as disability special-

ists and parents of students with visual impairment and blindness, were engaged

in studies to understand their needs. During these focus groups, the participants

agreed on many issues as being important problems. However, one particular prob-

lem - that of engaging freely with their sighted counterparts - was highlighted as a

particularly important problem that was not being addressed by technology special-

ists. This led to the conceptualization of a wearable assistive device (Figure 2.10)

that would allow a person who is blind or visually impaired to interact with sighted

peers without those peers even being aware of their disability, or their assistive de-

vice, and this device was called the Social Interaction Assistant [81]. The focus
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Figure 2.11: A sample application scenario for the head pose estimation system

group studies were used to identify and enumerate a list of needs for people who

are blind, as they engage in social interactions, and one of these important needs

was identified to be ‘knowing where a person is directing his/her attention’. Head

pose estimation is an important element in providing a useful interaction experi-

ence for individuals who are blind. Further, the person recognition module can be

triggered when it is known that an individual is looking at the user, i.e. the head

pose estimation module can be used along with the person recognition module for

a more practically useful device.

Data Setup: The FacePix database [84], built at the Center for Cognitive Ubiq-

uitous Computing (CUbiC), has been used in this work for experiments and eval-

uation. Earlier work on head pose analysis have used databases such as FERET,

XM2VTS, the CMU PIE Database, AT & T, Oulu Physics Database, Yale Face

Database, Yale B Database and MIT Database for evaluating the performance of

algorithms. Some of these databases provide face images with a wide variety of

pose angles and illumination angles. However, none of them use a precisely cali-

brated mechanism for acquiring pose and illumination angles. To achieve a precise

measure of recognition robustness, FacePix was compiled to contain face images

with pose and illumination angles annotated in 1 degree increments.
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Figure 2.12: Sample face images with varying pose and illumination from the
FacePix database

The FacePix database consists of three sets of face images: one set with pose

angle variations, and two sets with illumination angle variations. Each of these sets

are composed of a set of 181 face images (representing angles from−90 ◦ to +90 ◦

at 1 degree increments) of 30 different subjects, with a total of 5430 images. All the

face images (elements) are 128 pixels wide and 128 pixels high. These images are

normalized, such that the eyes are centered on the 57th row of pixels from the top,

and the mouth is centered on the 87th row of pixels. The pose angle images appear

to rotate such that the eyes, nose, and mouth features remain centered in each image.

Also, although the images are down sampled, they are scaled as much horizontally

as vertically, thus maintaining their original aspect ratios. Figure 2.12 provides two

examples extracted from the database, showing pose angles and illumination angles

ranging from −90 ◦ to +90 ◦ in steps of 10 ◦. For earlier work using images from

this database, please refer [84]. This database is publicly available2, and has been

used earlier by other researchers for head pose estimation [85] [86].

Testing Exchangeability: Similar to the previous subsection, a randomized power

martingale was constructed and used to test the exchangeability of this dataset.

The results of the martingale for randomly permuted face images from the FacePix
2http://www.facepix.org/
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(a) Grayscale pixel intensity feature space

(b) Laplacian of Gaussian feature space

Figure 2.13: Results of the randomized power martingale when applied to the ran-
domly permuted FacePix data

dataset are presented in Figure 2.13. Both the grayscale pixel intensity and the

Laplacian of Gaussian feature spaces (which were used in this work) were studied.

Note that the martingale values tend towards zero, establishing that both the feature

spaces, when randomly permuted, are exchangeable, and hence, well-suited for our

work with the CP framework.

Multimodal Person Recognition in the Social Interaction Assistant

In the wave of growing concerns about security and privacy, the need to reliably

estimate the identity of an individual has become very pronounced. This has moti-

vated active research in the field of biometrics. Biometric systems rely on the evi-
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dence provided by face, voice, fingerprint, signature and other modalities to verify

and validate the identity claimed by an individual. Modalities such as fingerprints

and iris have proven to be very robust when the cooperation of the human subject

can be assumed, both during enrollment and during test. This makes them ideal for

limiting entry into secured areas (such as buildings) to known and trusted individu-

als. However, these biometrics are not very useful for recognizing people in public

places, where there is little or no motivation to cooperate with the system.

The development of an assistive person recognition system for people who are

blind provides a more tractable problem for face recognition researchers than secu-

rity and surveillance applications [87]. It imposes a somewhat less stringent set of

requirements because:

• the number of people to be recognized is generally smaller,

• disguise is not a serious concern,

• multiple pose angles, facial expressions and speech tones of a person can be

captured as training images (unlike datasets in security or surveillance, where

face images of miscreants typically contain only frontal and profile views of

each persons face, with no intermediate views), and

• the person recognition process is a collaboration between the system and the

user.

Moreover, focus group studies [81] that were conducted indicated that an important

feature that blind users expected in a Social Interaction Assistant is the ability to

know the identities of the people standing in front of them. In this dissertation, a

multimodal approach using the face and speech modalities is adopted towards the

development of an assistive person recognition system. Both of these modalities
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are non-intrusive and ‘at-a-distance’, i.e. they can be used without the user neces-

sarily having to pass through a sensing device (unlike fingerprint/iris-based person

recognition).

Why a Multimodal Approach? Most biometric systems used in real world ap-

plications are unimodal [88]; that is, they rely on a single modality to carry out the

authentication task. Such systems suffer from a variety of problems:

• the data collected may be corrupted by noise,

• a user may interact incorrectly with a sensor, for example can provide an

incorrect facial pose,

• it is possible that a particular trait of two different persons are very similar, or

• a single trait may be subject to spoof attacks.

Multimodal systems seek to alleviate some of these problems by consolidating the

evidence from multiple sensors. This can lead to better and reliable performance

of the recognition/validation system. The individual pieces of information being

fairly independent, are more robust to noise. In the context of this work, while

each modality (video and audio) is limited by certain environmental conditions,

such as changes in ambient lighting or background noise, by combining the two

modalities we increase the viability of the system and the range of environments

in which it can operate. Multimodal biometric systems can be classified into five

categories as shown in Figure 2.14 [2]. In this classification, the present work can

be categorized as a Multiple Biometric System approach, which combines the use

of multiple modalities.

In face and speech-based biometrics, there are many sources of uncertainty,

such as variations in pose, illumination and expressions in face images, or varia-
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Figure 2.14: Categorization of approaches towards multimodal biometrics (Illus-
tration reproduced from [2])

tions in tonality and pitch in speech. Considering that algorithms in the field of

biometrics have direct implications in security and surveillance, it is essential that

such algorithms provide a reliable measure of confidence on the predicted identity

(or identities). Further, in the current application context, users who are blind have

expressed their need to have the ability to interpret the reliability of the results ob-

tained from a person recognition device. Obtaining valid confidence measures in

multimodal person recognition constitutes the objective of this work.

Data Setup: The VidTIMIT [89] and the MOBIO (Mobile Biometry)3 datasets

are used to validate the proposed contributions. Both these databases contain frontal

images of subjects under natural conditions, and simulate the scenario of a visually

impaired individual in daily interactions. The VidTIMIT dataset contains the video
3http://www.mobioproject.org
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recordings of 42 subjects reciting short sentences. The MOBIO (Mobile Biometry)

dataset was created for the MOBIO challenge to test the performances of state-of-

the-art face and speech recognition algorithms. It contains videos of 160 subjects

captured using a mobile phone camera under challenging real world conditions.

More details of the data capture can be found in [90].

For both these datasets, automated face cropping was performed to crop out the

face regions [91] (In the VidTIMIT dataset, each of the videos were first sliced and

stored as JPEG images of resolution 512 by 384). To extract the facial features,

block based discrete cosine transform (DCT) was used (similar to [92]). Each im-

age was subdivided into 8 by 8 non-overlapping blocks, and the DCT co-efficients

of each block were then ordered according to the zigzag scan pattern. The DC

co-efficient was discarded for illumination normalization, and the first 10 AC co-

efficients of each block were selected to form compact local feature vectors. Each

local feature vector was normalized to unit norm. Concatenating the features from

the individual blocks yielded the global feature vector for the entire image. The

cropped face image had a resolution of 128 by 128 and thus the dimensionality

of the extracted feature vector was 2560. Principal Component Analysis (PCA), a

commonly accepted step in face recognition techniques, was then applied to reduce

the dimension to 100, retaining about 99% of the variance.

The speech data components of the VidTIMIT and MOBIO datasets were pro-

cessed and handled by our collaborators at Tecnologico de Monterey, Mexico.

More details of the corresponding speech data processing techniques used can be

found in [93].

Testing Exchangeability: Similar to the previous application, a randomized

power martingale was constructed and used to test the exchangeability of this dataset.

The results of the martingale for face images of 5 subjects from the VidTIMIT
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Figure 2.15: Results of the randomized power martingale with the VidTIMIT
dataset. The data was not permuted. Note that it is clearly evident that the dataset
is not exchangeable.

Figure 2.16: Results of the randomized power martingale with the randomly per-
muted VidTIMIT dataset. Note that it is clearly evident that the martingale tends
towards zero, establishing that the permuted data is exchangeable

dataset are presented in Figure 2.15. Note that the martingale value tends towards

infinity, establishing that the dataset, in its non-permuted form, is not exchangeable.

However, when the same data is randomly permuted, we obtain the results shown

in Figure 2.16. It is evident that the randomly permuted data is exchangeable, and

hence, well-suited for our work with the CP framework. However, it is also possi-

ble in this application that a particular test setting may contain the data of just one

subject (unlike the previous experiment, where the data from all the subjects was

used to construct the martingale). For example, the video of a particular subject

may have been recorded during a session, and provided as input to the recognition

framework. To understand the exchangeability of the data generated from only one
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(a) Non-permuted data stream of Sub-
ject 1

(b) Randomly permuted data stream of
Subject 1

(c) Non-permuted data stream of Sub-
ject 2

(d) Randomly permuted data stream of
Subject 2

Figure 2.17: Results of the randomized power martingale when applied to the data
stream of a single user

subject, we performed the same study with the face images of a single subject. We

repeated this study for 2 different subjects, and the results of this study are presented

in Figure 2.17. Evidently, the data stream, as generated, is not exchangeable; but

once the stream is randomly permuted, the data stream is exchangeable.

Saliency Prediction in Radiological Images

Saliency is defined as a measure of possible user interest on a single unit (or pixel)

of an image. In this work, we adopt a machine learning approach to learn saliency

in a given application using the regions of interest indicated by human eye gaze us-

ing eye-tracking technology. The work is validated on radiological images viewed

by radiologists, where it is valuable to learn from eye gaze information of expert ra-

diologists and suggest possible regions of high saliency to help novice radiologists

(or for that matter, any other user). When the user specifies a chosen confidence

level, the system identifies regions of saliency that are conformal with respect to

this confidence level.

As growing numbers of images and videos are generated each day, there has
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been an equally increasing need to reliably identify appropriate regions of interest

for all analysis tasks, such as medical diagnosis and surveillance. Radiological im-

ages constitute a special class of images that are used for a very specific purpose

(i.e. diagnosis) and their ‘correct’ interpretation is vitally important to patients.

New radiologists are trained over a period of years to interpret radiological images,

with a learning process that involves daily interactions with experienced radiolo-

gists. However, even after years of training, errors are not uncommon. Renfrew et

al. [94] noted that such errors typically involved:

• lesions that were outside the area of interest in an image,

• a lack of knowledge,

• a failure to continue searching for abnormalities after the first abnormality

was found, and

• failure to recognize a normal biologic variant.

This raises the question of whether sophisticated image analysis and machine learn-

ing techniques could be used to assist radiologists, by directing their attention to

regions of images that might be of particular importance. Such tools might be es-

pecially helpful in high fatigue and stress scenarios, and in satisfaction of search

error scenarios, which are known to be a major source of error in medical image

analysis [95] [96] [97].

Eye-tracking is the procedure of tracking the position of eye gaze of a user. One

of the earliest uses of eye-tracking was in the field of psychology in understanding

how text is read. Researchers analyzed the variations in fixation and saccade du-

rations with line spacing and difficulty of textual content. Eye-tracking was also

used to understand scene and art perception. In more recent times, eye-tracking is
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being increasingly used in various commercial and research applications ranging

from Human Computer Interaction (HCI) and medical research to marketing.

Eye tracking technology has been used to study the nature of expertise in radiol-

ogy, and to compare experts to novices [98] [99]. In 2002 [100], Dempere-Marco et

al. analyzed the eye tracking data of two experienced radiologists while reading CT

images of lungs. Their analysis was based on the spatial location of fixations, and

the time spent at each fixation. The fixations were spatially clustered, and textural

features were extracted from each cluster. Factor analysis was then used to find

features that might be useful in a decision support system. In 2003, Hu et al. [101]

and later in 2007, Antonelli et al. [102] also analyzed the visual fixations of expe-

rienced radiologists, with the motivation of providing decision support for medical

imaging. As the radiologists studied a set of medical images, their scan paths were

mapped into a feature domain, where the distribution of fixations was very different

from that in the spatial domain. Specifically, the scan path was projected into a tex-

tural feature space that was spanned by the same textural parameters used in [100].

The ‘hot spots’ were then identified in the textural space. Each hot spot represented

a particular combination of textural parameters that tended to attract and hold the

attention of the radiologists. The next step was to back project those hot spots from

the feature space into the spatial domain, to identify the spatial regions of interest.

The last step was to select the ‘most consistent’ spatial regions of interest across all

of the images. The result of this last step was a map showing the spatial regions of

the images that were presumably more important to radiologists. Using this data,

we propose a methodology to learn visual saliency in radiological images using

human eye movements. More details of the methodology and our experiments are

presented in Chapter 5.

Data Setup: A desktop Tobii4 1750 eye tracker with an LCD monitor (1280
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Figure 2.18: Tobii 1750 eye tracker

Rad. Specialty Chest X-rays/week Title Years
01 Cardiothoracic 500 Staff 15
02 MRI 15 Fellow 1
03 Cardiothoracic 250 Staff 3
04 Musculoskeletal 15 Staff 6
05 Thoracic 200 Staff 10

Table 2.3: Participants’ demographical information

x 1024 resolution) was used to record eye movement. This device, as shown in

Figure 2.18, is integrated into a 21 inch monitor. It tracks the eye gaze of the

viewers while using the monitor with a sampling frequency of 50 Hz. This eye

tracker has a nominal accuracy of 0.5 degrees with moderate head movement.

Five radiologists (4 males and 1 female) from Mayo Clinic in Scottsdale, Ari-

zona participated in an experiment. (For simplicity, the male pronoun ‘he’ will be

used to represent all participants in the following discussion.) All 5 had normal or

corrected-to-normal vision. Table 2.3 summarizes the demographic data collected

from these 5 radiologists. This demographic data was used to estimate a heuristic

expertise level for each radiologist as follows:

E = RPW +S(T +Y ) (2.11)

where, E is the expertise level, RPW is the average number of chest x-rays read

per week, S is the specialty (0.9 if a cardiothoracic specialist, and 0.1 otherwise),
4http://www.tobii.com
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T is the title (1 for a staff, and 0 otherwise), and Y is the number of years of

radiological experience. This expertise representation was formed in consultation

with the radiologists at the Mayo Clinic, and was intended to be used to weight the

inputs of the different radiologists appropriately.

Eye tracking data were recorded as these radiologists each read 20 chest x-ray

images for diagnostic purposes. Some of these x-ray images were normal, and

others were abnormal. No clinical history was provided with these x-ray images.

For more details about the experimental procedure, please refer [98]. This dataset

is used for learning a saliency predictor in Chapter 5.

Testing Exchangeability: As was done with other datasets, a randomized power

martingale was constructed and used to test the exchangeability of this dataset. In

a preliminary study [98], four different feature spaces - Localized Edge Orientation

Histograms, Haar Wavelets, Gabor Filters, and Steerable Filters - were found to

provide the best results towards effective saliency prediction. The results of the

martingale for randomly permuted data from the Radiology dataset for each of these

four feature spaces are presented in Figure 2.19. Note that the martingale values

tend towards zero for all the feature spaces, thus establishing that this dataset, when

randomly permuted, is exchangeable and hence suitable for our work.

2.3 Empirical Performance of the Conformal Predictions Framework: A Study

The validity of conformal predictors is known, and results demonstrating validity

have been presented by several researchers over the last few years, as reviewed ear-

lier. Results of validity in the application domains considered in this work have

also been presented in Chapters 3, 4 and 5. In a different kind of study presented

here, different uncertainty estimation frameworks have been analyzed against spe-

cific issues in learning systems that can be considered to affect system performance
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(a) Local Edge Orientation Histogram feature
space

(b) Gabor Filters feature space

(c) Haar Wavelets feature space (d) Steerable Filters feature space

Figure 2.19: Results of the randomized power martingale when applied to the ran-
domly permuted Radiology dataset for each of the 4 feature spaces that were found
to provide the best performances for effective saliency prediction

- error margins, training bias, data typicalness, and sample sizes. In particular,

this study focuses on the relationship between confidence and correctness of a pre-

diction in a classification setting. This study includes three different frameworks

in its scope: Transductive Confidence Machines (TCM) [38] [41] (synonymous

with the CP framework), Transductive Reliability Estimation (TRE) [103] [104]

and a probabilistic approach based on boosting (called BP in this section, for con-

venience) [105] [106]. While the TCM approach has been detailed earlier in this

chapter, the TRE and probabilistic approaches are briefly discussed below.

Transductive Reliability Estimation: Given two sets representing the data, S

and S∪W (where W is the new data point), the ideal prediction for a test data point,
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xtest , could be assumed to made when the data point is included in the training set.

Hence, if we represented a trained model for a dataset as MS, then the difference

between predictions on xtest using models MS and MS∪W could be considered as

providing a measure of the reliability of the prediction. This is the main idea of this

framework.

To achieve this is a three-step process:

1. Obtain a probabilistic distribution on the output labels with a classifier, MS,

induced by the training data.

2. Include the new test data point, xtest , into the training set, and obtain a trans-

duced model for MS∪W , and use this classifier to obtain a probabilistic distri-

bution on the output labels. This transductive model is obtained using the CP

framework (described earlier).

3. Compare the two probabilistic distributions using the normalized symmetric

Kullback-Leibler divergence to obtain the reliability measure:

JN(P,Q) = 1−2−∑
n
i=1(pi−qi) log pi

qi

For more details on this approach, please refer Kukar’s work [103] [104].

Probabilistic Approach: Since probabilistic approaches have different formu-

lations, we have chosen one approach which aligns along a common implemen-

tation platform for all of these 3 frameworks. Adaboost.M2 [105] is used as a

meta-learner, with k-Nearest Neighbors (k-NN) in each of its iterations as the base

algorithm in this study. The probability distribution of k-NN on the output labels

is equivalent to a Naive Bayes classifier using non-parametric density estimation

with variable window sizes [106]. Also, the weighted addition of these probability

values over the iterations in the Adaboost.M2 framework has been interpreted as
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a Bayesian integration of probability values. This weighted sum of the probability

values over the iterations is used as the measure of confidence, as often used in

related work.

Experimental Setup

Dataset, Feature Spaces and Learning Algorithms: Related studies performed in

earlier work often use synthetically generated data. Instead, we used a well-defined

formulation of the head pose estimation problem using face images from the widely

accepted FERET database [107] as the basis of our empirical study. We have de-

fined the task in the problem as training a learning system to automatically classify

captured face images into one of 3 labels - frontal, left, and right. The FERET

database is widely respected as the standard database to evaluate face analysis al-

gorithms. In this work, 4500 images with varying pose angles of different people

were randomly selected from the FERET database. The ground truth for the class

labels of these images was obtained using the FERET file nomenclature, where the

last two letters of the file name of each image indicates the pose angle of the face in

the image. The images were selected from the FERET database in such a manner

that each of the 3 class labels - frontal, left and right had 1500 images. Since many

of these face images include non-face information too, these images were manually

cropped before our study. To obtain face images that are reasonably close to such

a real-world setting for our analysis, a real-time face detection algorithm based on

patch classifiers [108] was applied on images from the FERET face database. Sam-

ples of face portions extracted from the FERET database which were used for our

analysis, are shown in Figure 2.20.

From these face portions, three different features were extracted:

• The pixel intensity values were used as is.
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(a) (b) (c) (d)

Figure 2.20: Examples of face images from the FERET database (a and c) and the
corresponding extracted face portions (b and d) used in our analysis

• Edges were extracted out of the image by thresholding the magnitude of the

gradient computed from the vertical and horizontal Sobel filters, δy and δx

respectively. The orientation of each of these edge pixels is computed as:

θ = tanh(
δy

δx
)

Subsequently, a histogram of the orientations of these pixels is constructed

with bins spanning the interval [−180◦,+180◦]. Initial experiments were

carried out with 6, 8 and 12 bins with a regular k-NN classifier to study the

performance, and a histogram with 12 bins was found to be most suitable.

• Gabor wavelet features at three different scales ({1,2,4}) and three different

orientations (
{1

2 , 1
4 , 1

8

}
) were extracted from the image, and concatenated.

The Adaboost.M2 algorithm was used as a meta-learner [105]. In each of the

iterations of Adaboost.M2, a k-NN (with a value of k = 10, chosen empirically)

classifier was implemented on each of the 3 feature spaces independently, and the

feature with the least error is selected as the weak learner of the iteration. The same

learner was used in the TRE and TCM algorithms. For the TCM algorithm, the

non-conformity measure was computed as specified in Table 2.1.

Experiment Design and Methodology: The objective of this study is to iden-

tify statistical factors in learning frameworks that can affect the confidence of a
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Factor/Issue Related Question
Data typical-
ness

How typical of the training points of the predicted class label
is the given test data point?

Training bias Was there a bias in the size/representativeness of the training
dataset of the predicted class label?

Error margins How close is the result value of the given algorithm (used for
predicting using possible thresholds) to an ideal/mean result
value obtained for data points with the predicted class label in
the training phase?

Sample sizes What portion of the possible universe of datasets was provided
for training?

Table 2.4: A listing of factors pertinent to the evaluation of confidence estimation
frameworks

learning system, and understand how existing confidence estimation frameworks

address these factors. Table 2.4 lists a selected set of factors of evaluation, and the

related questions that explain the corresponding factors. The listing is based on an

intuitive understanding of factors that often cause issues in system performance.

While this is not an exhaustive listing, nor can the factors be proved to be mutually

independent, it was decided to perform this study with these factors since no earlier

work with this motivation was performed before, and a study would be required

to identify the factors themselves. It should also be mentioned that factors based

on the performance in the training phase (often used in earlier related work) are

represented by the data typicalness factor in this study.

Based on the factors listed in Table 2.4, the experiments designed and studied

in this work are listed in Table 2.5.

Results and Discussion

The results of each of the experiments in Table 2.5 are presented and discussed

in this section. In this study, the accuracies obtained in the experiments are not

given much attention. Instead, the focus is directed towards the probability value
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Index Experiment Design Notes/Factor(s)
Addressed

1 1000 images each of frontal, left and right face images
are used for training, and 500 images each of the 3
class labels are used for testing

Baseline study

2 1000 images each of frontal, left and right face images
are used for training, but left and right face images
with a pose angle of 22.5◦ are not included in training;
Only left and right face images with pose angle 22.5◦

are used for testing

Study data
typicalness with
data that could
be ambiguous

3 1000 images each of frontal and left are used for train-
ing, along with only 100 images of right face images,
and the same 500 images of each class label as in
Experiment 1 are provided for testing. Subsequently,
the number of right face images for training is incre-
mented in steps of 100 to study changes in perfor-
mance

Study training
bias

4 100 images each of frontal, left and right face im-
ages are used for training, and the same 500 images of
each class label as in Experiment 1 are used for test-
ing. Subsequently, the number of training images is
incremented in steps of 100 to study changes in per-
formance

Study effect of
sample size rel-
ative to avail-
able universe of
data

Table 2.5: Design of experiments for confidence measures in head pose estimation

obtained from the BP method, the confidence and the credibility values obtained

from the TCM framework approach, and the reliability value obtained from the

TRE framework. An essential part of the analysis includes the study of the confi-

dence values against correct and incorrect predictions. It is assumed that a better

confidence estimation framework would result in low confidence values for incor-

rect predictions. The rationale behind this analysis is that if these frameworks were

successful at declaring a low confidence on incorrect results, a threshold of con-

fidence value could be used to generate better effective performance of a learning

system. Looking at the results from Experiment 1 (Figure 2.21), it is interesting
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(a) Bayesian Probability (b) Transductive Reliability Estimation

(c) TCM for correct predictions (d) TCM for incorrect predictions

Figure 2.21: Results of Experiment 1

to note that the BP approach values tend to crowd around 0.9 to 1.0 for both cor-

rect and incorrect predictions. While the high accuracy of the approach makes the

number of incorrect predictions look small, the fact that the system gives a high

probability value on even incorrect predictions does not seem encouraging. A sim-

ilar observation can be made for the TRE results, and in fact, in this case, almost all

predictions have an extremely high reliability between 0.95 and 1.00. On the con-

trary, results from the TCM approach clearly indicate a difference between confi-

dence/credibility values for correct and incorrect predictions. Incorrect predictions

have confidence/credibility values in the 0.5-0.6 range, which suggests that this can

possibly be thresholded to filter incorrect results. However, by the very definition of

confidence and credibility, a low confidence implies a high credibility value, and a

low credibility value implies a high confidence. Considering these issues, it would
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(a) Bayesian Probability Formulation (b) Transductive Reliability Estimation

(c) TCM for correct predictions (d) TCM for incorrect predictions

Figure 2.22: Results of Experiment 2

be necessary to understand the correlation between these two values, and deduce

rules that can provide a final interpretation from the end user perspective.

The results from Experiment 2 (Figure 2.22) follow a trend that is very similar

to Experiment 1. Here again, as Figure 2.22 indicates, while BP and TRE results

still associate high confidence value with incorrect predictions, TCM provides ob-

jective assessments with significantly lower confidence/credibility even on correct

predictions, which gives the end user the idea that the presented data stream may be

untypical of the data used to train the system. An interesting observation in these

results is that when 90◦ pose angle images are used for testing, the system manages

to classify with ease (although these images were not provided during training); but

the system is not as confident when 22.5◦ pose angle images are used, as shown

by the percentage of incorrect predictions. While both these kinds of images are
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non-typical in their respective experiments, the 22.5◦ pose angle images seem to be

more ambiguous. This is possibly because 90◦ pose angle images are, in a sense,

‘extrema’ in the label space, and hence, are less ambiguous to the system.

The results of Experiment 3 (Figure 2.23) once again reinforce our findings

from Experiments 1 and 2. The BP and TRE values consistently stay close to

1 for incorrect predictions, irrespective of training bias. On the other hand, the

confidence values in TCM show a very intuitive trend. For correct predictions,

when a lesser number of face images with pose angle ‘Right’ are used for training,

the framework very clearly shows a low confidence value, but gains confidence

in its correct predictions as the relevant face images are increased (equivalent to

gradually removing the training bias). Similarly, for incorrect predictions, although

there are a couple of aberrations, the system stabilizes with a low confidence over

time. However, in this case, the credibility values may be deceptive at times, and

may need to be carefully interpreted in an appropriate manner.

The results of Experiment 4 (Figure 2.24) establish the inference that the con-

fidence measures obtained by the BP and TRE methods are not very informative

about the prediction, and remain in the 0.9-1.0 range for all kinds of predictions

across all training sample sizes. However, TCM once again shows a clear distinc-

tion in confidence and credibility values for correct and incorrect predictions. As

mentioned before, it is worth re-iterating that this implication is extremely signif-

icant: incorrect predictions can be filtered using a low confidence of the system.

The interesting inference, although, from this experiment is that the confidence of

the system is not affected by variations in sample sizes in training. This may also

be traced to the representativeness of the data points used in training, even if the

number be small. This could be a potential direction for future work - to identify

the most representative training points that can span a data universe.
68



(a) BP for correct predictions (b) BP for incorrect predictions

(c) TRE for correct predictions (d) TRE for incorrect predictions

(e) TCM credibility for correct predic-
tions

(f) TCM credibility for incorrect predic-
tions

(g) TCM confidence for correct predic-
tions

(h) TCM confidence for incorrect pre-
dictions

Figure 2.23: Results of Experiment 3: The x-axis denotes the increasing sample
size (from 100 to 1000) used in consecutive steps, and y-axis the confidence values.
The thick lines connect the median of the confidence values obtained across the test
data points, while the thin lines along the vertical axis show the range of confidence
values obtained at each sample size used for training
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.24: Results of Experiment 4
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Inferences from the Study

This study provided an empirical validation of applying the CP (or TCM) frame-

work for estimation of confidence in machine learning algorithms. At the outset,

the CP framework seemed to address statistical issues associated with learning al-

gorithms fairly well, in comparison to other popular methods. While not exhaustive,

this study provided interesting insights on how the framework could be used in an-

alyzing statistical causes of uncertainty. However, more work needs to be done to

make such approaches practically viable.

To understand the poor results obtained consistently from the BP and the TRE

methods, the formulation of the Adaboost.M2 algorithm with the k-NN classifiers

was modified. In the initial formulation, the probability distribution on the output

labels from the final boosted hypothesis was used as the probability value for the

BP and TRE methods in the experiments. An additional study was performed by

integrating the probabilities obtained in each of the iterations from the k-NN classi-

fier (the probability distributions on the class labels from each iteration were added

using the weights obtained from the Adaboost algorithm). In other words, the error

margins (as defined in Table 2.4) from the k-NN output values in each of the boost-

ing iterations have been incorporated into the frameworks. This however does not

affect the current formulation of the TCM framework. The results of Experiment

1 with the new formulation for the BP and the TRE methods are shown in Figure

2.25.

As evident in Figure 2.25, the performance of the BP method improved, consid-

ering that the incorrect results have confidence values that are lower than in Figure

2.21. However, the confidence values for correct predictions seems to have fallen

too. On the other end, although the reliability values obtained from TRE exhibit
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(a) (b)

Figure 2.25: Results of Experiment 1 with a modified formulation for the BP and
TRE methods

improved results (when compared to Figure 2.21), there is a significant chunk of

incorrect predictions with a high reliability value. This certainly indicates that other

formulations of the BP and the TRE methods may have performed better than the

results presented in this study. This also indicates that the BP and the TRE methods

rely on error margins to a significant extent(as defined in Table 2.4 to provide a

value of confidence.

2.4 Summary

In this chapter, the background of this work, from both theory and application per-

spectives, were presented. The datasets used in this work were described, and tested

for the validity of the assumptions for the CP framework. An empirical study of the

performance of the CP framework, in comparison to two other frameworks, was

performed, and the study showed significant promise in the framework’s possibili-

ties to provide a reliable measure of confidence under various conditions.
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Chapter 3

EFFICIENCY MAXIMIZATION IN CONFORMAL PREDICTORS FOR

CLASSIFICATION

As described in Chapter 2, the Conformal Predictions framework is a recent de-

velopment in machine learning to associate reliable measures of confidence with

results in classification and regression. While the formulation of the framework

guarantees validity, the CP framework has another property called efficiency [38].

The efficiency of conformal predictors is measured by the size of the predicted set

of labels (or the width of the predicted region in case of regression) at a particular

confidence level. It is essential that the predicted sets are as small (or narrow) as

possible. The efficiency of the framework depends greatly on the choice of the clas-

sifier and corresponding parameters such as kernel functions or distance metrics.

While the CP framework has extensive potential to be useful in several applications,

the lack of efficiency can limit its usability in real-world problems. For example,

in a classification setting, the CP framework can output a prediction set containing

all possible class labels for a given test point. Evidently, while this output is valid,

such a result is not practically useful. Hence, it is essential that the CP framework,

when applied in real-world problems, is both valid and efficient. This is the objec-

tive of this contribution of this dissertation. This chapter presents the methodology

and results for efficiency maximization in the classification context, while Chapter

4 presents these details for the regression setting. The proposed methodology in

this chapter is validated on the Cardiac Patient dataset as part of the Risk Predic-

tion in Cardiac Decision Support application described in Chapter 2 (Section 2.2).

Without any loss in generality, we describe the motivation and methodology in this



work assuming a binary classification problem for convenience of explanation and

understanding.

3.1 Cardiac Decision Support: Background

As stated in Chapter 2, the objective of the work in this application domain is to

predict the risk of complications following a coronary Drug Eluting Stent procedure

(DES), using real-world patient data provided by Advanced Cardiac Specialists, a

cardiology practice based in Arizona, USA. The dataset used to build the predictive

model was described in Section 2.2.

Existing models in this scope (such as the Boston Scientific DES Thrombosis

score [109]) have largely been rule-based and derived from correlation analysis. For

example, in the DES Thrombosis score [109] approach, a set of patient attributes

(between 5-10) are selected as correlated to the outcomes being studied. Suitable

thresholds are identified for each of these attributes, and the predictive model is

based on rules between these attribute-threshold pairs. A detailed listing of existing

related models is presented in Table 3.1. The validity of such statistical models to

specific patient cases is questionable. For example, age ≥ 65 is used as a common

patient attribute in such models, and this may be set to zero for a patient with age

64. This increases the possibility of incidence of false positives and false negatives

in the predictions, thereby limiting the scope of their applicability. Predictive mod-

els based on machine learning techniques have the ability to consider each patient

as a unique entity, and predict outcomes for a particular patient case in question,

unlike statistical models. Such a model has not been built for studying the risk of

complications following a DES procedure, and this work is the first of its kind for

this problem.

As mentioned earlier, the predictive model proposed in this work helps to strat-
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MODEL NAME SOURCE OBJECTIVE
EuroSCORE [110] Assesses the European System for Cardiac Opera-

tive Risk Evaluation (EuroSCORE) validity to pre-
dict in-hospital mortality after PCI

Boston Scientific
DES Thrombosis Risk
Score [109]

A clinically useful patient risk score that predicts
the incidence of stent thrombosis

Mayo Risk Score [111] Identifies clinical and angiographic risk factors as-
sociated with complications of all kinds of PCI
procedures

American College of
Cardiology-National
Cardiovascular Data
Registry [112]

A risk adjustment model for in-hospital mortality
following PCI procedures using data from a large,
multi-center registry

Brigham and Women’s
Hospital [113]

Simplified risk score models for predicting the risk
of major in-hospital complications after PCI in the
era of widespread stenting and use of glycoprotein
IIb/IIIa antagonists

University of Michigan
Consortium [114]

Bedside prediction of prognosis for individual pa-
tients for PCI mortality.

Northern New England
Cooperative Group [115]

Identifies risk factors associated with in-hospital
mortality among patients undergoing PCIs.

Cleveland Clinic Founda-
tion Multi-Center [116]

Establishes a relation between physician caseload
and complication in PCI.

New York State [117] Assesses the relationship between annual hospi-
tal volume and annual cardiologist volume for
percutaneous transluminal coronary angioplasty
(PTCA) and 2 outcomes of PTCA (in-hospital
mortality and same-stay coronary artery bypass
graft [CABG] surgery)

New York State [118] Identifies significant independent risk factors for
major percutaneous transluminal coronary angio-
plasty outcomes

Table 3.1: Existing models for risk prediction after a Percutaneous Coronary Inter-
vention/Drug Eluting Stent procedure
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ify the risk for a specific patient for post-DES complications, and thereby strat-

ify patient populations according to healthcare requirements. In medical diagno-

sis/prognosis, it is not only important to provide a prediction, but also equally (or

more) important to associate a measure of confidence with the prediction. In this

work, the CP framework has been used to achieve this purpose. The CP framework

ensures that the frequency of errors made in the model are calibrated, and hence, a

physician can set a suitable confidence level and obtain corresponding predictions.

However, the efficiency, or the number of class labels in the predicted set, can vary

based on the choice of classifier or the choice of parameters. Maximal efficiency,

along with validity, is critical in a risk-sensitive application for practical usability,

and this is the motivation of this work, as described below.

3.2 Motivation: Why Maximize Efficiency

The output of the CP framework for a classifier such as k-Nearest Neighbors is a

set of class labels, Γε , as described in Chapter 2. In a binary classification problem,

the output set predicted by the CP framework can contain zero, one or two (both)

class labels. When the output set contains only one class label and this class label is

correct (given the ground truth), this could be considered as the ideal solution. If the

output contains only one class label which is however incorrect, this is termed as an

error. If the output set contains zero predictions, we call that an empty prediction,

which is also counted towards an error since this solution will not provide the user

with the correct class label. If the output set contains both class labels, it is termed

a multiple prediction, which however is not an error since it always contains the

correct solution. For example, given C1 and C2 as the class labels, and a test data

point xn+1 whose ground truth is C1, an output of Φ is an empty prediction and an

error; an output of C2 is an error; and an output of {C1,C2} is a multiple prediction.
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Maximizing efficiency in the CP framework for a classification setting would be

equivalent to having the least possible number of class labels in the prediction set.

In other words, for high efficiency, the number of test data points for which the CP

framework provides multiple predictions as output should be as low as possible,

while maintaining the same number of errors.

Figure 3.1: Illustration of the performance of the CP framework using the Cardiac
Patient dataset. Note the validity of the framework, i.e. the errors are calibrated
in each of the specified confidence levels. For example, at a 80% confidence level,
the number of errors will always be lesser than 20% of the total number of test
examples.

From the above discussion, it is evident that the performance of the CP frame-

work can be summarized using two quantities: (i) number of errors, and (ii) number

of multiple predictions. Since the CP framework guarantees validity [56], the num-

ber of errors will always remain bounded by 1− ε (as illustrated earlier in Figure

3.1). However, the efficiency of the framework lies in providing the maximum pos-

sible one-label prediction sets (at a given confidence level), since output sets with

both labels in a binary classification problem do not provide any useful information

to the end user. The efficiency can vary depending on the choice of a classifier, its
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parameters or kernel functions. To illustrate this, Figure 3.2 presents the results of

the CP framework for different classifiers and parameters at a user-specified 95%

confidence level. As shown in the figure, efficiency varies with the choice of the

classifier, while validity (number of errors shown with a black solid line) remains

the same. The number of errors is always under 5% (100% - 95%, the specified

confidence level), which is the CP framework’s property. However, the number of

multiple predictions varies for each classifier and corresponding parameter.

(a) SVM classifier,
Gaussian kernel,
spread=1

(b) k-NN classifier,k=5 (c) k-NN classifier,k=10

(d) k-NN classifier,k=20 (e) kernel k-NN
classifier,k=5, Gaussian
kernel, spread=5

Figure 3.2: Performance of CP framework on the Breast Cancer dataset from the
UCI Machine Learning repository at the 95% confidence level for different clas-
sifiers and parameters. Note that the numbers on the axes are represented in a
cumulative manner, as every test example is encountered. The black solid line de-
notes the number of errors, and the red dashed line denotes the number of multiple
predictions

Similar experiments with the cardiac patient data were performed using a Sup-
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port Vector Machine (SVM) classifier with a polynomial kernel (which was found

to give best results) and a neural network classifier, in addition to the k-NN classi-

fier. 75% of the dataset was randomly selected for training, and the remaining as the

testing subset. In case of SVM, the non-conformity measure for the CP framework

was chosen to be:

α
yp
i = e−a×dm

i

where dm
i the distance of a given point i to the margin boundary of a class m. In

addition, a back-propagation neural network was used on the same data with the

non-conformity measure given by (as mentioned in Table 2.1 in Section 2.1):

α
yp
i =

∑y′∈Y :y′ 6=yp oy′

oyp + γ

The results obtained are presented in Figure 3.3. The black solid line denotes the

number of errors, and it is evident that the number of errors is always under 5%,

since the specified confidence threshold is 95%. However, the red dashed line de-

notes the number of multiple predictions in the binary classification problem. Note

that this varies for each classifier, while the black solid line remains almost the same

for all classifiers.

(a) SVM classifier (b) k-NN classifier (c) Back-propagation
Neural Network

Figure 3.3: Performance of CP framework on the Cardiac Patient dataset
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Note the line in red, which represents the number of multiple predictions. Al-

though the same data was used and the frequency of errors was bounded by 5% at

the presented 95% confidence level in both the cases, it is evident that the num-

ber of multiple predictions, which defines the efficiency, is significantly different

(a 200% increase from SVM to NN) when a different classification algorithm is

used. Since this is a binary classification problem, a prediction with multiple class

labels is not practically useful, and it would be essential to minimize the number

of multiple predictions (and thus maximize efficiency) to the extent that the choice

of classifiers/non-conformity measures will allow. This motivates the need for a

methodology that can minimize the number of multiple predictions, thus maximiz-

ing efficiency (while maintaining validity), given a particular classifier in the CP

framework. This is the objective of this work.

The aforementioned limitation of the CP framework may act as a serious deter-

rent in its use in real-world applications, since it may not be an easy task to identify

the correct parameters for a classifier that will provide the highest efficiency (or

in other words, a practically useful conformal predictor). We propose an approach

based on kernel learning to maximize efficiency in the CP framework. In particular,

we learn an appropriate convex combination of kernel functions that can maximize

efficiency, while maintaining validity. This methodology is validated using the k-

NN classifier on datasets from the UCI Machine Learning repository [71], as well

as the challenging Cardiac Patient dataset. The contributions of this work gain more

value since there has been no earlier effort in this direction. We hope that this work

will lead to adoption of the CP framework in real-world applications where there is

a need for valid confidence measures. We now present the conceptual framework

of the proposed methodology.
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3.3 Conceptual Framework: Maximizing Efficiency in the CP Framework

As mentioned earlier, since this work is validated using a k-NN conformal predictor,

we present the methodology for this classifier. However, the conceptual framework

will remain similar for other classifiers, and can be extended conveniently. From

the definition of a non-conformity measure for the k-NN classifier (Equation 2.6,

Figure 2.1), it is evident that we would like the non-conformity measure for a data

point that is assigned the correct class label (based on ground truth) to be as low as

possible. Complementarily, we would like the non-conformity measure for a data

point that is assigned an incorrect class label to be as high as possible. This will

ensure that the p-value for the correct class label is very high, while the p-value

for the incorrect class label is very low, thereby reducing the number of multiple

predictions even at high confidence threshold levels. In order to achieve this, we

would need to identify a kernel function, φ , such that for the projected data, φ(x):

• The margin between the classes is maximized

• The variance inside each of the classes is minimized

This is illustrated in Figure 3.4. Such a kernel feature space will ensure that the

numerator of Equation 2.6 is low and the denominator is high, for a data point

which is assigned the correct class label (and otherwise for an incorrect class label).

The first criterion - maximizing the margin - can be achieved using a Sup-

port Vector Machine(SVM)-based approach to kernel learning, as used in earlier

work [119, 120, 121]. Similarly, the second criterion - minimizing intra-class vari-

ance - can be achieved by using a Linear Discriminant Analysis (LDA) [122] ap-

proach, i.e. by minimizing the denominator of the Fisher discriminant criterion,

wT Sww, where Sw is the within-scatter matrix. Hence, the combination of these two
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Figure 3.4: An illustration of an ideal kernel feature space for maximizing effi-
ciency for a k-NN based conformal predictor

criteria can be used to learn a kernel function that can generate efficient conformal

predictors.

The maximum-margin formulation, as in SVM [123], is given by (we assume a

hard-margin formulation just for convenience of explanation. The implementations

and results in this work use a soft-margin formulation):

min
1
2
‖w‖2

subject to yi(wT xi + b) ≥ 1 ∀i = 1,2, . . . ,n. Combining the maximum-margin and

minimum-variance criteria, the objective function can now be written as:

min
1
2
‖w‖2 +wT Sww

=
1
2

wT w+wT Sww

=
1
2

wT (I +2Sw)w

More generally, this problem can now be written as:

min
1
2

wT (λSw + I)w (3.1)

subject to yi(wT xi +b)≥ 1 ∀i = 1,2, . . . ,n, and where Sw is the within-class scatter

matrix in Discriminant Analysis [10], and λ is a parameter that can be set empir-

ically to balance the SVM and LDA components of the objective function. Note
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that the within-class scatter matrix, Sw, is given by ∑
C
j=1 ∑

N j
i=1(xi−m j)(xi−m j)T ,

where C is the number of class labels, N j is the number of data points belonging to

class j, and m j is the mean vector of class j.

Now, substituting Λ = λSw + I, we get:

min
1
2

wT
Λw

subject to yi(wT xi +b)≥ 1 ∀i = 1,2, . . . ,n. The primal Lagrangian is then given by:

L(w,b,α) =
1
2

wT
Λw−

n

∑
i=1

αi(yi(wT xi +b)−1)

Applying the KKT conditions and substituting back into the primal Lagrangian, we

get the dual problem as:

maxL(α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

yiy jαiα jxT
i Λ
−1x j (3.2)

subject to ∑
n
i=1 αiyi = 0,αi ≥ 0 ∀i = 1,2, . . . ,n.

A similar formulation was used by Xiong and Cherkassky [124], but their ap-

proach was not used for Multiple Kernel Learning. However, they showed that the

above formulation is equivalent to the following SVM formulation:

min
1
2
‖ŵ‖2

such that yi(ŵT x̂i + b) ≥ 1 ∀i = 1,2, . . . ,n where ŵ = Λ1/2w and x̂i = Λ−1/2xi

∀i = 1,2, . . . ,n. Evidently, this is the standard SVM formulation on the projected

data points x̂i, and can be solved using existing SVM solving software. They also

provided a method to compute Λ1/2 and Λ−1/2 using Singular Value Decomposi-

tion, which we have adopted in this work. Hence, the dual problem (Equation 3.2)

to be solved can be rewritten as:

maxL(α) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

yiy jαiα jx̂T
i x̂ j (3.3)
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subject to ∑
n
i=1 αiyi = 0,αi ≥ 0 ∀i = 1,2, . . . ,n.

The optimization formulation to maximize efficiency in k-NN conformal pre-

dictors has thus been shown to be equivalent to a standard SVM problem with the

projected data points.

However, this formulation has been derived for a linear SVM scenario. To

extend this to a kernel learning setting, this modified SVM problem (using the pro-

jected data points) needs to be subsequently ‘kernelized’, and existing kernel learn-

ing methods that maximize the SVM margin can then be applied to this formulation.

Details of the kernel learning methodology are presented in the following section.

Note that while this formulation is one approach to maximizing efficiency, a more

holistic solution will take into account the kernel function, even before projecting

the data points onto a different space in the above derivation. Such an alternate

formulation has been presented later in this chapter.

3.4 Kernel Learning for Efficiency Maximization

Kernel Learning: A Brief Review

The use of kernel methods in machine learning has grown immensely in the last

decade. Kernel methods [125] [123] constitute a class of algorithms, where the data

is mapped into a high-dimensional space where it is easier to find relations between

data. These methods borrow their name from kernel functions, which enable them

to operate in the feature space without computing the coordinates of the data in that

space, but rather by simply computing the inner products between the images of

all pairs of data in the original data space. This is done using Mercer’s theorem,

which states that any continuous, symmetric, positive semi-definite kernel function

K(x,y) can be expressed as a dot product in a high-dimensional space1.
1http://en.wikipedia.org/wiki/Kernel trick
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Kernel Description
Polynomial k(x,x′) =< x,x′ >d

Radial Basis
Function

k(x,x′) = f (d(x,x′)), where d is a metric on X . Examples in-
clude Gaussian (please see below) and B-Splines.

Gaussian k(x,x′) = exp−
‖x−x‖2

2σ2

Sigmoid k(x,x′) = tanh(axx′+ v)

Table 3.2: Examples of kernel functions

More specifically, if the arguments to the kernel are in a measurable space X ,

and if the kernel is positive semi-definite, i.e. ∑i, j K(xi,x j)cic j ≥ 0, then, for any fi-

nite subset x1, ...,xn of X and any real numbers c1, ...,cn, then there exists a function

ϕ(x), whose range is in an inner product space of possibly high dimension, such

that:

K(x,y) = ϕ(x) ·ϕ(y)

A few basic examples of kernel functions are listed in Table 3.2.

While kernel methods in the initial years relied on identifying optimal parame-

ters by empirically minimizing classification error, there has been a recent growth

in non-parametric approaches that can learn the kernel Gram matrix [121] or learn

the weights of a convex combination of kernel functions [120] (commonly called

Multiple Kernel Learning or MKL). MKL methods attempt to identify the opti-

mal linear combination of kernel functions/matrices that maximize a performance

measure, such as maximum margin classification error [121] or Fisher discrimi-

nant analysis [122]. Earlier work has shown such approaches to be promising in

identifying the appropriate combination of kernel functions/matrices for improved

performance. One of the earliest efforts in this regard was by Cristianini et al. [126],

who proposed a methodology for kernel alignment. Given an unlabeled sample set

S = xi : i = 1, . . . ,n and xi ∈ℜm. kernels k1 and k2, then the inner product between

85



the kernel matrices is given by:

〈K1,K2〉F =
n

∑
i, j=1

k1(xi,x j)k2(xi,x j)

where Ki is denoted to be the kernel matrix based on the kernel ki. Then, the align-

ment of the two kernels with respect to sample S is given by:

Â(S,k1,k2) =
〈K1,K2〉F√

〈K1,K1〉F 〈K2,K2〉F

One of the kernels can be based on the label vectors in the training set to ensure

that the kernel matrix that is learnt, is aligned with the training data and the corre-

sponding labels.

Since the work by Cristianini et al., there have been numerous approaches that

have been proposed for kernel learning. A taxonomy of MKL algorithms pre-

sented by Gonen and Alpaydin [127] categorized such methods into fixed rules

(fixed weights for each kernel function, for example), parametrized functions (lin-

ear and non-linear combinations of individual kernel functions), similarity-based

methods (such as kernel alignment), boosting methods and Bayesian methods. In

this work, we adopt an approach based on parametrized functions (in particular, a

convex combination of kernel functions) that can maximize the efficiency of a clas-

sifier in the CP framework. The details of the proposed methodology are presented

below.

Learning a Kernel to Maximize Efficiency

Similar to Lanckriet’s formulation [121], Equation 3.3 can now be rewritten in the

context of a Multiple Kernel Learning Problem as:

min
p∈P

max
α∈Q

f (p,α) = α
T e− 1

2
(α ◦y)T (

m

∑
i=1

piKi)(α ◦y)
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where P =
{

p ∈ Rm : pT e = 1,0≤ p≤ 1
}

denotes the set of kernel weights, Q is

the set of SVM dual variables such that:

Q =
{

α ∈ Rn : α
T y = 0,α ≥ 0

}
e is a vector all ones, {Ki} , i = 1,2, . . . ,m is a group of base kernel matrices that are

defined on the projected data, x̂i, and ◦ denotes the vector dot product.

Several ways of solving this optimization problem have been proposed in the

past. The MKL problem was first formulated as a semi-definite programming prob-

lem [121]. More recent approaches include Quadratically Constrained Quadratic

Programming [122], Sequential Minimal Optimization [128], Semi-Infinite Linear

Programming [129] and Subgradient Descent [120]. Despite the success of many

of these methods, each of them has its own limitations. For example, as pointed

out in [119], the Subgradient Descent method uses the gradient of only the current

solution in its iterative computations, and the Semi-Infinite Linear Programming

method does not regularize the approximate solution obtained from the cutting

plane model. Addressing these limitations, Xu et al. [119] proposed a method based

on the level method [130], which is generally used to solve non-smooth optimiza-

tion problems. Here, the level method is extended to address min-max optimiza-

tions (convex-concave optimization, to be precise) and thus applied to MKL. Their

results demonstrate that this method is more efficient than other existing methods,

and hence, is used in this work. The algorithm for this Extended Level method for

MKL is summarized below. More details of this method can be found in [119].

In order to learn a convex combination of kernel functions, the base kernels can

be created in different ways: by using different kernel functions, or just a single ker-

nel function with different parameter values or subsets of features. In this work, we

combined both these approaches and allowed the algorithm to select the most ap-
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Algorithm 3 The Extended Level Method for Multiple Kernel Learning
Require: Individual kernel Gram matrices, {Ki, i = 1, . . . ,m}, kernel weights

vector p, e is a vector of all ones, termination threshold ε

1: Initialize p0 = e
m and i=0

2: repeat
3: Solve the dual problem of SVM with K = ∑

m
j=1 pi

jK j to obtain the optimal
solution α i

4: Construct the cutting plane model, gi(p) = max1≤ j≤i f (p,α j), where f is
defined in Equation 3.4

5: Calculate the lower bound f i = minp∈P gi(p) and the upper bound f i =

min1≤ j≤i f (p j,α j), and the gap ∆i = f i− f i

6: Compute the projection of pi onto the level set Li by solving the optimization
problem pi+1 = argminp

{∥∥p−pi
∥∥2

2 : p ∈ P, f (p,α j)≤ li, j = 1, . . . , i
}

7: Update i = i+1
8: until ∆i ≤ ε

propriate kernel functions and parameter values that can maximize the efficiency of

the k-NN conformal predictor. The validation of the proposed method on different

datasets is presented in the next section.

3.5 Experiments and Results

Data Setup

To study the performance and generalizability of the proposed method, we carried

out experiments on three binary datasets (with different number of dimensions and

instances): 2 datasets from the UCI Machine Learning repository, and the challeng-

ing Cardiac Patient dataset. We focused on datasets from the healthcare domain,

since reliable confidence measures are extremely valuable for machine learning al-

gorithms to be successfully applied in this domain. The datasets and their details

are listed in Table 6.1. 75% of each of the datasets was randomly permuted (to meet

the exchangeability requirements of the CP framework) and used for training, while

the remaining portion of the dataset was used for testing. Further, the experiment
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was repeated 5 different times to remove any randomness bias.

Dataset Size of dataset Dimensions
SPECT 267 22

Breast Cancer 569 30
Cardiac Patient 2312 165

Table 3.3: Datasets used in our experiments

Details about the SPECT and Breast Cancer datasets can be found on the UCI

repository website [71]. The Cardiac Patient dataset has been described earlier in

Section 2.2. This dataset contains the profiles of 2312 patient cases (with a set of

165 attributes each) who had a Drug Eluting Stent procedure performed during the

period 2003-07, and who had followed up with the facility during the 12 months fol-

lowing the procedure. This is formulated as a binary classification problem which

predicts the onset of complications, or otherwise. More details of the dataset can

also be found in [131].

Experimental Results

In the CP framework, the validity property is always satisfied by definition, i.e.

the number of errors are always bounded by the confidence threshold. This was

also empirically confirmed in our work, as shown in Figures 3.1, 3.2 and 3.3. In

this section, we focus on studying the results related to the efficiency of the CP

framework. The proposed MKL approach was compared against the plain k-NN

classifier (with different values of k) and kernel k-NN classifier with varying kernel

functions and parameters.

Tables 3.4, 3.5 and 3.6 present these results for the SPECT, Breast Cancer and

Cardiac Patient datasets respectively. Note that in each of these tables, the best

representative results were selected and presented for each of the considered clas-

sifiers, since it was not possible to present the results obtained with all possible
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parameters. Similar results were obtained for other combinations of kernel param-

eters that have not been included in the table too, but the results in the tables were

the most representative of the observed trends. Also, while the number of errors

were not mentioned in the tables (for clarity of presentation), it was verified that the

validity property continued to hold good for the CP framework on applying the pro-

posed kernel learning method. The number of multiple predictions is the number

of test data points that the k-NN conformal predictor provided both class labels as

an output. A lower number of multiple predictions at all possible confidence levels

is most desirable.

Classifier Parameters
Number of Multiple Predic-
tions at Confidence Level (To-
tal: 66 test points)
70% 80% 90% 95% 99%

k-NN k=3 0 0 9 33 56
k-NN k=10 0 0 10 34 66
kernel k-NN k=3, Gaussian kernel,

Spread=100
0 0 8 35 54

kernel k-NN k=10, Gaussian kernel,
Spread=100

0 0 11 26 66

kernel k-NN k=3, Polynomial kernel, De-
gree=2

0 0 8 31 54

kernel k-NN k=3, Polynomial kernel, De-
gree=3

0 2 16 37 56

Proposed
MKL

k=5, Mixture of Polynomial
kernels

0 0 1 20 59

Proposed
MKL

k=5, Mixture of Gaussian ker-
nels

0 0 2 17 60

Proposed
MKL

k=5, Mixture of Polynomial
and Gaussian kernels

0 0 0 23 46

Table 3.4: Results obtained on the SPECT Heart dataset. Note that the number of
multiple predictions are clearly the least when using the proposed MKL approach,
even at high confidence levels

All the tables unanimously validate that the results obtained with the proposed
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Classifier Parameters
Number of Multiple Predic-
tions at Confidence Level (To-
tal: 142 test points)
70% 80% 90% 95% 99%

k-NN k=3 0 0 0 8 42
k-NN k=5 0 0 0 6 60
kernel k-NN k=3, Gaussian kernel,

Spread=25
0 1 3 31 73

kernel k-NN k=5, Gaussian kernel,
Spread=25

0 0 2 28 72

kernel k-NN k=3, Polynomial kernel, De-
gree=2

0 0 0 8 52

kernel k-NN k=5, Polynomial kernel, De-
gree=3

0 0 0 7 61

Proposed
MKL

k=5, Mixture of Polynomial
kernels

0 0 0 0 43

Proposed
MKL

k=5, Mixture of Gaussian ker-
nels

0 0 0 0 37

Proposed
MKL

k=5, Mixture of Polynomial
and Gaussian kernels

0 0 0 0 36

Table 3.5: Results obtained on the Breast Cancer dataset. Note that the number of
multiple predictions are clearly the least when using the proposed MKL approach,
even at high confidence levels

MKL approach for efficiency maximization are significantly better than the best

possible results obtained with the other classifiers (which were themselves obtained

after long trials of varying parameter values). It can be observed that the number

of multiple predictions are very low at lower confidence levels. This is because the

CP framework allows a higher number of errors at lower confidence levels, thereby

reducing the number of multiple predictions. Hence, it is rather most desirable to

obtain low number of multiple predictions at very high confidence levels. Note that

when the number of multiple predictions is high, the classifier is providing results

with both class labels, thereby serving no purpose to the physician in prognosing or

diagnosing the patient. The proposed approach reduces this number significantly to
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Classifier Parameters
Number of Multiple Predic-
tions at Confidence Level (To-
tal: 578 test points)
70% 80% 90% 95% 99%

k-NN k=3 0 0 1 181 522
k-NN k=15 0 0 0 193 500
kernel k-NN k=3, Gaussian kernel,

Spread=1
0 0 5 190 496

kernel k-NN k=3, Gaussian kernel,
Spread=10

0 0 1 184 512

kernel k-NN k=3, Polynomial kernel, De-
gree=2

0 0 1 193 519

kernel k-NN k=3, Polynomial kernel, De-
gree=3

0 0 2 176 517

Proposed
MKL

k=3,5,10; Mixture of Polyno-
mial kernels

0 0 0 141 461

Proposed
MKL

k=3,5,10; Mixture of Gaus-
sian kernels

0 0 0 137 470

Proposed
MKL

k=3,5,10; Mixture of Polyno-
mial and Gaussian kernels

0 0 0 136 462

Table 3.6: Results obtained on the Cardiac Patient dataset. Note that the number of
multiple predictions are clearly the least when using the proposed MKL approach,
even at high confidence levels.

provide more useful results to the end user.

3.6 Discussion

Additional Results

Since the kernel learning formulation described in the previous section can be

viewed as related to the objectives of the Support Vector Machines (SVM) and

Linear Discriminant Analysis (LDA) classifiers, we conducted further experiments

with related combinations of classifiers to compare with the performance of the

proposed methodology. The methods that were considered in this study included:

1. LDA-kNN: Linear Discriminant Analysis (LDA) [10] was used to compute
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the projections of data points, and the CP framework based on the k-NN

classifier was subsequently applied to the projected data points.

2. KLDA-kNN: Kernelized Linear Discriminant Analysis (LDA) (with Gaus-

sian and polynomial kernels using parameters studied in the previous section)

was used to compute the projections of data points, and the CP framework

based on the k-NN classifier was subsequently applied to the projected data

points.

3. DMKL-kNN: The Discriminant Multiple Kernel Learning approach proposed

by Ye et al. [122] was used to learn the kernel, following which the k-NN

classifier was applied. This method formulates the MKL problem based on

LDA, and uses Quadratically Constrained Quadratic Programming (QCQP)

to solve the problem. Once again, the Gaussian and polynomial kernel func-

tions with parameters used in the previous section were used in this MKL

procedure.

Figure 3.5: Summary of results showing the number of multiple predictions on
the Cardiac Patient dataset using various methods including the proposed MKL
method. Note that kernel LDA + kNN also provided results matching the proposed
framework

93



The most representative results for these experiments are shown in Tables 3.7,

3.8 and 3.9. A summary of the results for the Cardiac Patient dataset is also pre-

sented in Figure 3.5. Similar to the previous results, only the number of multiple

predictions is presented for each method for clarity of presentation (since the va-

lidity property was found to hold good). The results of the proposed method were

reproduced here for ease of comparison. On observation, these results led to the

following inferences:

• Firstly, among the MKL (kernel learning) methods, the proposed method pro-

vided the best results. This validates our approach, and places merit in using

this method for maximizing efficiency in the CP framework.

• Interestingly, KLDA-kNN (kernel LDA followed by k-NN with the CP frame-

work) showed better or equivalent results, when compared to the proposed

method. From one perspective, this result only indicates that the proposed

MKL approach can be applied to learn a kernel that is used with LDA to

compute projections of data, instead of using the learnt kernel directly with

k-NN. In other words, other classifiers may have given better results than

k-NN. But considering that this work was carried out as a proof-of-concept

with k-NN as the classifier, a similar reasoning could be applied with LDA to

derive an appropriate MKL procedure.

Alternate Formulation

The kernel learning formulation proposed in Section 3.4 derived an objective func-

tion to be optimized, and subsequently, the kernel version of the objective function

was used to learn a convex combination of kernel Gram matrices using standard

Multiple Kernel Learning methods. While this method demonstrated satisfying re-

sults, it is possible to formulate the objective function for optimization, by including
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Classifier Parameters
Number of Multiple Predic-
tions at Confidence Level (To-
tal: 66 test points)
70% 80% 90% 95% 99%

LDA-kNN k=5 0 0 9 42 56
KLDA-kNN k=25,Gaussian ker-

nel,Spread=0.1
0 0 1 10 13

KLDA-kNN k=3,Polynomial ker-
nel,Degree=1

0 0 1 16 56

DMKL-kNN k=3,Mixture of Polynomial
kernels

0 4 17 37 56

DMKL-kNN k=3,Mixture of Gaussian ker-
nels

0 1 9 38 56

DMKL-kNN k=3,Mixture of Polynomial
and Gaussian kernels

0 3 17 37 56

Proposed
MKL

k=5, Mixture of Polynomial
kernels

0 0 1 20 59

Proposed
MKL

k=5, Mixture of Gaussian ker-
nels

0 0 2 17 60

Proposed
MKL

k=5, Mixture of Polynomial
and Gaussian kernels

0 0 0 23 46

Table 3.7: Additional results on the SPECT Heart dataset

the kernel function from the very beginning, instead of ‘kernelizing’ the objective

function at the end. One such possibility is presented below.

We begin this discussion from Equation 3.1 in the formulation presented in

Section 3.4. The 2 criteria for maximizing efficiency in the CP framework using

k-NN can be satisfied through the following optimization problem.

min
w

1
2

wT (λSw + I)w (3.4)

subject to yi(wT xi + b) ≥ 1 ∀i = 1,2, . . . ,n, and where Sw = ∑i ∑x(x−mi)2, the

within-scatter matrix in Discriminant Analysis. λ is a parameter that can be set

empirically to balance the SVM and LDA components of the objective function.
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Classifier Parameters
Number of Multiple Predic-
tions at Confidence Level (To-
tal: 142 test points)
70% 80% 90% 95% 99%

LDA-kNN k=25 0 0 0 11 53
KLDA-kNN k=5,Gaussian ker-

nel,Spread=100
0 0 0 1 21

KLDA-kNN k=5,Polynomial ker-
nel,Degree=2

0 1 33 46 103

DMKL-kNN k=5,Mixture of Polynomial
kernels

0 0 0 7 61

DMKL-kNN k=5,Mixture of Gaussian ker-
nels

0 0 0 11 46

DMKL-kNN k=5,Mixture of Polynomial
and Gaussian kernels

0 0 0 7 61

Proposed
MKL

k=5, Mixture of Polynomial
kernels

0 0 0 0 43

Proposed
MKL

k=5, Mixture of Gaussian ker-
nels

0 0 0 0 37

Proposed
MKL

k=5, Mixture of Polynomial
and Gaussian kernels

0 0 0 0 36

Table 3.8: Additional results on the Breast Cancer dataset

The above objective function can be written as:

min
w

[
λ

2
wT Sww+

1
2

wT w
]

From the Kernel Fisher Discriminants work of Mika [132], we have that wT Sww

can be written in kernel space as:

α
T Nα

where N = KDKT , K is the kernel Gram matrix, D = I−V1V T
1 −V2V T

2 , I is the

identity matrix, Vj is the vector with element (Vj)i) = 1√
M j

if the example i belongs

to class j and zero otherwise, M j is the number of data points belonging to class j.
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Classifier Parameters
Number of Multiple Predic-
tions at Confidence Level (To-
tal: 578 test points)
70% 80% 90% 95% 99%

LDA-kNN k=20 0 0 0 183 474
KLDA-kNN k=25,Gaussian ker-

nel,Spread=5
0 0 0 136 443

KLDA-kNN k=20,Polynomial ker-
nel,Degree=1

0 0 0 136 471

DMKL-kNN k=3,Mixture of Gaussian ker-
nels

0 0 5 190 496

Proposed
MKL

k=3,5,10; Mixture of Polyno-
mial kernels

0 0 0 141 461

Proposed
MKL

k=3,5,10; Mixture of Gaus-
sian kernels

0 0 0 137 470

Proposed
MKL

k=3,5,10; Mixture of Polyno-
mial and Gaussian kernels

0 0 0 136 462

Table 3.9: Additional results on the Cardiac Patient dataset

Similarly, in kernel space, using the Representer Theorem:

wT w = (∑
i

αiφ(xi))T (∑
j

α jφ(x j))

Note that αs above will be the same as the αs in the expression for wT Sww, since

the corresponding derivation for the latter in [132] begins with the same expansion

using the Representer Theorem. Continuing with the above expression, we get:

wT w = ∑
i

∑
j

α
T
i φ(xi)T

φ(x j)α j = ∑
i

∑
j

α
T
i k(xi,x j)α j

= α
T Kα

Hence, the objective function in Equation 3.4 can now be rewritten as:

min
α

[
λ

2
α

T Nα +
1
2

α
T Kα

]

= min
α

1
2

α
T (λN+K)α (3.5)
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Let β = λN+K. Equation 3.5 can now be written as:

min
α

1
2

α
T

βα (3.6)

In a similar manner, the original constraint yi(wxi + b) ≥ 1 can be written in the

kernel space as:

yi((∑
i

α jφ(x j))φ(xi)+b)≥ 1∀i = 1, . . . ,n (3.7)

Let Kxi denote the column of K corresponding to the ith data instance. Then, Equa-

tion 3.7 can be rewritten as:

yi(αT Kxi +b)≥ 1∀i = 1, . . . ,n (3.8)

The primal Lagrangian for the above objective function is then given by:

L(α,b,γ) =
1
2

α
T

βα−∑
i

γi
[
yi(αT Kxi +b)−1

]
where γis are the Lagrange multipliers. Using KKT conditions, we get:

∇Lα = 0⇒ α = β
−1

∑
i

γiyiKxi

∇Lb = 0⇒∑
i

γiyi = 0

Substituting this into the primal Lagrangian, we get the dual Lagrangian as:

L(γ) = ∑
i

γi−
1
2 ∑

i
∑

j
yiy jγiγ jKT

x j
β
−1Kxi (3.9)

s.t.∑
i

γiyi = 0,γi ≥ 0∀i = 1,2, . . . ,n

If the substitution x̂i = β
−1Kxi is used for all i = 1,2, . . . ,n, the above formulation

will be equivalent to a traditional linear SVM, and can be solved using traditional

SVM solvers. However, it needs to be investigated if this substitution can be made

in a straightforward manner, or if this can be solved further analytically. This will

form a component of the future directions of this work.
98



3.7 Summary

The Conformal Predictions framework is a recent game-theoretic approach to com-

pute reliable confidence measures across all kinds of machine learning algorithms.

While it provides confidence measures that are valid in terms of the frequency of

errors, this framework is not efficient enough to be practically useful in real-world

applications. In this chapter, we proposed a new methodology to maximize the ef-

ficiency of the CP framework using Multiple Kernel Learning. We validated our

approach using the k-NN classifier and a MKL method that maximized the margin

and minimized intra-class variance in binary classification problems. This MKL

problem was solved using the Extended Level Set method. While we validated

our approach using k-NN, this methodology can be adapted to any other classifier,

depending on the definition of the non-conformity measure for the classifier. The

results that we obtained clearly showed the reduction in the number of multiple

predictions, even at very high confidence levels, thus increasing the efficiency of

the conformal predictor, while maintaining its validity. Such efficient conformal

predictors can be of high practical value to end users. This was illustrated through

the results we obtained with the Cardiac Patient dataset.

The results obtained in this work demonstrate great promise and corroborate

the potential of applying kernel learning for maximizing efficiency in conformal

predictors given a particular classifier. In future work, we intend to study the pos-

sibility of identifying a universal framework to maximize efficiency, irrespective of

the classifier being used.

3.8 Related Contributions

In addition to the contributions based on the CP framework, there were other con-

tributions that were made to address related problems in cardiac decision support
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using the Cardiac Patient dataset. These related contributions have been briefly

described below.

Synthetic Minority Oversampling Technique for Handling Imbalanced Data in

Medical Domain: A significant challenge in this work, common to most clinical

machine learning problems, was imbalanced data, and we implemented the Syn-

thetic Minority Over-sampling Technique (SMOTE) to address this issue. Our re-

sults demonstrated the effectiveness of SMOTE in handling imbalanced data with a

SVM approach. The developed predictive model provided an accuracy of 94% with

a 0.97 AUC (Area under ROC curve), indicating high potential to be used as a deci-

sion support for management of patients following a DES procedure in real-world

cardiac care facilities. More details of this work can be found in [78].

Patient Attribute Selection using Recursive Feature Elimination: In this work,

we used SVM based Recursive Feature Elimination (SVM-RFE) methods to select

patient attributes/features relevant to the etio-pathogenesis of complications follow-

ing a drug eluting stent (DES) procedure. With a high dimensional feature space

(165 features, in our case), and comparatively few patients, there is a high risk of

‘over-fitting’. Also, for the model to be clinically relevant, the number of patient

features need to be reduced to a manageable number, so that such an approach can

be adopted in patient care. SVM-RFE selects subsets of patient features that have

maximal influence on the risk of a complication. In our results, when compared

with our initial model with all the 165 features, we obtained better performance of

the classifiers with 75 top ranked patient features, a 50% reduction in the original

dimensionality of the data space. There was a universal improvement in perfor-

mance of all SVMs with different kernels and parameters. This method of feature

ranking helps to determine the most informative patient features. Use of these rele-

vant features improves the prediction of complications following a DES procedure.
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More details of this work can be found in [133] and [134].

Clinically Relevant Ontology-Based Kernel Methods for Risk Prediction: Ma-

chine learning frameworks that are used to build clinical predictive models are

founded on the concept of inter-data distance metrics. Algorithms in non-medical

domains use distance metrics such as the Euclidean, Manhattan or the Mahanalo-

bis distance. However, in clinical machine learning, a significant challenge is the

inherent nature of data in the medical domain, since terms in the medical domain

have strong interdependencies and hierarchical relationships. In this work, we de-

veloped a clinically relevant inter-patient kernel metric that is based on the patient

data at hand, and the SNOMED medical ontology2, which contains over a million

medical concepts and is commonly used in healthcare. Using these knowledge-

driven injected kernels resulted in the improved performance of risk classification

over traditional kernels. From a broader perspective, this work revealed that the

use of domain knowledge in predictive modeling enables the development of better

models for clinical decision support. Although the current work is on a population

of patients with DES, contributions of this work can be generalized to all clinical

machine learning frameworks across other medical domains. More details of this

work can be found in [134].

2http://www.nlm.nih.gov/research/umls/Snomed/snomed main.html
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Chapter 4

EFFICIENCY MAXIMIZATION IN CONFORMAL PREDICTORS FOR

REGRESSION

The regression formulation of the Conformal Predictions framework necessitates

an approach that is different from that of the methodology proposed for classifica-

tion in Chapter 3. This chapter presents the methodology and results for efficiency

maximization in the regression context for the Head Pose Estimation application

described in Chapter 2 (Section 2.2). The key idea of the proposed method in this

chapter is to learn a suitable distance metric that can maximize the efficiency of the

Conformal Prediction framework for ridge regression.

Many kinds of approaches have been adopted to solve the pose estimation prob-

lem in recent years. A broad subjective classification of these techniques based on

earlier attempts [135] [136] [137] [138] is summarized in Table 4.1 [139]. Shape-

based geometric and appearance-based methods have been the most popular ap-

proaches for many years. More recently, it has been shown that face images with

varying poses can be visualized as lying on a smooth low-dimensional manifold,

and this has opened up efforts to approach the problem from the perspectives of

non-linear dimensionality reduction - more commonly called manifold learning. In

this work, we propose a method for maximizing efficiency in ridge regression using

manifold learning as a means of distance metric learning.

4.1 Motivation: Why Maximize Efficiency in Regression

When the algorithm for the CP framework in the regression context is applied (as

outlined in Algorithm 4 in Section 2.1), the result is presented as a union of inter-

vals each of whose p-value is greater than the specified confidence level. Hence, a



natural measure of efficiency in regression problems is the length of the final pre-

dicted interval. Vovk et al. [38] also used the median length of the convex closures

of prediction sets as a measure of efficiency of a sequence of predictions (when

many non-intersecting neighborhoods form the prediction region in regression). In

this work with head pose estimation, preliminary experiments suggested that the

prediction regions were most often just a single interval (and not a union of non-

intersecting neighborhoods). Hence, the mean width of the predicted intervals for

a set of test data instances is used as a measure of efficiency, as in [66].

When the CP framework algorithm is applied to the FacePix dataset for head

pose estimation (as described in Section 2.2), the frequency of errors and the mean

width of the predicted regions are presented in Table 4.2. Note that the the results

presented in the table were the best and most representative results obtained from

many empirical trials with different combinations of parameters. Details of these

experiments are presented later in this chapter. As Table 4.2 suggests, the percent-

age of errors are always calibrated with respect to the specified confidence level.

This is a very useful result, and can be practically very useful in real-world multi-

media pattern recognition problems. For results on the mean widths, it should be

mentioned that the range of head pose values is [−90◦,+90◦], i.e. a total range of

181. As seen in the table, the mean width of the prediction region at almost all of

Shape-based geometric meth-
ods

[140] [141] [137] [142] [143]

Model-based methods [144] [145] [146] [80]
Appearance-based methods [147] [148] [149] [150] [151] [152]
Template matching methods [153] [154]
Dimensionality reduction
based approaches

[136] [155] [156] [157] [158] [135] [138]

Table 4.1: Classification of methods for pose estimation
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the confidence levels encompasses the entire range (rather, is larger in some cases).

Such a prediction region is practically of very less value in decision-making. Nar-

rowing the prediction interval while maintaining validity, a task called maximizing

efficiency in this work, is the objective in this chapter.

Feature Percentage of Errors at Confidence Level
70% 80% 90% 95% 99%

Grayscale Pixel Intensity 30.04 19.19 8.61 4.32 1.21
Laplacian of Gaussian 30.04 20.07 9.96 5.02 1.03

Feature Mean Width of Prediction Region
at Confidence Level

70% 80% 90% 95% 99%
Grayscale Pixel Intensity 184.64 212.64 235.43 246.98 262.93

Laplacian of Gaussian 128 144 164 172 180

Table 4.2: Results of the CP framework for regression on the FacePix dataset for
head pose estimation

4.2 Conceptual Framework: Maximizing Efficiency in the Regression Setting

The Conformal Predictions algorithm for ridge regression used in this work was

presented in Algorithm 4 in Section 2.1. A detailed derivation of this method can

be found in [66]. In order to effectively present the conceptual framework of max-

imizing efficiency in this section, we reproduce the algorithm here for ease of un-

derstanding.

In this algorithm, the final predicted regions are specified by the ŷi values, which

is a sorted array of all the ui and vi values. ui and vi are determined for each training

data point individually. Hence, in order to keep the final predicted interval as narrow

as possible, one possible solution would be to make ui and vi as close to each other

as possible for all training data. Note that there may be other ways of achieving this

objective, and this approach is one possibility.
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Algorithm 4 Conformal Predictors for Regression
Require: Training set T = {(x1,y1) , ...,(xn,yn)}, new example xn+1, confidence

level r, X = x1,x2, . . . ,xn+1

1: Calculate C = I−X(X ′X +αI)−1X ′ (for ridge regression).
2: Let A = C(y1,y2, . . . ,yn,0)′ = (a1,a2, . . . ,an+1)
3: Let B = C(0,0, . . . ,0,1)′ = (b1,b2, . . . ,bn+1)
4: for i = 1 to n+1, do do
5: Calculate ui and vi.

If bi 6= bn+1, then ui = min(ai−an+1
bn+1−bi

, −(ai+an+1)
bn+1+bi

); vi = max(ai−an+1
bn+1−bi

, −(ai+an+1)
bn+1+bi

)

If bi = bn+1, then ui = vi = −(ai+an+1)
2bi

.
6: end for
7: for i = 1 to n+1, do do
8: Compute Si according to Equation 2.10 below.
9: end for

10: Sort (−∞,u1,u2, . . . ,un+1,v1, . . . ,vn+1,∞) in ascending order, obtaining
ŷ0, . . . , ˆy2n+3

11: Output ∪i[ŷi, ˆyi+1], such that N(ŷi > r, where N(yi) = #S j : [ŷi, ˆyi+1]⊆ S j,
where i = 0, . . . ,2n, and j = 1, . . . ,n+1.

When bi = bn+1, then ui = vi =
−(ai+an+1)

2bi
(from the algorithm), and hence, there

is nothing to do. However, our experiments showed that such a scenario was never

encountered with the dataset and problem under consideration. When bi 6= bn+1,

then:

ui = min(
ai−an+1

bn+1−bi
,
−(ai +an+1)

bn+1 +bi
)

and

vi = max(
ai−an+1

bn+1−bi
,
−(ai +an+1)

bn+1 +bi
)

Hence, for the two quantities, ui and vi, to be equal (or at least close to each other),

we need:
ai−an+1

bn+1−bi
≈ −(ai +an+1)

bn+1 +bi

where A = [ai] and B = [bi] for i = 1,2, . . . ,n are defined in the algorithm. On
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simplification, this implies that we need:

2an+1bi ≈ 2aibn+1⇒
an+1

ai
≈ bn+1

bi

If the above condition is satisfied in a better manner, the efficiency of the CP algo-

rithm for regression will increase, while maintaining the validity.

To verify the above discussion, we studied the values for the above expression

in context of the results that were presented in the previous section (Table 4.2). In

all of the experiments, it was found that the mean value for an+1
ai

was 0 across all

the test points studied, and the mean value for bn+1
bi

was ∞. Needless to say, since

these values are very far apart, the efficiency of the obtained results was very poor.

This observation validates our thinking, and corroborates the need to reduce the gap

between these ratios.

Achieving the equivalence between the ratios: In order to make the ratios an+1
ai

and bn+1
bi

equal, let us take a closer look at these quantities. an+1 and bn+1 are values

from the A and B vectors that pertain to the test data instance under consideration.

ai and bi, however, are values that pertain to the training data. Since the objective of

this work is to build conformal prediction models with maximal efficiency, it would

only be possible to learn a distance metric with the training data. In other words,

it is easier to obtain better values for ai and bi that may achieve the equivalence

in the ratios, than be able to obtain better values for an+1 or bn+1. Additionally,

when the ridge regression conformal predictors model is trained transductively by

adding a new test data point to the dataset, we found that the values of ai and bi

do not significantly change. In short, a possible solution to achieve the equivalence

between the ratios is by optimizing the values of ai and bi in the training phase.

The values of ais and bis are derived from the following expressions in the
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algorithm:

C = I−X(X ′X +αI)−1X ′

A = C(y1,y2, . . . ,yn,0)′ = (a1,a2, . . . ,an+1)

B = C(0,0, . . . ,0,1)′ = (b1,b2, . . . ,bn+1)

Assuming that the data instances in X are normalized (between [0,1]), the construc-

tion of the above expressions indicate that the value for an+1 generally hovers close

to zero, and the value for bn+1 generally hovers close to one. At the same time,

the values for both ai and bi can be noted to be close to zero. This again explains

why the the mean value of the ratio an+1
ai

is close to zero in our experiments, and the

mean value for bn+1
bi

is ∞. Hence, for the ratios to be closer to each other in value, the

value of ais should also become closer to zero, and the value of bis should become

closer to 1.

Now, note that the non-conformity measures for regression [66] are given by the

residuals ∆ = |Y−Xw|= |A+Bŷ|. This implies that the ai values are, in turn, the

non-conformity measures or the residuals of the training data instances. In other

words, maximizing efficiency in the CP framework for ridge regression, which is

equivalent to obtaining lower values of the non-conformity measures ais, is in fact

equivalent to decreasing the error residuals (or the Mean Absolute Error) of the

regression function, i.e., a ridge regression function that has lower Mean Absolute

Error will maximize efficiency. Hence, in this work, we propose a methodology for

learning a distance metric that can provide better regression performance (by mini-

mizing Mean Absolute Error), thereby increasing efficiency of the CP framework.
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Metric Learning for Maximizing Efficiency

Metric Learning: A Brief Review

Many of the algorithms in machine learning rely extensively on the definition of a

suitable distance metric that is used for computations between data instances. It is

known that the distance metric that is selected can play a critical role in the per-

formance of such algorithms. In recent years, studies have shown that a distance

metric that is learnt from the data instances directly improves the performance of

these algorithms. Such methods of learning distance metrics from data are collec-

tively termed as ‘metric learning’ techniques.

Given a distance metric denoted by the matrix A ∈ Rn×n, the generalized defi-

nition of the distance between two data points x and y is given by:

d2
A(x,y) = ‖x− y‖2

A = (x− y)T A(x− y) (4.1)

Yang presented a comprehensive survey of techniques that are used to learn the

distance metric matrix A in [3], categorizing these techniques as shown in Figure

4.1. Supervised metric learning methods are used when the labels of training data

are available (such as the work of Xing et al. [159]). Unsupervised methods (such as

dimensionality reduction techniques [160]) are used otherwise. Within supervised

metric learning methods, global approaches ( [159] for example) attempt to satisfy a

suitable criterion simultaneously for all pairs of data points, while local approaches

( [161] for example) are formulated to satisfy such criteria in local neighborhoods.

For more details on metric learning techniques, please refer to Yang’s work [3]. A

Matlab toolbox for distance metric learning is also available in the public domain1.

1http://www.cs.cmu.edu/ liuy/distlearn.htm
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Figure 4.1: Categorization of distance metric learning techniques as presented in [3]

Metric Learning and Manifold Learning: The Connection

In [162], Yang pointed out that from Equation 4.1, one can write:

d(x,y) = (x− y)T A
1
2 A

1
2 (x− y) = (A

1
2 x−A

1
2 y)T (A

1
2 x−A

1
2 y)

= (Px−Py)T (Px−Py)

where P = A
1
2 . Hence, learning the metric A is in fact equivalent to learning a

linear projection mapping P. It can be thus stated that all linear dimensionality

reduction techniques are equivalent to redefining the distance metric between the

data points. Considering that many non-linear dimensionality reduction techniques

are non-linear versions of their linear equivalents (for example, Locality Preserving

Projections [163] is understood to be a linear approximation of Laplacian Eigen-

maps [164]), some non-linear dimensionality reduction techniques can also be con-

sidered as approximations of metric learning techniques.

In light of the above discussion, several manifold learning techniques, which

form a sub-class of dimensionality reduction methods, are equivalent to learning

respective distance metrics. Since manifold learning methods have shown promise

in recent years when applied to the problem of head pose estimation, we adopt a
109



manifold learning-based methodology to learn a distance metric that can maximize

efficiency.

4.3 Efficiency Maximization in Head Pose Estimation through Manifold

Learning

An Introduction to Manifold Learning

The computation of low-dimensional representations of high-dimensional observa-

tions like images is a problem that is common across various fields of science and

engineering. Techniques like Principal Component Analysis (PCA) are categorized

as linear dimensionality reduction techniques, and are often applied to obtain the

low-dimensional representation. Other dimensionality reduction techniques like

Multi-Dimensional Scaling (MDS) use the dissimilarities (generally Euclidean dis-

tances) between data points in the high-dimensional space to capture the relation-

ships between them. In recent years, a new group of non-linear approaches to di-

mensionality reduction have emerged, which assume that data points are embedded

on a low-dimensional manifold in the ambient high-dimensional space. These have

been grouped under the term ‘manifold learning’, and some of the most often used

manifold learning techniques in the last few years include: Isomap [165], Locally

Linear Embedding (LLE) [166], Laplacian Eigenmaps [164], Locality Preserving

Projections (LPP) [163], Neighborhood Preserving Embedding (NPE) [167]. A

few of these techniques are briefly described below. For more details, please refer

to [160] for a review of dimensionality reduction techniques.

Isomap

To capture the global geometry of the data points, Tenenbaum et al. [165] pro-

posed Isomap to compute an isometric low-dimensional embedding of a given set

of high-dimensional data points. In this method, the neighbors of a point on the
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manifold M are determined, and the neighborhood of each point is represented

as a weighted graph G, with each edge characterized by the distance dx(i, j) be-

tween the pair of neighboring points, xi and x j. The geodesic distances between

all pairs of points on the manifold M are estimated by computing their shortest

path distance in the graph G. This is done using the Floyds or Djkstraas algo-

rithm, i.e. dM(xi,x j) = mink
{

dM(xi,x j),dM(xi,xk)+dM(xk,x j)
}

. Classical MDS

is then applied to the geodesic distance matrix, deriving an embedding of the data

in a low-dimensional Euclidean space that best preserves the estimated intrinsic

geometry of the manifold.

Locally Linear Embedding (LLE)

Roweis and Saul [166] proposed the LLE algorithm that embodied the think glob-

ally, fit locally paradigm. In this technique, the neighbors of a point of the manifold

are determined as for Isomap. The data point is shifted to the origin along with

its neighborhood to form a local data matrix Z, and the local covariance C = Z′Z

is computed. The linear system CW = 1 is solved for the weights W in the neigh-

borhood, which are subsequently normalized. The bottom eigenvectors of a sparse

matrix M, constructed as M = (I−W )′(I−W ), are used to project the input vectors

into the low-dimensional embedding space.

Laplacian Eigenmaps

Belkin and Niyogi [164] proposed another geometrically motivated algorithm based

on the Laplace-Beltrami operator on a manifold. In this approach, the Laplacian of

the graph of the neighborhood of every data point in the feature space is viewed

as an approximation to the Laplace-Beltrami operator. A weighted graph is con-

structed with weight values W drawn from the heat kernel or with a simplistic ver-

sion, where a weight of unit value is assigned if the nodes are neighbors. The
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generalized eigenvector problem Ly = λDy, is solved for the embedding y, where

D is the diagonal weight matrix i.e. Dii = ∑ j W ji, and L = D−W is the Laplacian

matrix.

In this work, different poses of the head, although captured in high-dimensional

image feature spaces, are visualized as data points on a low-dimensional manifold

embedded in the high-dimensional space [136] [138]. The dimensionality of the

manifold is said to be equal to the number of degrees of freedom in the movement

during data capture. For example, images of the human face with different angles

of pose rotation (yaw, tilt and roll) can intrinsically be conceptualized as a 3D man-

ifold embedded in image feature space. We consider face images with pose angle

views ranging from−90 ◦ to +90 ◦ from the FacePix database, with only yaw varia-

tions. Figure 4.2 shows the 2-dimensional embeddings of face images with varying

pose angles from FacePix database obtained with three different manifold learning

techniques - Isomap, Locally Linear Embedding (LLE), and Laplacian Eigenmaps.

On close observation, one can notice that the face images are ordered by the pose

angle. In all of the embeddings, the frontal view appears in the center of the trajec-

tory, while views from the right and left profiles flank the frontal view, ordered by

increasing pose angles. This ability to arrange face images by pose angle (which

is the only changing parameter) during the process of dimensionality reduction ex-

plains the reason for the increased interest in applying manifold learning techniques

to the problem of head pose estimation.

Manifold Learning for Head Pose Estimation: Related Work

A classification of different approaches to head pose estimation was presented in

Table 4.1 in the earlier section. In this section, we discuss approaches to pose

estimation using manifold learning that are related to the proposed framework, and
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(a) Embedding with the Isomap algorithm

(b) Embedding with the LLE algorithm

(c) Embedding with the Laplacian Eigenmap algo-
rithm

Figure 4.2: Embedding of face images with varying poses onto 2 dimensions
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review their performance and limitations.

Since the advent of manifold learning techniques less than a decade ago, a rea-

sonable amount of work has been done using manifold-based dimensionality re-

duction techniques for head pose estimation. Chen et al. [156] considered multi-

view face images as lying on a manifold in high-dimensional feature space. They

compared the effectiveness of Kernel Discriminant Analysis against Support Vec-

tor Machines in learning the manifold gradient direction in the high-dimensional

feature space. The images in this work were synthesized from a 3D scan. Also,

the application was restricted to a binary classifier with a small range of head pose

angles between −10 ◦ and +10 ◦.

Raytchev et al. [136] studied the effectiveness of Isomap for head pose estima-

tion against other view representation approaches like the Linear Subspace model

and Locality Preserving Projections (LPP). While their experiments showed that

Isomap performed better than the other two approaches, the face images used in

their experiments were sampled at pose angle increments of 15 ◦. In the discus-

sion, the authors indicate that this dataset is insufficient to provide for experiments

with accurate pose estimation. The least pose angle estimation error in all their

experiments was 10.7 ◦, which is rather high.

Hu et al. [158] developed a unified embedding approach for person-independent

pose estimation from image sequences, where the embedding obtained from Isomap

for a single individual was parametrically modeled as an ellipse. The ellipses for

different individuals were subsequently normalized through scale, translation and

rotation based transformations to obtain a unified embedding. A Radial Basis Func-

tion interpolation system was then used to obtain the head pose angle. The authors

obtained good results with the datasets, but their approach relied on temporal conti-

nuity and local linearity of the face images, and hence was intended for image/video
114



sequences.

In more recent work, Fu and Huang [135] presented an appearance-based strat-

egy for head pose estimation using a supervised form of Graph Embedding, which

internally used the idea of Locally Linear Embedding (LLE). They obtained a lin-

earization of manifold learning techniques to treat out-of-sample data points. They

assumed a supervised approach to local neighborhood-based embedding and ob-

tained low pose estimation errors; however, their perspective of supervised learning

differs from how it is addressed in this work.

Biased Manifold Embedding for Efficiency Maximization

In this work, a new framework for supervised manifold learning called Biased Man-

ifold Embedding is proposed to address the problem of person-independent head

pose estimation [138] [139]. The low regression error obtained through this ap-

proach makes it suitable to increase the efficiency of the CP framework, as ex-

plained in earlier sections. Before presenting the formulation of this framework,

we discuss related efforts that have addressed the problem of supervised manifold

learning.

Supervised Manifold Learning: A Review

In the last few years, there have been efforts to formulate supervised approaches to

manifold learning. However, none of these approaches have explicitly been used

for head pose estimation. In this section, we review the main ideas behind their

formulations, and discuss the major novelties in our work, when compared to the

existing approaches.

Ridder et al. [168] came up with one of the earliest supervised frameworks

for manifold learning. Their framework was centered around the idea of defining a

new distance metric for Locally Linear Embedding, which increased inter-class dis-
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tances and decreased intra-class distances. This modified distance metric was used

to compute the dissimilarity matrix, before computing the adjacency graph which

is used in the dimensionality reduction process. Vlassis et al. [169] formulated a

supervised approach that was intended towards identifying the intrinsic dimension-

ality of given data using statistical methods, and using the computed dimensionality

for further analysis.

Li and Guo [170] proposed a supervised Isomap algorithm, where a separate

geodesic distance matrix is constructed for the training data from each class. Sub-

sequently, these class-specific geodesic distance matrices are merged into a discrim-

inative global distance matrix, which is used for the Multi-Dimensionality Scaling

step. Vlachos et al. [171] proposed the WeightedIso method, where the Euclidean

distance between data samples is scaled with a constant factor λ (< 1), if the class

labels of the samples are the same. Geng et al. [172] extended the work from

Vlachos et al towards visualization applications, and proposed the S-Isomap (su-

pervised Isomap), where the dissimilarity between two points is defined differently

from the regular geodesic distance. The dissimilarity is defined in terms of an ex-

ponential factor of the Euclidean distance, such that the intra-class distance never

exceeds 1, and the inter-class distance never falls below 1−α , where α is a param-

eter that can be tuned based on the application.

Zhao et al. [173] proposed a supervised LLE (SLLE) algorithm in the space

of face images preprocessed using Independent Component Analysis. Their SLLE

algorithm constructs these neighborhood graphs with a strict constraint imposed:

only those points in the same cluster as the point under consideration can be its

neighbors. In other words, the primary focus of the proposed SLLE is restricted to

reveal and preserve the neighborhood in a cluster scope.

The approaches to supervised manifold learning discussed above primarily con-
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sider the problem from a classification/clustering perspective. In our work, we view

the class labels (pose labels) as possessing a distance metric by themselves i.e. we

approach the problem from a regression perspective. However, we also illustrate

how it can be applied to classification problems. In addition, we show how the pro-

posed framework unifies the existing approaches. The mathematical formulation of

the proposed framework is discussed in the next section.

Biased Manifold Embedding: The Mathematical Formulation

In this section, we discuss the mathematical formulation of the Biased Manifold

Embedding approach as applied in the head pose estimation problem.

Manifold learning methods, as illustrated in earlier sections, align face images

with varying poses by an ordering of the pose angle in the low-dimensional em-

beddings. However, the choice of image feature vectors, presence of image noise

and the introduction of the face images of different individuals in the training data

can distort the geometry of the manifold. To ensure the alignment, we propose the

Biased Manifold Embedding framework, so that face images whose pose angles are

closer to each other are maintained nearer to each other in the low-dimensional em-

bedding, and images with farther pose angles are placed farther, irrespective of the

identity of the individual. In the proposed framework, the distances between data

points in the high-dimensional feature space are biased with distances between the

pose angles of corresponding images (and hence, the name). Since a distance met-

ric can easily be defined on the pose angle values, the problem of finding ‘closeness

of pose angles is straight-forward.

We would like to modify the dissimilarity/distance matrix between the set of

all training data points with a factor of the pose angle dissimilarities between the

points. We define the modified biased distance between a pair of data points to be
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of the fundamental form:

D̃(i, j) = λ1×D(i, j)+λ2× f (P(i, j))×g(D(i, j)) (4.2)

where D(i, j) is the Euclidean distance between two data points xi and x j, D̃(i, j)

is the modified biased distance, P(i, j) is the pose distance between xi and x j, f is

any function of the pose distance, g is any function of the original distance between

the data samples, and λ1 and λ2 are constants. While we defined this formulation

after empirical evaluations of several formulations for the dissimilarity matrix, we

found that this formulation, in fact, unifies other existing supervised approaches to

manifold learning that modify the dissimilarity matrix.

In general, the function f could be picked from the family of reciprocal func-

tions ( f ∈FR) based on an application. In this work, we set λ1 = 0 and λ2 = 1 in

Equation 4.2, function g as the constant function (= 1), and the function f as:

f (P(i, j)) =
1

maxm,nP(m,n)−P(i, j)

This function could be replaced by an inverse exponential or quadratic function of

the pose distance, for example. To ensure that the biased distance values are well-

separated for different pose distances, we multiply this quantity by a function of the

pose distance:

D̃(i, j) =
α(P(i, j))

maxm,nP(m,n)−P(i, j)
∗D(i, j)

where the function α is directly proportional to the pose distance, P(i, j), and is

defined in our work as:

α(P(i, j)) = β ∗ |P(i, j)|

where β is a constant of proportionality, and allows parametric variation for per-

formance tuning. In our current work, we used the pose distance as the one-

dimensional distance i.e. P(i, j) =
∣∣Pi−Pj

∣∣, where Pk is the pose angle of xk.
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In summary, the biased distance between a pair of points can be given by:

D̃(i, j) =


α(P(i, j))

maxm,nP(m,n)−P(i, j) ∗D(i, j) P(i, j) 6= 0,

0 P(i, j) = 0.

(4.3)

This biased distance matrix is used for techniques such as Isomap, Locally Lin-

ear Embedding (LLE), Locality Preserving Projections (LPP), Neighborhood Pre-

serving Embedding (NPE) and Laplacian Eigenmaps to obtain a pose-ordered low-

dimensional embedding. In case of Isomap, the geodesic distances are computed

using this biased distance matrix. The LPP, NPE, LLE and Laplacian Eigenmaps

algorithms are modified to use these distance values to determine the neighborhood

of each data point. Since the proposed approach does not alter the algorithms in any

way other than the computation of the biased dissimilarity matrix, it can easily be

extended to other manifold-based dimensionality reduction techniques which rely

on the dissimilarity matrix.

In Equation 4.3 of the proposed framework, the function P(i, j) is defined in a

straightforward manner for regression problems. Further, the same framework can

also be extended to classification problems, where there is an inherent ordering in

the class labels. An example of an application with such a problem is head pose

classification. Sample class labels could be ’looking to the right’,’looking straight

ahead’,’looking to the left’,’looking to the far left’, and so on. The ordering in these

class labels can be used to define a distance metric. For example, if the class labels

are indexed by an ordering k = 1,2, ...,n (where n is the number of class labels), a

simple expression for P(i, j) is:

P(i, j) = γ×dist(|i− j|)

where i and j are the indices of the corresponding class labels of the training data
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samples. The dist function could just be the identity function, or could be modified

depending on the application.

4.4 Experiments and Results

Experimental Setup

The setup of the experiments conducted in the subsequent sections is described

here. All of these experiments were performed with a set of 2184 face images,

consisting of 24 individuals with pose angles varying from−90 ◦ to +90 ◦ in incre-

ments of 2 ◦. The images were subsampled to 32×32 resolution, and two different

feature spaces of the images were considered for the experiments. The results pre-

sented here include the grayscale pixel intensity feature space and the Laplacian of

Gaussian (LoG) transformed image feature space (see Figure 4.3). The LoG trans-

form, which captures the edge map of the face images, was used since pose vari-

ations in face images can be considered a result of geometric transformation, and

texture information can be considered redundant. The images were subsequently

rasterized and normalized.

(a) Grayscale image (b) Laplacian of
Gaussian (LoG)
transformed image

Figure 4.3: Image feature spaces used for the experiments

Unlike linear dimensionality reduction methods like Principal Component Anal-

ysis, manifold learning techniques lack a well-defined approach to handle out-of-

sample extension data points. Different methods have been proposed [174] [175] to
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capture the mapping from the high-dimensional feature space to the low-dimensional

embedding. We adopted the Generalized Regression Neural Network (GRNN) with

Radial Basis Functions to learn the non-linear mapping. GRNNs are known to be

a one-pass learning system, and are known to work well with sparsely sampled

data. This approach has been adopted by earlier researcher [173]. The parameters

involved in training the network are minimal (only the spread of the Radial Basis

Function), thereby facilitating better evaluation of the proposed framework. Once

the low-dimensional embedding was obtained, ridge regression (regularized least

squares regression) [66] was used to obtain the pose angle of the test image. To

ensure generalization of the framework, 8-fold cross-validation was used in these

experiments. In this validation model, 1911 face images (91 images each of 21

individuals) were used for the training phase in each fold, while all the remaining

images were used in the testing phase. The parameters i.e. the number of neighbors

used and the dimensionality of embedding were chosen empirically.

Three different sets of experiments were carried out in this work to validate our

hypotheses:

• Firstly, the applicability of manifold learning-based techniques over tradi-

tional dimensionality reduction techniques such as Principal Component Anal-

ysis (PCA) was studied in context of the head pose estimation problem.

• In the second set of experiments, the performance of the proposed Biased

Manifold Embedding framework over manifold learning techniques was stud-

ied with respect to head pose estimation.

• Lastly, the Biased Manifold Embedding was applied in association with the

CP framework for ridge regression, and the measures of efficiency were stud-

ied to validate the proposed idea.
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Using Manifold Learning over Principal Component Analysis

Traditional approaches to pose estimation that rely on dimensionality reduction use

traditional linear techniques such as PCA. However, with the assumption that face

images with varying poses lie on a manifold, non-linear dimensionality reduction

would be expected to perform better. We performed experiments to compare the

performance of manifold learning techniques with Principal Component Analy-

sis. The results of head pose estimation comparing PCA against manifold learning

techniques with the experimentation setup described in the previous sub-section are

tabulated in Tables 4.3 and 4.4.

Dimension of embedding Error in pose estimation
PCA Isomap LLE Laplacian Eigenmap

10 11.37 ◦ 12.61 ◦ 6.60 ◦ 7.72 ◦

20 9.90 ◦ 11.35 ◦ 6.04 ◦ 6.32 ◦

40 9.39 ◦ 10.98 ◦ 4.91 ◦ 5.08 ◦

50 8.76 ◦ 10.86 ◦ 4.37 ◦ 4.57 ◦

75 7.83 ◦ 10.67 ◦ 3.86 ◦ 4.17 ◦

100 7.27 ◦ 10.41 ◦ 3.27 ◦ 3.93 ◦

Table 4.3: Results of head pose estimation using Principal Component Analysis
and manifold learning techniques for dimensionality reduction, in the grayscale
pixel feature space

As the results illustrate, while Isomap and PCA perform very similarly, both the

local approaches i.e. Locally Linear Embedding and Laplacian Eigenmaps show

3−4 ◦ improvement in pose angle estimation over PCA, consistently.

Using Biased Manifold Embedding for Person-independent Pose Estimation

While manifold learning techniques demonstrate reasonably good results for pose

estimation over linear dimensionality reduction techniques, we hypothesize that the

supervised approach to manifold learning performs better for accurate results with
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Dimension of embedding Error in pose estimation
PCA Isomap LLE Laplacian Eigenmap

10 9.80 ◦ 9.79 ◦ 7.41 ◦ 7.10 ◦

20 8.86 ◦ 9.21 ◦ 6.71 ◦ 6.94 ◦

40 8.54 ◦ 8.94 ◦ 5.80 ◦ 5.91 ◦

50 8.03 ◦ 8.76 ◦ 5.23 ◦ 5.23 ◦

75 7.92 ◦ 8.47 ◦ 4.83 ◦ 4.89 ◦

100 7.78 ◦ 8.23 ◦ 4.31 ◦ 4.52 ◦

Table 4.4: Results of head pose estimation using Principal Component Analysis
and manifold learning techniques for dimensionality reduction, in the LoG feature
space

person-independent pose estimation. In our next set of experiments, we evaluate

this hypothesis. The error in the pose angle estimation process is used as the crite-

rion for the evaluation, since this can indirectly affect the efficiency when applied

in association with the CP framework.

The proposed BME framework was applied to face images from the FacePix

database, and the performance was compared against the performance of regular

manifold learning techniques. These experiments were performed against global

(Isomap) and local (Locally Linear Embedding and Laplacian Eigenmaps) approaches

to manifold learning. The error in the estimated pose angle (against the ground truth

from the FacePix database) was used to evaluate the performance.

The results of these experiments are presented in Figures 4.4 and 4.5. The blue

line indicates the performance of the manifold learning techniques, while the red

line stands for the performance from the Biased Manifold Embedding approach.

As evident, the error significantly drops with the proposed approach. All of the

approaches perform better with the LoG feature space, as compared to using plain

grayscale pixel intensities. This corroborates the intuitive assumption that the head

pose estimation problem relies more on the geometry of face images, and the tex-
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(a) Isomap (b) LLE

(c) Laplacian Eigenmap

Figure 4.4: Pose estimation results of the BME framework against the traditional
manifold learning technique with the grayscale pixel feature space. The red line
indicates the results with the BME framework

ture of the images can be considered redundant. However, we believe that it would

be worthwhile to perform a more exhaustive analysis with other feature spaces as

part of our future work. Also, it is clear from the error values obtained that the BME

framework substantially improves the head pose estimation performance, when

compared to other manifold learning techniques or Principal Component Analysis.

It can also be observed that the results obtained from the local approaches i.e.

Locally Linear Embedding and Laplacian Eigenmaps far outperform the global ap-

proach, viz. Isomap. Considering that Isomap is known to falter when there is topo-

logical instability [4], the relatively low performance with both the feature spaces

suggests that the manifold of face images constructed from the FacePix database
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(a) Isomap (b) LLE

(c) Laplacian Eigenmap

Figure 4.5: Pose estimation results of the BME framework against the traditional
manifold learning technique with the Laplacian of Gaussian (LoG) feature space.
The red line indicates the results with the BME framework

may be topologically unstable. In reality, this would mean that there are face im-

ages which short-circuit the manifold in a way that the computation of geodesic

distances is affected (See Figure 4.6). An outlier could short-circuit the geometry

of the manifold, and destroy its geometrical structure. In such a case, global ap-

proaches like Isomap fail to find an appropriate low-dimensional embedding. There

have been recent approaches to overcome the topological instability by removing

critical outliers in a pre-processing step [175].

Comparison with other related pose estimation work: In comparing related ap-

proaches to pose estimation which have different experimental design criteria, the

results are summarized below in Table 4.5. The results obtained from the BME
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Figure 4.6: Example of topological instabilities that affect Isomap’s performance
(Illustration taken from [4])

framework match the best results so far obtained by [135], considering face images

with pose angle intervals of 1 ◦. The best results are obtained when BME is used

with Laplacian Eigenmap. When LLE or Isomap is used, the error goes marginally

higher and hovers about 3 ◦.

Method Pose Angle
Estimation Er-
ror/Accuracy

Notes

Fisher Manifold Learn-
ing [156]

About 3 ◦ Face images only in
[−10 ◦,10 ◦] interval

Kernel PCA + Support
Vector Machines [152]

97% Face images only in 10 ◦ inter-
vals. This was framed as a clas-
sification problem of identifying
the pose angle as one of these in-
tervals

Isomap [136] About 11 ◦ Face images sampled at 15 ◦ in-
crements

LPP [136] About 15 ◦ Face images sampled at 15 ◦ in-
crements

LEA [135] About 2 ◦ Best results so far
Proposed BME using
Laplacian Eigenmap

About 2 ◦ Results similar to [135]

Proposed BME using
Isomap, LLE

About 3 ◦ -

Table 4.5: Summary of head pose estimation results from related approaches in
recent years
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Using Biased Manifold Embedding for Improving Efficiency in CP Framework

Having shown the superior regression performance of the Biased Manifold Embed-

ding framework in terms of the Mean Absolute Error, our final set of experiments

studied the performance of this method for improving efficiency, when applied with

the CP framework. In these experiments, Biased Manifold Embedding was applied

on the data points to obtain a low-dimensional embedding that has a more con-

ducive ordering of face images for pose estimation. As stated earlier, this step can

be perceived as imposing a new distance metric on the data. These low-dimensional

embeddings were then used as input data for the CP framework algorithm in the re-

gression context (Algorithm 4, Section 4.2).

Our experiments in the earlier subsection indicated that LLE and Laplacian

Eigenmaps (LE) performed better than Isomap in terms of the mean pose estimation

error. Hence, in this study, these two methods were studied in the broader context

of the CP framework, and compared with the performance of applying ridge re-

gression conformal predictors directly. In addition, the linear approximations of

LLE and LE - Neighborhood Preserving Embedding (NPE) and Locality Preserv-

ing Projections (LPP) respectively - were also used for the study. An extended

dataset containing the face images of 30 users (instead of 24 users in the previous

experiments) was used in these experiments. Further, the Laplacian of Gaussian

feature space was used in this study, since it demonstrated better performance over

the plain grayscale pixel intensities. Other experimental conditions remained the

same as described in Section 4.4.

The results of these experiments are presented in Table 4.6 and Figure 4.7. In

this table, the baseline method refers to applying the ridge regression CP algorithm

without any dimensionality reduction. Note that the most desirable result is a lower
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Figure 4.7: Summary of results showing the width of the predicted interval using
the proposed Biased Manifold Embedding (BME) framework in association with 4
manifold learning techniques: LPP, NPE, LLE and LE

value of the mean width of the predicted interval, while maintaining calibration in

the percentage of errors at each confidence level. As the table illustrates, the mean

width of the prediction region has significantly reduced when applying Biased Man-

ifold Embedding, while maintaining calibration at each confidence level. In some

cases, the percentage of reduction in the mean width is as high as 300%. Although

there are minor statistical fluctuations observed in the percentage of errors, this

is not an issue of concern, and can be expected in real-world data. These results

validate our hypothesis, corroborating the usefulness of the proposed method for

improving efficiency.

We further studied the relationship between the observed results and the values

of the ratios discussed earlier in the chapter (which motivated this approach), and

these observations have been noted in Table 4.7. It is evident that when compared

with the baseline, the mean absolute values for the ratios an+1
ai

and bn+1
bi

have de-

creased significantly, once again validating our conceptual framework. However,

these values indicate that there is substantial room for improvement, and this will
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Method Percentage of Errors at Confidence Level
70% 80% 90% 95% 99%

Baseline 30.04 20.07 9.96 5.02 1.03
LLE 31.65 20.7 9.89 4.29 1.32
LE 29.93 20.29 9.45 4.51 1.14

NPE 30.88 20.7 10.37 5.68 2.16
LPP 31.14 21.06 11.36 6.37 1.76

Method Mean Width of Prediction Region at Confidence Level
70% 80% 90% 95% 99%

Baseline 128 144 164 172 180
LLE 25.1 30.46 37.83 44.2 62.53
LE 25.25 31.42 40.63 48.1 70.13

NPE 26.74 34.24 46.23 56.25 86.07
LPP 72.36 86.83 102.69 111.71 131.92

Table 4.6: Results of experiments studying efficiency when Biased Manifold Em-
bedding is applied along with the CP framework for head pose estimation. Note that
baseline stands for no dimensionality reduction applied, LLE: Locally Linear Em-
bedding, LE: Laplacian Eigenmaps, NPE: Neighborhood Preserving Embedding,
LPP: Locality Preserving Projections

be the focus of our future work.

Method Mean Absolute an+1
ai

Value Mean Absolute bn+1
bi

Value

Baseline 0 ∞

LLE 5.02 32116.69
LE 6.115 110972.3

NPE 0.641 32707.78
LPP 0.206 18919.24

Table 4.7: Values of the ratios for ais and bis in the CP ridge regression algorithm
for each of the methods studied
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4.5 Discussion

Biased Manifold Embedding: A Unified View of Other Supervised Approaches

The proposed Biased Manifold Embedding framework can be considered as a uni-

fied representation of other existing supervised manifold learning approaches. In

the next few paragraphs, we discuss briefly how the existing supervised approaches

to manifold learning are special cases of the Biased Manifold Embedding frame-

work. Although this discussion is not directly relevant to the pose estimation prob-

lem, this shows the broader appeal of this idea.

Ridder et al. [168] proposed a supervised LLE approach, where the distances

between the samples are artificially increased if the samples belonged to different

classes. If the samples are from the same class, the distances are left unchanged.

The modified distances are given by:

∆
′ = ∆+α×max(∆)Λ,α ∈ [0,1]

Going back to Equation 4.2, we arrive at Ridder et al’s formulation by choosing

λ1 = 1, λ2 = α×max(∆), function g(D(i, j)) = 1∀i, j, and function f (P(i, j)) = Λ.

Li and Guo [170] proposed the SE-Isomap (Supervised Isomap with Explicit

Mapping), where the geodesic distance matrix is constructed differently for intra-

class samples, and is retained as is for inter-class data samples. The final distance

matrix, called the discriminative global distance matrix G, is of the form:

G =

 ρ1G11 G12

G21 ρ2G22


Clearly, this representation very closely resembles the choice of parameters we have

chosen in our pose estimation work. In Equation 4.2, the formulation of Li and Guo

would simply mean choosing λ1 = 0, λ2 = 1, function f (P(i, j)) = 1, and function
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g(D(i, j)) can be defined as:

g(D(i, j)) =


D(i, j) P(i) 6= P( j),

ρi×D(i, j) P(i) = P( j).

The work of Vlachos et al. [171] - the WeightedIso method - is exactly the same

in principle as the work of Li and Guo. For data samples belonging to the same

class, the distance is scaled by a factor 1
α

, where α > 1; else, the distance is left

undisturbed. This can be exactly formulated as discussed above for Li and Guo.

The work of Geng et al. [172] is based on the WeightedIso method, and the au-

thors extended the WeightedIso method with a different dissimilarity matrix (which

would just mean a different definition for D(i, j) in the proposed BME framework),

and parameters to control the distance values.

Zhao et al. [173] formulated the S-LLE (supervised LLE) method, where the

distance between points that belonged to different classes was set to infinity i.e. the

neighbors of a particular data point had to belong to the same class as the point.

Again, this would be rather straight-forward in the BME framework, where the

function g(D(i, j)) can be defined as:

g(D(i, j)) =


∞ P(i) 6= P( j),

D(i, j) P(i) = P( j).

The proposed BME framework can, hence, be considered as providing a unified

view of existing supervised manifold learning approaches.

Finding Intrinsic Dimensionality of Face Images

An important component of manifold learning applications is the computation of

the intrinsic dimensionality of the dataset provided. Similar to how linear dimen-

sionality reduction techniques like PCA use the measure of captured variance to
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arrive at the number of dimensions, manifold learning techniques are dependent

on knowing the intrinsic dimensionality of the manifold embedded in the high-

dimensional feature space.

We performed a preliminary analysis of the dataset to extract its intrinsic di-

mensionality, similar to what was performed in [165]. Isomap was used to perform

non-linear dimensionality reduction on a set of face images from 5 individuals. Dif-

ferent pose intervals of the face images were selected to vary the density of the data

used for embedding. The residual variances after computation of the embedding are

plotted in Figure 4.8. The sub-figures illustrate that most of the residual variance is

captured in one dimension of the embedding. This goes to prove that there is only

one dominant dimension in the dataset. As the pose intervals used for the embed-

ding becomes lesser i.e. the density of the data becomes higher, this observation

is even more clearly noted. The data captured in the FacePix database have pose

variations only along one degree of freedom (the pitch), and this result corroborates

the fact that these face images could be visualized as lying on a low-dimensional

(ideally, one-dimensional) manifold in the feature space.

Experimentation with Sparsely Sampled Data

Manifold learning techniques have been known to perform poorly on sparsely sam-

pled datasets [160]. Hence, in our next set of experiments, we propose that the

BME framework, through supervised manifold learning, performs reasonably well

even on sparse samples, and evaluate this hypothesis.

In these experiments, we sampled the available set of face images sparsely (by

pose angle) and used this sparse sample of the face images dataset for training,

before testing with the entire dataset. In these experiments, face images of all the 30

individuals in the FacePix database were used. The set of training images included
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(a) Face images with 5 ◦ pose angle in-
tervals

(b) Face images with 2 ◦ pose angle in-
tervals

(c) Face images with 1 ◦ pose angle in-
tervals

Figure 4.8: Plots of the residual variances computed after embedding face images
of 5 individuals using Isomap

face images in pose angle intervals of 10 ◦ i.e. only 19 out of the total 181 images

for each individual were used in the training phase. Subsequently, the number of

training images (total number of images is 5430) was progressively reduced in steps

to observe the performance. These experiments were carried out for Isomap, LLE

and Laplacian Eigenmaps (LE) for both the feature spaces. To maintain uniformity

of results and to aid comparison, all these trials embedded the face images onto a

8-dimensional space, and 50 neighbors were used for constructing the embedding

(as in the earlier section). The results are presented in Tables 4.8 and 4.9. Note the

results obtained with BME and without BME for Isomap and Laplacian Eigenmap

in both these tables. The results show significant reduction in error. However, the
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results for LLE do not reflect this observation.

Number
of train-
ing
images

Error using Isomap Error using LLE Error using LE

w/o BME w/ BME w/o BME w/ BME w/o BME w/ BME
570 12.13 ◦ 3.26 ◦ 5.95 ◦ 5.88 ◦ 10.27 ◦ 3.84 ◦

475 11.70 ◦ 6.01 ◦ 6.58 ◦ 6.95 ◦ 9.47 ◦ 3.71 ◦

380 8.19 ◦ 7.61 ◦ 6.47 ◦ 6.72 ◦ 9.59 ◦ 4.72 ◦

285 8.39 ◦ 8.75 ◦ 6.36 ◦ 6.71 ◦ 9.12 ◦ 5.61 ◦

190 8.75 ◦ 8.58 ◦ 6.77 ◦ 7.03 ◦ 10.05 ◦ 7.76 ◦

95 11.27 ◦ 9.22 ◦ 9.43 ◦ 8.45 ◦ 15.44 ◦ 14.54 ◦

Table 4.8: Results from experiments performed with sparsely sampled training
dataset for each of the manifold learning techniques with (w/) and without (w/o)
the BME framework on the grayscale pixel feature space. The error in the head
pose angle estimation is noted

Number
of train-
ing
images

Error using Isomap Error using LLE Error using LE

w/o BME w/ BME w/o BME w/ BME w/o BME w/ BME
570 10.63 ◦ 3.19 ◦ 8.76 ◦ 7.99 ◦ 9.01 ◦ 3.57 ◦

475 12.08 ◦ 3.73 ◦ 8.08 ◦ 7.63 ◦ 8.56 ◦ 3.99 ◦

380 11.34 ◦ 6.40 ◦ 8.16 ◦ 8.48 ◦ 8.47 ◦ 5.00 ◦

285 13.96 ◦ 6.66 ◦ 8.14 ◦ 8.49 ◦ 9.30 ◦ 6.69 ◦

190 15.46 ◦ 6.96 ◦ 8.72 ◦ 8.68 ◦ 12.27 ◦ 8.84 ◦

95 11.93 ◦ 8.59 ◦ 8.77 ◦ 8.77 ◦ 30.17 ◦ 15.79 ◦

Table 4.9: Results from experiments performed with sparsely sampled training
dataset with (w/) and without (w/o) the BME framework on the LoG feature space

The results validate our hypothesis that the BME framework performs better

even with sparsely sampled datasets. With Isomap and Laplacian Eigenmap, the

application of the BME framework improves the performance of pose estimation

substantially. However, we note that Locally Linear Embedding performed as well
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even without the Biased Manifold Embedding framework. This suggests that in

tasks of unsupervised learning (like clustering), where there are no class labels to

supervise the learning process, Locally Linear Embedding may be a good technique

to apply for sparsely sampled datasets.

Limitations of Manifold Learning Techniques

Over the last few years, the increased application of manifold learning techniques

has also resulted in identification of some limitations of these methods [160] [176].

While all these techniques capture the geometry of the data points in the high-

dimensional space, the disadvantage of this family of techniques is the lack of

a projection matrix to embed out-of-sample data points after the training phase.

This makes the method more suited for data visualization, rather than classifica-

tion/regression problems. However, the advantage of these techniques to capture

the relative geometry of data points enthuses researchers to adopt this methodology

to solve problems like head pose estimation, where the data is known to possess

geometric relationships in a high-dimensional space.

These techniques are known to depend on a dense sampling of the data in the

high-dimensional space. Also, Ge et al. [177] noted that these techniques do not

remove correlation in high-dimensional spaces from their low-dimensional repre-

sentations. The few applications of these techniques to pose estimation have not

exposed the limitations yet - however, from a statistical perspective, these generic

limitations intrinsically emphasize the requirement for the training data to be dis-

tributed densely across the surface of the manifold. In real-world applications like

pose estimation, it is highly possible that the training data images may not meet this

requirement. This brings forth the need to develop techniques that can work well

with training data on sparsely sampled manifolds too.
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4.6 Summary

In this chapter, we proposed an approach for improving efficiency in the Confor-

mal Predictions framework for regression by indirectly learning a distance metric

through supervised manifold learning. A novel framework called the Biased Man-

ifold Embedding was proposed as a result for to person-independent head pose

estimation. Under the credible assumption that face images with varying pose an-

gles lie on a low-dimensional manifold, non-linear dimensionality reduction based

on manifold learning techniques possesses strong potential for face analysis in bio-

metric applications. We compared the proposed framework with regularly used

approaches like Principal Component Analysis and other manifold learning tech-

niques, and found the results to be reasonably good for head pose estimation. Im-

portantly, the proposed supervised manifold learning approach provided encourag-

ing results for improving the efficiency of ridge regression conformal predictors.

In future work, we wish to study the usefulness of formulating a methodology

to explicitly learn a distance metric to maximize efficiency. In addition, we plan to

implement the inductive version of the CP framework (which is known to have sub-

stantially lesser demands on computational overhead) as part of a wearable platform

to perform real-time pose classification from a live video stream, to study its appli-

cability in real-world scenarios. Further, as manifold learning techniques continue

to be applied in pose estimation and similar applications, it becomes imperative to

carry out an exhaustive study to identify the kind of image feature spaces that are

most amenable to manifold-based assumptions and analysis.

4.7 Related Contributions

Similar to the previous chapter, there were other contributions that were made to ad-

dress related problems in the development of a Social Interaction Assistant, which
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laid the context for this work on head pose estimation. This assistive device is in-

tended to help individuals with visual impairments to experience enriched interac-

tions in daily life. These contributions included a systematic requirements analysis

for this device [81], as well as the design and development of a haptic belt to con-

vey non-verbal communication cues during social interactions to individuals who

are blind [178] [87]. In addition, conceptual approaches to human-centered mul-

timedia computing using inspirations from disabilities and deficits have also been

suggested [82] [179] [180].

Figure 4.9: A first prototype of the haptic belt for the Social Interaction Assistant
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Chapter 5

CONFORMAL PREDICTIONS FOR INFORMATION FUSION

Sources of multimedia data have grown rapidly in the last few decades, resulting in

the generation of data from different modalities, sensing technologies and process-

ing techniques. The relevance of information fusion methods has increased over

the years, and these methods have elicited keen interest from researchers in recent

years. However, with different data sources and modeling methods, there is an ad-

ditional factor that determines the success of information fusion methods - handling

the uncertainties of each of these sources and models, and being able to associate

a level of confidence to the final fused result. This chapter addresses this aspect of

information fusion using the reliable measures of confidence from the Conformal

Predictions (CP) framework.

Handling different uncertainty frameworks to derive a single reliable belief

measure is a challenging task. Several theories have been proposed and studied

in this regard, and some of these theories are listed in Section 5.1. Since the Con-

formal Predictions framework provides reliable measures of confidence under the

calibration property and can be generalized to a wide variety of classification and

regression methods, extending the framework to information fusion contexts can

potentially result in valuable and impactful contributions. The development of a

methodology to extend the CP framework to information fusion (for both classi-

fication and regression) and the validation of the calibration property under these

settings is the objective of the contribution in this chapter. This methodology is

validated in a classification setting on the multimodal person recognition problem,

and in regression on the saliency prediction problem.



5.1 Background and Motivation

In estimating the uncertainty when there are multiple modalities and classifiers in-

volved, there have been several theories to aggregate the evidence developed over

the years. Some of these approaches are listed below:

• Dempster-Shafer theory [181]

• Bayesian theory [182]

• Possibility theory [183]

• Fuzzy integrals [184]

• MYCIN uncertainty factors [185]

• DSmT combination [186]

• Belief functions theory [187]

• GESTALT system [188]

In a more specific survey on reliability in information fusion, Rogova and Nimier [189]

reviewed existing approaches that have attempted to incorporate the reliability of

sources in the results of information fusion methods. In their detailed account

of methods that handle reliability co-efficients in decision fusion, they classified

uncertainty frameworks commonly employed as combinatorial functions in fusion

systems into:

• Bayesian methods, which include probabilistic methods that use the prior

probability, likelihood and posterior probabilities in the system.

• Evidential methods, such as the Dempster-Shafer theory of evidence [181],

and the transferable belief model [187].
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• Possibility and fuzzy methods, where most of the combination rules are based

on t-norms and t-conorms, the fuzzy translation of intersection and union.

While the methods listed above have become popular over the years, the choice

of approach in a given application domain is generally empirical or even heuristic.

Further, it is not possible to establish desired properties of a confidence measure

such as validity/calibration (or in some cases, generalizability to existing classi-

fication and regression methods), and there have been extensive criticisms of ap-

proaches such as the Dempster-Shafer theory in literature [190]. One aspect of the

limitations of existing theories is the lack of a well-defined ‘calibration’ property

when multiple sources are involved, as in information fusion settings. In this work,

we specifically focus on addressing this issue in information fusion problems for

classification and regression contexts.

The fusion of information from multiple sources can happen at different levels

using different methods, as summarized in Figure 6.3 [5]. Dasarathy [191] catego-

rized these approaches as data-level fusion (where data is combined), feature-level

fusion (where features are extracted from the data in different modalities separately,

and these features are then combined), and decision-level fusion (where the fusion

happens at the decision-making level). Data-level fusion and feature-level fusion

are sometimes addressed together as early fusion, whereas decision-level fusion

is also called late fusion. Similar to DeCampos et al. [192], we are interested in

this work to be able to associate a confidence measure to every single test predic-

tion uniquely. In most early fusion techniques, the weights of the individual com-

ponents are pre-set or learnt from training data; and hence, such weights remain

fixed for new samples. In order to ensure that we associate a confidence measure

uniquely to every test sample, we approach the problem from a late fusion perspec-
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Figure 5.1: An overview of approaches to fusion, with details of methods in classi-
fier fusion, also called decision-level fusion [5]

tive. Decision-level fusion (or late fusion) is the focus of this work, and a discussion

of how early fusion can be addressed within the CP framework is presented in the

next section.

Rationale and Significance: Confidence Estimation in Information Fusion

Extending the CP framework to information fusion can be approached from two

distinct perspectives: pre-fusion and post-fusion. These terms are used in a sense

similar to how information fusion methods are categorized into data-level, feature-

level and decision-level fusion [191]. These terms are explained below:

• Pre-fusion: Measures of confidence are computed with respect to each clas-

sifier (or regressor), and these measures of confidence are then combined in

a second stage to give a combined confidence value.
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• Post-fusion: The output scores of the involved classifiers (or regressors) are

combined using standard techniques before a single measure of confidence is

computed for the ensemble.

The post-fusion computation of confidence is relatively straightforward, when

compared to the pre-fusion case. Vovk et al. [38] suggested that a suitable non-

conformity measure can be defined after the outputs of each of the classifiers have

been combined. For example, in the case of an ensemble classifier such as boosting,

the non-conformity measure can be defined as:

T

∑
t=1

αtBt(x,y)

where Bt are the weak classifiers, and αt are the weights learnt by the boosting

algorithm. This measure can be directly plugged into the CP framework to obtain

calibrated measures of confidence with the desired properties. The issues discussed

in the previous section with respect to maximizing efficiency remain as challenges,

but there is no explicit challenge related to the combination of classifiers.

However, the pre-fusion approach, which is the focus of this work, has not been

addressed earlier, and can be of value in application contexts. This approach has

more challenges, since a measure of confidence is computed for every classifier

(for convenience, this discussion is presented for classification, although equally

relevant to regression methods) in the system, and an appropriate methodology to

combine these measures of confidence needs to be identified. Fundamental ques-

tions such as: ‘should the confidence measures be combined into a single value of

confidence’, ‘what would calibration mean when measures of confidence are com-

bined’, and ‘given a final single measure of confidence, would it be possible to elicit

any information about the individual confidence measures in each of the classifiers’

arise in this context, and need to be addressed.
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Significance of a pre-fusion approach: To understand why the pre-fusion case

is required when the post-fusion case can be solved far more easily, let us consider

the problem of multimodal person recognition, i.e., the task of recognizing the iden-

tity of an individual using, say, both face and speech data. In the post-fusion case,

the computed confidence value would be applicable only to the combined outputs

from the face and speech classifiers respectively. However, if the user would like

to understand which of the modalities resulted in errors (so that appropriate cor-

rections can be made, possibly in the form of an additional training phase for that

modality), it would be essential to have a measure of confidence for each of the

modalities, and understand how they contributed to the net confidence. This exam-

ple illustrates the need for a pre-fusion perspective in combining confidence values

in multiple classifier systems.

In other words, confidence can be viewed as being computed at an entity level

and at an attribute level in an information fusion context, where an entity such as

a person is understood to be made up of several attributes such as face and speech.

While the post-fusion approach computes only the entity-level confidence, the pre-

fusion approach can provide an attribute-level confidence and an entity-level confi-

dence, thus providing a higher value to the end user.

We now outline our approach to combine conformal predictors from multiple

classifiers (or regression methods) for information fusion.

5.2 Methodology: Conformal Predictors for Information Fusion

Before presenting our methodology for this work, we review key challenges that

generally need to be addressed in the design of multiple classifier Systems, and

motivate the methodology adopted in this work.
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Key Challenges

Ranawana and Palade [193] presented a comprehensive survey of the challenges

that need to be addressed in the design of multiple classifier systems. Although

these challenges have been reviewed from the perspective of classification meth-

ods, they are pertinent to regression contexts too. These challenges can be broadly

categorized as:

• Selection of appropriate classifiers

• Selection of a suitable combinatorial function

• Selection of a representative topology for classifier integration

Selection of Appropriate Classifiers

While considering several classifiers to solve a problem, it is important that each

of these classifiers are selected with a purpose. There have been several studies in

earlier work on the desirable properties of such classifiers. For example, Lam [194]

identified complementarity, orthogonality and independence as essential traits in the

selection of classifiers. Applying the CP framework to such systems does not raise

any additional challenges, since the non-conformity measure can be appropriately

defined for each of the selected classifiers. The rest of the procedures remain the

same.

Selection of a Suitable Combinatorial Function

A large number of existing efforts that address challenges in information fusion

have focused on this specific issue, i.e., how do we combine the outputs of the

classifiers? There have been a variety of approaches to achieve this task, and a

summary of combinatorial functions in existing literature is presented below:

• Linear combination methods (like SUM and PROD),
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• Non-linear combination methods (like majority voting),

• Statistical methods (like Dempster-Shafer theory, or Bayesian functions), and

• Computationally intelligent methods (like neural networks or genetic algo-

rithms).

The CP framework has the desirable property to provide calibrated measures of

confidence when applied in association with a single classifier or a single classifier

ensemble (such as boosting). However, it cannot be guaranteed if the CP frame-

work will provide calibrated outputs when combinatorial functions are applied to

individual classifiers. The study and identification of combinatorial functions that

can maintain calibration when the p-values from individual conformal predictors

are combined is the objective of this work.

Selection of Topologies for Classifier Integration

Ranawana-Palade [193] and Lam [194] identified four kinds of topologies in which

multiple classifiers can be combined:

• Conditional topology, where one classifier performs the classification and

another classifier is selected if the first classifier fails to correctly identify the

presented data.

• Hierarchical (Serial) topology, where classifiers are applied in succession one

after another.

• Multiple (Parallel) topology, where all classifiers operate in parallel on the

input (or parts of it), and the results are then pooled to obtain a consensus

result.

• Hybrid topology, where the best classifier for a given input is selected and

used.
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Most often, classifiers are combined in the parallel topology, and in this case, it may

be easy to define an appropriate non-conformity measure for the combined multiple

classifier system. However, when classifiers are combined using topologies such as

conditional or hybrid, it may not be straightforward to define a non-conformity

measure - and even if a non-conformity measure can be defined, it may not be

a straightforward task to understand how calibration would be defined, given the

different classifiers. This remains a significant challenge in the computation of

confidence for information fusion contexts, and will be an important direction of

our future work.

We now describe our method to combine p-values of different conformal pre-

dictors to provide a second level of fused conformal predictions.

Combining P-values from Multiple Classifiers/Regressors

Given a new test data instance, the Conformal Predictions framework outputs a p-

value for every class label in a classification context (or for every relevant interval

in regression), as described in Chapter 2. Without any loss in generalization to

regression settings, we continue this discussion from a classification perspective

for the sake of convenience.

Given a classifier, a new test data instance is tested for each class label as a

hypothesis test, thereby resulting in a p-value for each class label. When there are

multiple data sources (such as face and speech for person recognition, or different

feature spaces from a single image for saliency prediction) and when there is a

separate classifier that is used to learn a model for each of these data sources, it is

evident that for each class label, we obtain a set of p-values using the CP framework,

where each entry corresponds to a single data source. Hence, if the hypothesis tests

for the different data sources can be combined into a single combined hypothesis

146



test, it is possible to generate p-values at the fusion level.

Combining p-values from multiple hypothesis tests is a well-studied problem in

statistics, and many methods have been proposed in this regard to obtain a single

resultant p-value. Some of the oldest methods that combine p-values from multiple

tests are listed below:

• Tippett’s method [195]

• Fisher’s method [196]

• Wilkinson’s method [197]

• Liptak’s method [198]

• Lancaster’s method [199]

• Edgington’s method [200]

• Mudholkar and George [201]

• Weighted combination methods [202] [203]

Over the last decade, there has been a renewed interest among researchers in statis-

tics to study procedures for meta-analysis, especially in the use of combinations

of p-values to produce a single overall test of hypotheses. A summary of meth-

ods when the individual tests are dependent can be found in [204], and a com-

parison of methods to combine p-values of independent tests was carried out by

Loughin [205]. In this work, it is assumed that the individual tests are independent.

This is a reasonable assumption for applications such as multimodal biometrics

where the face and speech data can be considered to be independent to a large ex-

tent.

When the individual tests are considered to be independent, the general setup,

as stated by Loughin, is as follows. The combined null hypothesis, H0, is that each
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of the individual null hypotheses (say H01,H02, . . . ,H0N) is true. The combined

alternative, HA, is that at least one of the alternatives (say HA1,HA2, . . . ,HAN) is

true. A p-value pi, i = 1, . . . ,k, is given for each of the individual tests. These are

combined into a new statistic C = C(p1, . . . , pk), which is used to test the combined

hypothesis.

There are two kinds of methods that are generally used to combine p-values:

quantile combination methods and order statistic methods [205], each of which is

described below:

• Quantile combination methods: In such methods, some parametric Cumula-

tive Distribution Function (CDF), F , is selected, and the p-values, pis, are

transformed into distributional quantiles, qi = F−1(pi) where i = 1,2, . . . ,k

for each of the class labels. These qis are subsequently combined as C = ∑i qi,

and the p-value of the combined test H0 is computed from the sampling

distribution of C. Examples of CDFs used in these methods include chi-

square [196] [199], standard normal [198], uniform [200] and logistic [201].

• Order statistic methods: These methods use the fact that under the null hy-

pothesis H0, the pis can be reordered as p(i)s such that p(1)≤ p(2)≤ ·· · ≤ p(k)

represent order statistics from a U(0,1) distribution (Note that a p-value is as-

sumed to be a uniformly distributed random variable on the interval [0,1]).

Then, a combining function C is defined as C = p(r) for r such that 1≤ r≤ k.

Common examples of order statistic methods are the minimum p-value (when

r = 1 [195]) and the maximum p-value (when r = k [205]).

In the study conducted by Loughin [205], the author concluded that the standard

normal quantile combination method is probably the best suited for general use.
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In yet another method proposed by Jost [6], the combined p-value is computed

as follows. For n experiments or analyses, one can create an n-dimensional unit

hypercube and plot the point (p1, p2, p3, . . . , pm) representing the p-values pi of each

of the m data sources or corresponding classifiers. A surface of points with the same

probability as this point can then be established (Figure 5.2). Since the p-values are

independent probabilities (under the null hypothesis), the individual probabilities

can be multiplied to give the probability of obtaining this set of p-values. The set

of points whose probability is equal to that of the given set of p-values is then the

hyper-surface:

(x1× x2× x3×·· ·× xm) = k

where k = (p1× p2× p3 · · · × pm), the product of the given set of p-values. By

Figure 5.2: A surface of points with the same probability as the point
(p1, p2, p3, . . . , pm) representing the p-values pi of each of the m classifiers or data
sources (Illustration taken from [6])

definition of a p-value in statistics, we need the probability of getting a set of p-

values as extreme or more extreme than the given set. Therefore, we need to find

the volume under this hyper-surface. Because p-values are uniformly distributed

random variables, and because the total volume of the cube equals 1, the volume
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under the surface directly gives the probability of obtaining a set of p-values as

extreme or more extreme than the given set. The volume integral depends only on

k (the product of the given set of p-values) and m, the number of p-values under

consideration. The overall significance level, for the case of two p-values, is then

given by:

k− k lnk

And for m tests, the combined significance level is given by:

k
m−1

∑
i=0

(− lnk)i

i!
(5.1)

This formula to combine the results from each of our features to obtain a final p-

value for each class label.

In a completely different approach to addressing this issue, DeCampos et al. [192]

recently used a Support Vector Machine (SVM) that takes the p-values of each

of the data sources as an input vector, and then uses the CP framework to obtain

p-values at the fusion level. They adopted this approach for combining different

image features in saliency detection.

Based on inspirations gathered from earlier work, we identified methods of three

different kinds to study in this work. These methods have been listed below.

• Quantile Combination Approaches

- Standard Normal Function (SNF): This was found to be the most suit-

able for general use in an earlier study [205]. In this approach, we compute

the inverse of the normal CDF using the p-values obtained from the individ-

ual classifiers and thus compute qi = F−1(pi) for i = 1,2, . . . ,k. C is then

obtained as ∑i qi, and the normal CDF is again used as the sampling distribu-

tion to compute the p-values at the fusion level.
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- Non-conformity Aggregation (NCA): The non-conformity measure val-

ues computed in the CP framework can be viewed as the ‘test statistic’ lead-

ing to the computation of the p-values for each class label. Hence, instead

of assuming a quantile function, F−1, and then computing the qi values, the

non-conformity measures themselves can be used as the qis. Similar to the

previous approach, C is then obtained as ∑i qi, and the combined C values are

then used as non-conformity measures at the fusion level to compute the p-

values using the standard CP framework procedure (Equation 2.7 in Chapter

2).

- Extended Chi-Square Function (ECF):- Fisher proposed the chi-square

quantile combination method to combine the p-values of independent tests

in [196]. However, Jost [6] stated that when Fisher’s derivation for the chi-

square statistic is solved further analytically, the result is the expression in

Equation 5.1 (described earlier in this section). Hence, we call this the Ex-

tended Chi-Square Function (ECSF) approach in our work. The chi-square

CDF was also recommended was by Loughin in their study of such methods

for general use along with the standard normal function [205].

• Order Statistic Approaches

- Minimum Order Statistic (MIN): The minimum of the p-values for each

classifier, the 1st order statistic p(1), is used in this method. Although the use-

fulness of this combination method has been doubted, this method provided

the best results among the order statistic methods [205] and hence, is used in

our work.

- Maximum Order Statistic (MAX): The maximum of the p-values for

each classifier, the kth order statistic p(k), is used in this method. This method
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is understood to perform well only when all null hypotheses are equally false,

and has not been recommended for general use. However, for the sake of

completeness, we include this method in our study.

• Learning Approaches

- k-Nearest Neighbor (KNN): Similar to [192], we provide the p-values

computed from the individual data sources as input to a k-NN classifier, and

the CP framework is applied to the k-NN to obtain the p-values at the fusion

level.

The aforementioned 6 methods (SNF, NCA, ECF, MIN, MAX, KNN) are used

in this work to combine the conformal predictors from individual classifiers and

regressors. It is also assumed that the p-values from each of the tests have equal

importance. However, there are methods that combine p-values in a weighted man-

ner such as in [202] [203], and these methods can be adopted depending on the need

of an application context. The methodology proposed to extend the CP framework

to information fusion contexts is validated on two different real-world applications:

multimodal person recognition (classification setting), and saliency prediction (re-

gression setting). The experiments and results obtained in each of these application

domains are described individually below in Sections 5.3 and 5.4 respectively.

5.3 Classification: Multimodal Person Recognition

We begin this section with a discussion of related work in information fusion within

the specific context of multimodal biometrics.

Related Work

The field of biometrics has been extensively studied over the last two decades, and

several surveys of research efforts have been presented in recent years [206] [207]
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[208] [209]. Since this work is based on combining the face and speech modali-

ties, a survey of various approaches that have attempted to use both these modal-

ities for person recognition is presented in Table 5.1. As the table demonstrates,

a wide range of fusion techniques have been tried over the years in this particular

application. However, none of these methods can guarantee calibrated measures of

confidence in the fused results. In this dissertation’s work, we intend to study how

the CP framework can be extended to address this problem, by considering each of

these classifiers (for face and speech) as an independent hypothesis test, and subse-

quently combining the p-values obtained from each of these hypothesis tests using

the methods described in the previous section.

Experiments and Results

The VidTIMIT and Mobio datasets were used in this work for our study, and these

datasets have been described earlier in Section 2.2 in Chapter 2. Support Vector

Machines (SVM) was used as the classifier of choice for face data in both these

datasets. The Lagrange multipliers obtained while training a SVM are a straight-

forward choice to consider as non-conformity scores, as pointed out by Vovk et

al. [38]. The Lagrange multipliers’ values are zero for examples outside the mar-

gin, and lie between 0 and a positive constant, C, for examples on and within the

margin, thereby providing a natural monotonic measure of non-conformity w.r.t. the

corresponding class.

The classifier for the speech data is based on a Gaussian Mixture Model (GMM)

framework. The speech signal was downsampled to 8 KHz and a short-time 256-

pt Fourier analysis is performed on a 25ms Hamming window (10ms frame rate).

Every frame log-energy was tagged as high, medium and low (low and 80% of the

medium log-energy frames were discarded). The magnitude spectrum was trans-
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Trait/
Modality

Algorithms Used

Face

- Elastic Bunch Graph Matching (EBGM) algorithm [210] [211];
- Neural Network using feature vector extracted for each eye [212];
- Similarity metric using features extracted from eye, nose and
mouth regions [213];
- Grayscale feature with k-NN, decision tree and logistic regres-
sion [214];
- Grayscale feature using SVM (second order polynomial ker-
nel) [215];
- Local appearance based models [216];
- Dynamic link architecture [217];
- Multiscale morphological operations [218];
- Feature vector based on DCT with FaceIt [219];
- Fisherfaces [220];
- Principal Component Analysis (PCA) [221] [222] [223]

Speech

- Linear Prediction Cepstral Coefficients (LPCC) with
HMMs [210] [211];
- Mel Frequency Cepstral Coefficients
(MFCC) [216] [221] [219] [222] [220];
- Gaussian Mixture Models of frequency filtering coeffi-
cients [217] [223];
- Segmenting speech signal with wavelet convolution [212];
- Vector quantization of acoustic parameter space [213];
- k-NN, decision tree and logistic regression [214]

Fusion

- Bayesian approach with SVMs [210] [211];
- Logical AND [212];
- Weighted geometric average [213];
- Linear weighted summation [215] [221] [218] [222];
- Adaptive modality weighting model called Cumulative Ratio of
Correct Matches (CRCM) [216];
- Modality weighting based on estimates of the probability density
function of scores under Gaussian assumption [217];
- Cascaded approach where the outputs are weighted by the confi-
dence scores [219];
- Weighting modality scores where weight is proportional to recog-
nition rate [223]

Table 5.1: Summary of approaches in existing work towards fusion of face and
speech-based person recognition
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formed to a vector of Mel-Frequency Cepstral Coefficients (MFCCs). Further, a

feature warping algorithm is applied on the obtained features. Afterwards, a gender-

dependent 512-mixture GMM Universal Background Model was initialised using

k-means algorithm and then trained by estimating the GMM parameters via the Ex-

pectation Maximization algorithm. Target-dependent models were then obtained

with MAP (maximum a posteriori) speaker adaptation. Finally, the score computa-

tion followed a hypothesis test framework. For more implementation details, please

refer to [90] [224] [93]. To adapt this to the CP framework, the negative of the like-

lihood values generated by the GMM were used as the non-conformity scores, as

suggested by Vovk et al. in [38].

Calibration of Errors in Individual Modalities

Before studying the performance of our methodology in combining the p-values

of the individual classifiers, the calibration of errors when the CP framework is

applied to the individual modalities (as outlined above) was observed. These results

are shown in Figure 5.3 and Figure 5.4 for the Mobio dataset. A similar result was

observed for the VidTIMIT dataset also. These figures validate that the number of

errors for both these modalities are calibrated individually at each of the confidence

levels. While there are statistical fluctuations seen in these figures, we believe that

this was due to the low number of speech samples that were available for study in

this work.

Calibration in Multiple Classifier Fusion

Each of the six methods outlined in Section 5.2 were used to combine the p-values

obtained from the CP framework in each of the face and speech modalities. The

combined p-values were subsequently used to get a new set of predictions, whose

‘conformity’ is then studied in this experiment. The obtained results are presented
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Figure 5.3: Results obtained on face data of the Mobio dataset (SVM classifier)

Figure 5.4: Results obtained on speech data of the Mobio dataset (GMM classifier)
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Combination
Method

Percentage of Errors at Confidence Level

50% 60% 70% 80% 90% 95% 99%
SNF 50.9% 40.1% 29.9% 16.1% 1.3% 1% 1%
NCA 55.2% 42.1% 29.7% 5% 1% 1% 1%
ECF 47% 29.8% 9.4% 1% 1% 1% 1%
MIN 76.7% 62.6% 42.4% 4.2% 1% 1% 1%
MAX 20.2% 5.6% 0% 0% 0% 0% 0%
KNN 19.5% 3.6% 1% 1% 1% 1% 1%

Table 5.2: Fusion results on the VidTIMIT dataset. The combination methods have
been described in Section 5.2. For k-NN, k = 5 provided the best results which are
listed here

in Tables 5.2 and 5.3. Evidently, while none of the methods provide ideal results,

quantile combination methods (Standard Normal Function, Non-conformity Ag-

gregation and Extended Chi-square Function) provide the highest promise. This is

in agreement with the conclusions made in the earlier study conducted by Loughin

in [205]. It is possible that these methods may provide better calibration with a

more rigorous empirical testing with other ranges of parameter values. However,

considering that the number of errors, while not strictly calibrated, does not exceed

the specified confidence level, we conclude that these quantile combination meth-

ods can be used to combine p-values to extend conformal predictors to information

fusion contexts for classification.

5.4 Regression: Saliency Prediction

In Chapter 2 (Section 2.2), we presented the background and objective of this ap-

plication, i.e. to predict the saliency of every pixel in a radiological image (X-ray

image) by learning a model of regions of interest from human eye movements. As

in the previous section, we begin with a discussion of prior work in this regard.
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Combination
Method

Percentage of Errors at Confidence Level

50% 60% 70% 80% 90% 95% 99%
SNF 51.7% 42.2% 32.4% 23.6% 11.5% 2.7% 1%
NCA 51.2% 42.8% 21.1% 4.9% 1% 1% 1%
ECF 49% 36.6% 24.7% 10% 1% 1% 1%
MIN 76% 61.5% 48.9% 28% 1% 1% 1%
MAX 16.7% 4.5% 0.2% 0% 0% 0% 0%
KNN 1% 1% 1% 1% 1% 1% 1%

Table 5.3: Fusion results on the Mobio dataset. The combination methods have
been described in Section 5.2. We obtained the same results for different values of
k in k-NN

Related Work

In earlier work, saliency detection has been studied from two different perspectives:

visual attention modeling and interest point detection. Figure 5.5 provides a high-

level illustrative summary of the different kinds of approaches that have been used

in this context. Visual attention in humans is driven by bottom-up, as well as top-

down approaches. Bottom-up attention is driven by regions having distinct features,

and is independent of the task, or the context of the scenario. On the other hand, top-

down saliency is specific to a context where the user is trying to locate something

in particular. Approaches to detect interest points make use of predetermined filters

that measure saliency based on specific artifacts such as motion, and corners. The

following section reviews the related work from each of these perspectives, and also

discusses prior work in the use of human eye movements.

Visual Attention Modeling Methods

Bottom-up Saliency: Research in visual attention modeling has primarily focused

on bottom-up saliency. Bottom-up attention is driven by regions having salient

stimuli. Such approaches involve algorithms that detect regions in an image/video
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Figure 5.5: Prior work in Saliency detection

that have distinctive features, and is independent of the context of the video. Most

computational frameworks that model bottom-up attention are based on the feature

integration theory, as explained in [225]. This theory explains the visual search

strategy in humans. It proposes that several features are used to obtain individual

feature maps that are then integrated to provide the final measure of saliency. The

most popular framework to model bottom-up attention was proposed by Itti et al.

in [7], as illustrated in Figure 5.6. This model was built on the architecture that was

proposed by Koch and Ullman in [226] which is based on the concept of a saliency

map that indicates the visual saliency of every pixel in an image. Another approach

was proposed by Gao and Vasconcelos in [227]. In their formulation, they equate

saliency to discriminability. Although their approach also uses the concept of ob-

taining different feature maps and combining them into a single saliency map, the

filters they use are more suited to locate regions that have discriminative features.

Stentiford [228][229] proposed a measure of saliency that depended on the dissim-

ilarity between neighborhoods in an image. This was also linked to the notion of

self-similarity or a fractals approach. For more details on these approaches, a com-
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Figure 5.6: Framework used by Itti and Koch in [7] to model bottom-up attention
(Illustration taken from [8])

prehensive survey of approaches to model bottom-up attention in humans that aim

to extract such conspicuous regions is presented in [230].

Top-down Saliency: Unlike bottom-up saliency, top-down saliency is driven by

user intent. There has been limited work done in this regard [231][232][233][234].

Existing approaches that model top-down saliency use a specific goal or task, such

as object recognition. Figure 5.7 illustrates such an approach, where two different

saliency maps are derived for a single image based on car and person recognition

respectively.

Similar to their approach to bottom-up saliency, Gao and Vasconcelos in [231]

presented a discriminative saliency based approach for top-down processing. Here,
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Figure 5.7: Top-down saliency maps derived using recognition based approaches
(Illustration taken from [9])

they defined saliency based on features that are most discriminative for a given

class of objects. Navalpakkam and Itti, in [232] investigated the use of top-down

strategies to select optimal cues in a predetermined search task for objects in a

scene, and came up with a model to maximize the saliency of the target with respect

to its distractors. In this work, top-down saliency can be viewed as being defined

from a different perspective. The task, or the goal, is subtly indicated by the regions

fixated by the users while viewing the images, rather than pre-determining user

intent in a scene.

Interest Point Detection Methods

Interest point detection refers to identifying a set of pixel locations in images based

on a certain saliency, or ’interestingness’ measure. The filters or functions used

to detect salient locations are chosen so as to respond to certain artifacts such as

corners, textures, or motion. Different approaches use different sets of filters to

measure the saliency of a pixel. In [235], Lowe proposed the SIFT algorithm to

find ‘key points’ and their corresponding descriptors that are invariant to scale and

orientation. Another popular approach to detect interest points is the Harris corner

detector [236] that uses a measure based on a second moment matrix to compute the

‘cornerness’ of a pixel. Kadir and Brady [237] proposed an approach that measures

interestingness based on the information content. In their approach, Shannon en-
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tropy is used to measure the complexity of a pixel, using the probability distribution

of a descriptor extracted from the region around it. This is evaluated across various

scales. The final saliency measure of a pixel is calculated based on the scales that

exhibit a peak in entropy, as well as a high gradient in the probability distribution.

Another set of pure vision-based approaches are directed towards detecting

saliency in images from their Fourier spectrum. These approaches make use of the

1
f law [238][239] which describes the statistics of natural images. It states that the

amplitude spectrum of the Fourier Transform of an image is inversely proportional

to the frequency, i.e. on a log scale, the amplitude spectrum of images is approx-

imately a straight line. Hou and Zhang [240] use this property to define saliency

based on the spectral residual of an image. This is calculated as a difference be-

tween the log spectrum of an image with its averaged spectrum. The saliency map

is constructed using inverse Fourier Transform of this spectral residual. Wang and

Li also make use of this property to detect saliency in color images in [241]. How-

ever, in their approach they propose a two step approach, where a coarse saliency

map is obtained in the first step based on the spectral residual of the image. In the

second step, this map is refined and thresholded to obtain a binary saliency map.

Another approach in this regard [242] proposes the use of phase spectrum, over

the amplitude spectrum of the Fourier Transform, and argue that it provides better

results with lesser computations.

In the spatio-temporal domain, there have been two categories of approaches

to find interest points. One of them seeks to extend the algorithms that exist in

2-D spatial domain to the temporal domain. Examples of these approaches include

the 3-D Harris corner detector [243], 3D SIFT descriptor [244], and the work of

Oikonomopoulos et al. [245], which is an extension of the work done by Kadir

and Brady in [237] into the third dimension. On the other hand, there have been
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approaches that have been specifically designed to identify interestingness in the

spatio-temporal domain. A popular algorithm in this regard is the periodic detector,

that was proposed by Dollar et al. in [246]. In their approach, a train of pixels in a

temporal neighborhood is considered, and their response to a quadrature pair of 1-D

Gabor filters in the temporal domain is used to measure saliency. Such an approach

associates saliency with any kind of complex motion in a video. Another approach

suggested by Ke et al. in [247] makes use of volumetric features and video optical

flow to detect motion. This is based on the rectangular features used by Viola and

Jones [248].

Interest point detectors differ from attention modeling approaches in that the

filters used may not necessarily be biologically driven by the human visual system.

These detectors are approached purely from a computer vision perspective. The

attention modeling frameworks, on the other hand, are influenced by neurological

and cognitive perspectives. Both these approaches, however, do not take the context

of the scene into account. Saliency is only a measure of the distinctiveness of the

neighborhood of a pixel in terms of texture, motion and other such features. Instead,

the approach in this work based on human eye movements computes saliency as a

measure of user interest in a given class of images or videos.

Human Eye Movement as Indicators of User Interest

Eye-tracking is the procedure of tracking the position of the eye gaze of a user. One

of the earliest uses of eye-tracking was in the field of psychology in understanding

how text is read. Researchers analyzed the variations in fixation and saccade du-

rations with line spacing and difficulty of textual content. Eye-tracking was also

used to understand scene and art perception. In more recent times, eye-tracking

is being increasingly used in commercial and research applications ranging from
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Human Computer Interaction (HCI) to medical research to marketing. In recent

work on advertising and web applications, eye-trackers are used to monitor the eye-

movements of consumers as they view specific websites. This data is statistically

analyzed and used to determine the effectiveness of an advertisement, strategize the

location of a product, learn the features that catch the attention of an eye, and so on.

Duchowski [249] presented an exhaustive survey of various applications that have

used eye tracking, with a specific focus on its use in interactive applications.

Eye-tracking has also been used in the field of computer vision and machine

learning. Granka et al. in [250] used eye tracking to understand how users react to

results provided by an internet search engine, and gain insight into user behavior.

Salojarvi et al. [251] investigated the use of eye movements to study relevance in

information retrieval. Oyekoya and Stentiford [252][253] conducted experiments

in image retrieval that indicated the fact that eye gaze is attracted by regions of

interest in images. They found that eye tracking data can be used to retrieve images

faster than random selection.

Use of Eye-tracking in Related Work: There has been limited work in detecting

salient regions in images using human eye movements. Kienzle et al. [254][255]

used human eye movements to learn a model to detect bottom-up saliency in im-

ages. They recorded eye-gaze data of users as they were viewing 200 natural im-

ages, and built a classifier to learn the image patterns that resulted in high visual

saliency. Pixel intensities in rectangular image patches were used as the feature

vectors for the classifier. The results indicated that the performance of their model

was comparable to other bottom-up approaches. More recently, Judd et al. [256]

used eye movements to learn saliency in images. They used a larger dataset of

1003 randomly selected landscape and portrait images to collect eye tracking data

of users. As stated in their work, their methodology is very closely related to the
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work of Kienzle et al. In their approach, in addition to having low-level features

descriptors such as color and contrast, the classifier is also trained on mid-level and

high-level features. These include horizon line detectors since most objects are on

the ground and humans look for objects, face and person detectors, as well as the

distance from the center of the image.

For videos, Kienzle et al. [257] extended their work to detect spatio-temporal

interest points in videos. The dataset used for the training comprised of arbitrary

videos sampled from a movie. The eye movements of users were recorded as they

watched these videos, and a classifier was trained to learn the features correspond-

ing to regions viewed by the users. The feature descriptor for the learning model

was based on the periodic detector [246], where a sequence of pixels in the temporal

neighborhood of a pixel (pixels having the same spatial coordinates in neighboring

frames) is used. However, in their approach, the filter coefficients of the temporal

filters were learnt based on the eye movements of users, instead of using a 1-D Ga-

bor filter. More recently, Nataraju et al. [234][258] proposed an integrated approach

to combine top-down and bottom-saliency in news videos using human eye move-

ments. In this approach, the top-down saliency was learnt from eye movements of

users, and the bottom-up saliency was adapted from the popular Itti’s model [7].

In all the aforementioned methods that have been studied for detecting saliency

in images or videos, there has been not much work in providing regions of saliency

depending on a user-specified confidence level. Very recently, de Campos et al. [192]

used the CP framework to detect saliency using image features for image retrieval.

However, in this case, this work did not learn the saliency using human eye move-

ments, nor did it study the maintenance of calibration under information fusion. We

now present the studies conducted in our work to predict saliency in radiological

images using human eye movements, and to extend the CP framework to informa-
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tion fusion in a regression setting.

Experiments and Results

Selecting Image Features for Saliency Prediction

Using the radiological images data described in Chapter 2 (Section 2.2), a study

was first performed to learn what types of features catch the eye experienced radi-

ologists when reading chest x-rays for diagnostic purpose [259]. This information

can then be used to produce saliency maps that predict what regions of each im-

age might be most interesting to radiologists. The following features were used in

this study: Pixel intensity, Intensity histogram, Edge orientation histogram, Haar

wavelet, Gabor filter, Entropy filter, Range filter, Mean filter, Standard deviation

filter, Steerable filters, Grayscale contrast, Grayscale energy, and Grayscale homo-

geneity.

For each of the feature types listed above, Support Vector Regression (SVR)

was used to find the single mapping function that was able to produce 20 predicted

saliency maps that were (collectively) most similar to the corresponding 20 aggre-

gate empirical saliency maps for the 20 chest x-rays. The SVM-KM Matlab tool-

box [79] was used to obtain the SVR model in this work. The similarity between

the predicted saliency map and the corresponding aggregate saliency map was com-

puted using three popular similarity metrics: (1) the correlation coefficient, (2) the

cosine metric, and (3) the mean-square error metric. Note that since each of these

3 metrics measures the similarity between a pair of n-dimensional vectors, the 2D

predicted saliency map and the corresponding 2D aggregate empirical saliency map

were each ‘unwrapped’ to produce a vector. Each of the aforementioned similar-

ity metrics produced a set of 20 similarity/error values - one for each chest x-ray.

These 20 values were averaged to produce an overall similarity/error value for each
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(a) Correlation coefficients (b) Cosine similarity

(c) Mean square error

Figure 5.8: Overall similarity values/errors for each of the 13 feature types studied

feature type.

Figure 5.8 shows the overall similarity values for each of the 13 feature types

as well as the overall error value for each feature type. The height of the bars show

the average (mean) similarity/error value, and the error bars represent one standard

deviation above and below that mean. Note that higher values of correlation coef-

ficient and cosine similarity are desirable, while lower values of mean square error

are desirable. Our experiments indicated that out of 13 popular features types that

are widely extracted to characterize images, 4 are particularly useful for this task:

(1) Localized Edge Orientation Histograms (2) Haar Wavelets, (3) Gabor Filters,

and (4) Steerable Filters. These were the image features that were selected for the

next experiment in this work.
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Image Fea-
ture

Percentage of Errors at Confidence Level

50% 60% 70% 80% 90% 95% 99%
Edge Ori-
entation
Histograms

50.26% 38.35% 30.82% 18.04% 9.46% 5.43% 1.23%

Gabor Fil-
ters

49.94% 39.93% 29.42% 17.69% 9.11% 4.9% 1.75%

Haar
Wavelets

48.86% 36.25% 26.97% 17.34% 9.98% 5.08% 1.75%

Steerable
Filters

46.94% 39.93% 29.42% 17.69% 9.11% 4.9% 1.75%

Table 5.4: Calibration results of the individual features considered in the Radiology
dataset using the CP framework with ridge regression

Calibration in Multi-Regressor Fusion

In order to study the calibration of conformal predictors when the p-values are

combined in a regression setting, the ridge regression based conformal predictors

(detailed in Chapters 2 and 4) was used with each of the 4 image features selected

in the previous section. A set of intervals, delineated by ŷ fi in Algorithm 4, is

obtained as the output for each feature fi, i = 1,2,3,4. Subsequently, the ŷ fi values

of each feature are combined into a single set ŷ, which is then sorted. Now, for each

interval in this sorted array, the p-values corresponding to each of the features are

used to produce the combined p-value using the methods outlined in Section 5.2.

Since this is a regression problem, the k-NN classifier-based combination method

was not used here. The combined p-values were subsequently used to get a new set

of predictions, whose ‘conformity’ was then studied.

Firstly, the calibration of the CP framework using ridge regression was studied

with respect to each of the selected features. The results obtained are shown in

Table 5.4.
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Combination
Method

Percentage of Errors at Confidence Level

50% 60% 70% 80% 90% 95% 99%
SNF 32.40% 31% 29.77% 28.02% 25.57% 23.47% 18.91%
NCA 49.56% 37.48% 28.55% 19.44% 10.16% 5.25% 1.93%
ECF 36.95% 30.65% 24.69% 18.21% 13.84% 11.03% 5.96%
MIN 73.73% 60.42% 42.73% 23.29% 10.33% 5.60% 1.93%
MAX 20.84% 16.81% 15.06% 12.61% 8.41% 4.73% 1.58%

Table 5.5: Fusion results on the Radiology dataset for the regression setting. The
combination methods have been described in Section 5.2

The fusion results are presented in Table 5.5. The α regularization parameter

for ridge regression was varied between 0 and 1, and the best results obtained are re-

produced here. As shown in the table, the results obtained for the regression setting

show more promise than what was observed for regression. Once again, a quan-

tile combination method, Non-conformity Aggregation, performed very well and

supported our claim of using these methods in real-world contexts for calibrated

confidence measures in information fusion. The Standard Normal Function did not

perform as well. We expect that this may have been either because the p-values

did not follow a normal distribution, or because the parameters of the normal dis-

tribution chosen in this study were far from the actual parameter values. We intend

to study the behavior of this method with a more varied set of parameters in future

work. Also, in contrast to the classification setting, the order statistic methods, MIN

and MAX, performed reasonably well, although the frequency of errors was not as

expected at all the confidence levels. In summary, we conclude that the quantile

combination methods are once again the best approach to combine p-values to ex-

tend conformal predictors to information fusion contexts for regression. The choice

of the quantile combination method based on our study is NCA, but more empirical

studies may reveal the applicability of other such methods in this context.
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5.5 Summary

As the number of sensors that observe human behavior increase each day, the data

generated by various modalities lay a stronger emphasis on approaches governed by

information fusion. The need for reliable measures of confidence in fusion contexts

has been addressed in this chapter. The CP framework provides a set of p-values for

each of the classification (or regression) method involved. Subsequently, we con-

sider the classifier (or regressor) associated with each modality as an independent

statistical test, and adopt a variety of statistical techniques for combining p-values

of independent tests. This methodology of obtaining a common set of p-values at

the entity level, rather than at the attribute level, was validated with the multimodal

person recognition problem in the classification setting, and the saliency prediction

problem in the regression setting. The obtained results demonstrated that quantile

methods of combining p-values (such as the Standard Normal Function and the

Non-conformity Aggregation methods) provided the best calibration results, and

can be considered to adopt the CP framework for information fusion.

5.6 Related Contributions

Multimodal Person Recognition

Other contributions were also made to address related problems in multimodal per-

son recognition. In an attempt to provide an assistive face recognition system, a

novel methodology for face recognition, using person-specific feature extraction

and representation, was developed [260]. Distinctive facial features can take many

different forms. For example, after a first encounter with a person who has a handle-

bar moustache, we readily recognize that person by the presence of his distinctive

feature. Similarly, a person with a large black mole on her face will be remembered

by first-time acquaintances by that feature. In this work, we developed a method-
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ology for face recognition that detects and extracts unique features on a persons

face using evolutionary learning algorithms, and then uses those features to recog-

nize that person. The results of our research suggest that this approach can be very

effective for distinguishing one persons face from other faces. For more details,

please refer [260].

In yet another study, a nearest neighbors approach was proposed for face ver-

ification, and the resulting scores were combined with likelihood scores obtained

from using Gaussian Mixture Models for speaker verification. Scoring methods

(like minimum, maximum, average) were used for the fusion step. More details of

this study can be found in [90] [224].

Saliency Prediction in Videos

Most of the existing approaches that model saliency based on visual attention are

directed towards images. However, as growing numbers of videos are generated

each day, there has been an equally increasing need to reliably identify appropriate

regions of interest in videos. In this work, an integrated framework to learn and pre-

dict regions of interest in videos, based on human eye movements, was proposed.

The eye gaze information of users is used to train a classifier to learn low-level video

features from regions that attracted the visual attention of users. Such a classifier

is combined with vision-based approaches to provide an integrated framework to

detect salient regions in videos. The integrated approach ensures that both regions

with anticipated content (top-down attention) and unanticipated content (bottom-up

attention) are predicted by the proposed framework as salient. In our experiments

with news videos of popular channels, the results show a significant improvement

in the identification of relevant salient regions in such videos, when compared with

existing approaches. For more details of this work, please refer [234] [261].
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Chapter 6

ONLINE ACTIVE LEARNING USING CONFORMAL PREDICTIONS

Over the last decade, while the availability of large amounts of digital data (in the

form of images, videos, speech, or text) has expanded the possibilities of solving

real-world problems using computational learning techniques, active learning has

emerged as a necessary component of learning frameworks to intelligently select

the most relevant data samples required to build effective classifiers. In addition,

annotating large amounts of data (with class labels) that are used to train the classi-

fiers is often a very expensive process in terms of time, labor and human expertise.

These factors have motivated a strong interest in newer approaches to active learn-

ing that can build effective classifiers with fewer labeled examples.

Active learning techniques primarily rely on the definition of a suitable query

function, a function that queries each unlabeled point to decide on its appropri-

ateness and relevance in being used to train the classifier. Query functions in ex-

isting active learning techniques often select examples that have the most uncer-

tainty [262], least confidence [263] or maximum disagreement among a committee

of classifiers [264]. Most of these existing approaches have been based on induc-

tive inference, where a general classifier function is learnt from training examples

to predict the class labels of new examples. However, there has been a growing in-

terest over recent years in transductive inference [69], where the training examples

are directly used to develop reasoning to predict the labels of new examples. In this

work, we propose a Generalized Query by Transduction approach for active learn-

ing in an online (stream-based) setting using p-values obtained from a transductive

inference framework introduced by Vovk et al. [38].



As mentioned in earlier sections, one of the key features of the Conformal Pre-

dictions (CP) framework [38] [54] is the calibration of the obtained confidence val-

ues in an online setting. Probabilities generated by inductive inference approaches

in an online setting are often not meaningful since the model needs to be con-

tinuously updated with every new example. However, the theory behind the CP

framework guarantees that the probability (or confidence) values obtained using

this transductive inference framework manifest as the actual error frequencies in

the online setting i.e. they are well-calibrated [56]. Further, this framework can

be used with any classifier or meta-classifier (such as Support Vector Machines,

k-Nearest Neighbors, Adaboost, etc). In this chapter, we propose a novel active

learning approach based on the p-values generated by this transductive inference

framework.

The main contributions of this work are two-fold. Firstly, we introduce the

Generalized Query by Transduction (GQBT) approach for active learning using

the theory of conformal predictions that can be used with any pattern classifica-

tion algorithm in an online setting. Secondly, while most existing active learning

approaches evaluate a single criterion (such as confidence, uncertainty or disagree-

ment), there have been more recent efforts to combine multiple criteria (such as

representativeness, informativeness and diversity by Shen et al. [265]) to select ap-

propriate examples. We show how the proposed active learning approach can be

used to combine multiple criteria for active learning. We demonstrate the improved

performance of the proposed approach with commonly used datasets from the UCI

Machine Learning repository [266], and apply the approach to face recognition to

validate its applicability and performance in a challenging real-world problem.

In the next section, we briefly review other related techniques in active learn-

ing. The proposed GQBT approach for active learning is presented in Section 6.2,
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and the illustrations of its performance on datasets from the UCI Machine Learning

repository are discussed in Section 6.3. The results of the application of the pro-

posed approach to face recognition are also subsequently discussed in Section 6.3,

and the chapter concludes with potential directions of future work.

6.1 Active Learning: Background

Related Work

Several different active learning approaches have been developed over the last few

years, and reviews of these approaches can be found in Baram et al. [267] and

Kothari and Jain [268]. Active learning can be broadly categorized as shown in

Figure 6.1. All these techniques have been developed within the scope of two dis-

tinct settings: pool-based and online (stream-based). Pool-based active learning is

further divided into Serial Query based Active Learning and Batch Mode Active

Learning.

Figure 6.1: Categories of active learning

In pool-based active learning, the learner is exposed to a pool of unlabeled in-

stances. It is assumed that the data is independent and identically distributed ac-

cording to some underlying distribution F(x) and the class labels y are distributed

according to some conditional distribution P(y|x). Given an unlabeled pool U , an
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active learner has three components - ( f ,q,X) [269]. The first component f is the

classifier which is trained on the current set of labeled instances X . The second

component q is the querying function which decides which instance(s) in the un-

labeled pool are to be queried next for their class label(s). The algorithm selects a

data point, which is subsequently annotated, and updates itself based on the mod-

ified training set. This is continued iteratively until the entire unlabeled pool gets

exhausted or some stopping criterion is met. In a serial query based system, the

classifiers are updated after every single query; in a batch mode system, a batch of

points is selected at once and the classifiers are updated just once (for every batch).

In contrast, in an online setting, the learner does not have access to the entire

unlabeled pool at once, but encounters the points sequentially over a period of time.

At each instant, the model has to decide whether to query the given point and up-

date the hypothesis. Most existing approaches have been typically evaluated in the

pool-based setting. We now present a review of online active learning approaches,

followed by existing approaches for active learning by transduction, since these ap-

proaches constitute the focus of this work. For completeness, we also present a

review of the more popular pool-based active learning algorithms.

Online Active Learning: Related Work

In active learning for the online setting, the Query by Committee (QBC) algorithm,

originally proposed by Freund et al. [264], stands out as a commonly used ap-

proach that is naturally well-suited to this stream-based setting. In QBC, two or

more experts (classifiers) are used to predict the class label of a new example. If

there is disagreement between these experts (usually measured using metrics such

as Kullback-Leibler divergence [59] or Jensen-Shannon divergence [270]) beyond

a specified threshold, the example is queried and used to re-train the classifiers.
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Several variations of the QBC have also been proposed, such as the Kernel QBC

introduced by Gilad-Bachrach et al. [271] that computationally simplified the QBC

algorithm. Apart from QBC, the efforts in online active learning have been scat-

tered. Sculley [272] examined online active learning strategies based on three dif-

ferent classifiers for fast label-efficient spam filtering. Cesa-Bianchi et al. [273]

provided regret bounds on an active learning algorithm for learning linear thresh-

olds from an i.i.d stream of examples. Monteleoni and Kaariainen [274] developed

variants of existing online active learning approaches, including Cesa-Bianchi et

al.’s approach [273], and demonstrated their practical applicability in optical char-

acter recognition. Dredze and Crammer [263] proposed an online active learner

for natural language processing, where the distance of a point from the margin in

a large-margin classifier is combined with parameter confidence. However, all of

these approaches have relied on classifiers based on inductive inference.

Active Learning by Transduction: Related Work

In comparison, there have been relatively fewer efforts towards the development of

active learning techniques using transductive inference. Yu et al. [275] designed a

transductive experimental methodology that selected examples from the unlabeled

pool which contributed maximally to the predictions. This work was designed for

a pool-based setting. Ho and Wechsler [57] used the transductive confidence ma-

chine framework (which paved way for the conformal predictions framework) and

the k-NN classifier to select the examples using the confidence and credibility val-

ues generated by the framework. However, this work was also focused on the pool-

based setting. As stated by Vovk [56], transductive inference is, by design, more

well-suited to learning in the online setting. More recently, Ho and Wechsler [59]

designed an approach similar to the proposed approach called Query by Transduc-
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tion for active learning in the online setting. The proposed GQBT approach can be

considered as a generalization of this approach, and the details of this approach are

presented as part of the discussion in Section 6.2.

Other Active Learning Methods: A Brief Survey

Pool Based Active Learning with Serial Query

Majority of the existing active learning approaches have been applied in the pool

based setting. These methods can be broadly categorized as: SVM based meth-

ods, Statistical methods, Ensemble based methods, and Other miscellaneous ap-

proaches.

SVM based methods: A sizable number of the pool based approaches are based

on the Support Vector Machines (SVM) algorithm. Tong and Koller [269] designed

the query function to select the unlabeled point which is closest to the SVM decision

boundary in the feature space. Tong and Chang [276] applied the same concept in

the image retrieval problem where in every iteration, the point that was closest to

the decision boundary was returned for labeling. Osugi et al. [277] proposed a

probabilistic method of active learning which decided between labeling examples

near the decision boundary and exploring the input data space for unknown pockets

of points. As another example, Schohn and Cohn [278] applied active learning with

SVMs in the document classification task and concluded that the classifier trained

through active learning often outperforms those that were trained on all the available

data. Mitra et al. [279] assigned a confidence c to examples within the current

decision boundary indicating whether or not they were true support vectors. Points

were then queried probabilistically according to this confidence factor. Another

active learning scheme using SVMs was proposed by Campbell et al.[280] where

the next point to be queried was the one which minimized a predetermined risk
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function. Cheng and Wang [281] used Co-SVMs in the image retrieval problem

where two SVMs trained separately on color and texture features were used to

classify unlabeled data - the points which were differently classified by the two

SVMs were chosen to be labeled.

Statistical methods: Statistical approaches have also been extensively applied

for point selection in pool-based settings. Cohn et al. [282] computed the statis-

tically optimal way of selecting training data where the query function was based

on learner variance. By choosing the point which minimized the average expected

variance over all the unlabeled points, a concrete statistical basis for querying new

examples was obtained. Roy and McCallum [283] adopted a sampling approach to

estimate the expected reduction in error due to the labeling of a query. The future

error rate was estimated by log-loss using the entropy of the posterior class distri-

bution on a sample of the unlabeled examples. On similar lines, Holub et al. [284]

attempted to minimize the expected entropy (uncertainty) of the labels of the data

points in the unlabeled pool. MacKay [285] introduced information-theoretic ap-

proaches to active learning by measuring the informativeness of each data point

within a Bayesian learning framework. Cohn et al. [286] described a rudimentary

form of active learning which they called selective sampling. Here, the learner pro-

ceeded by examining the information already provided and then deriving a “region

of uncertainty” where it believed misclassification was still possible. Ho and Wech-

sler [57] investigated a transductive framework to active learning where they used

k nearest neighbors as the classifier. Li and Sethi [287] proposed an algorithm that

identified samples that had more uncertainty associated with them, as measured by

the conditional error. Tang et al. [288] used entropy based uncertainty scores to

quantify the representativeness of a data point in a natural language parsing appli-

cation, which was used to design the query function. Lewis and Gale [289] applied
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a probabilistic framework to active learning where the most uncertain point was

chosen for manual annotation.

Ensemble based methods: In ensemble based approaches, the Query by Com-

mittee (QBC) algorithm has been extensively applied. Freund et al. [290], as well

as Liere and Tadepalli [291] used the disagreement measure among a committee

of classifiers to select points from an unlabeled pool. McCallum and Nigam [292]

modified the Query by Committee method for estimating the document density

while applying active learning to the text classification problem. They also com-

bined active learning with Expectation Maximization to take advantage of the word

co-occurrence information among the documents in the unlabeled pool. Abe and

Mamitsuka [293] combined QBC with boosting and bagging. The point to be

queried next was the one on which the weighted majority voting by the current

hypothesis had the least margin. Argamon and Dagan [294] proposed a Query by

Committee algorithm in which the committee members were probabilistically se-

lected from a distribution conditioned by the current training set. Muslea et al. [295]

proposed a naive form of QBC, which they called co-testing, where an unlabeled

point was randomly selected on which the existing views disagreed.

Other miscellaneous approaches: In other kinds of pool based approaches,

Baram et al. [296] proposed a master algorithm which estimated the progress of

each active learner in an ensemble during a learning session and then dynamically

switched over to the best performing one at each stage. Using three active learning

algorithms (Simple, Kernel Farthest First and Self-Conf) to construct an ensemble,

the authors empirically established that combining them online resulted in a better

performance than using any one of them. Blum and Chawla [297] developed an al-

gorithm based on graph-cuts to learn from both labeled and unlabeled data. Nigam

et al. [298] combined the Expectation Maximization (EM) algorithm with naive
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Bayes classifier to learn from labeled and unlabeled text documents. Pelleg and

Moore [299] proposed a mixture model approach to solve the problem of anoma-

lous rare category identification in an unlabeled set with minimal human effort.

Schein and Ungar [300] extended the A-optimality criterion to pool based active

learning using Logistic Regression classifiers. Thompson et al. [301] applied the

active learning framework to two non-classification tasks: semantic parsing and in-

formation extraction. They concluded that about 44% reduction in annotation cost

was achieved using active learning in these complex tasks.

Clustering techniques have also been used to boost the performance of pool-

based active learning [302, 303]. There have also been efforts in incorporating

contextual information in active learning. Very recently, Kapoor et al. [304] incor-

porated match and non-match constraints in active learning for face recognition. Qi

et al. [305] presented a 2D active learning scheme where sampling was done along

both sample and label dimensions. The authors proposed to select sample-label

pairs to minimize a multi-label Bayesian classification error bound.

Batch Mode Active Learning

While serial query based active learning has been widely applied in various prob-

lems like text classification, image retrieval, and robotics, batch mode active learn-

ing has been comparatively less explored. Brinker [306] proposed a batch mode ac-

tive learning technique which ensured that the points chosen in each of the batches

are highly diverse. Diversity was measured by the angles between the hyperplanes

induced by the points in the batch. Hoi et al. [307] used the Fisher information

matrix as a measure of model uncertainty and proposed to select a batch of points

which maximally reduced the Fisher information in the classification model. The

same authors have also applied the batch mode active learning concept to the prob-
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lem of content based image retrieval [308, 309] and classification of medical im-

ages [310]. Guo and Schuurmans [311] proposed an optimization-based strategy

for batch mode active learning, which was extended to biometrics by Chakraborty

et al. [312].

We now present the proposed Generalized Query by Transduction approach for

online active learning, which is derived from the CP framework.

6.2 Generalized Query by Transduction

The p-values for each of the class labels obtained using the principles of transduc-

tive inference, as outlined in the theory of conformal predictions (Chapter 2), are

used to design the query function in the proposed approach. Ho and Wechsler pro-

posed a similar approach in [59], where the query function was limited to using the

top two p-values (amongst the list of p-values obtained for all the class labels). They

formally defined the closeness between the top two p-values, I(xn+1) = p j− pk, as

the measure of the quality of information in an unlabeled example in the active

learning process. The example is queried if I(xn+1) < δ , for an empirically de-

termined threshold δ . In the proposed approach, we generalize the query function

to use all (or as many as required) p-values that are obtained using the conformal

predictions framework. We also call this approach generalized since it can be in-

tegrated into any existing classification algorithm. In addition, we show how this

framework can integrate multiple criteria in the proposed query function. We illus-

trate the proposed approach using suitable examples, and compare the performance

of our approach with Ho and Wechsler’s QBT [59], along with random sampling,

Query by Committee, and a Support Vector Machine (SVM) margin-based active

learner in Section 6.3.

In the proposed GQBT approach, we define a matrix C which contains the ab-
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solute value of the pairwise differences between all the p-values obtained from the

conformal predictions framework:

Ci j(P) =
∣∣Pi−Pj

∣∣ (6.1)

where i, j = 1, . . . ,M and M is the number of classes. Since this C matrix has diago-

nal elements as zero and is symmetric, its eigendecomposition provides a naturally

useful measure with interesting properties. The largest eigen-value of C, say η(C),

assumes values that are directly proportional to the average pairwise differences be-

tween the p-values. Further, it is possible to prove that for any given set of p-values,

the matrix C will always have exactly one positive eigenvalue, which we used as

a measure of disagreement in this work (please refer Appendix A). When all the

p-values are equal, η(C) is trivially zero. As the pairwise differences between the

p-values increase, η(C) increases proportionately. We now show why η(C) pro-

vides a natural measure of the extent of disagreement between the p-values, which

we intend to use in the proposed approach.

The eigendecomposition of C is given by the characteristic equation:

|C−λ I|= 0 (6.2)

where |.| is the matrix determinant. When the pairwise differences are multiplied

by a constant factor, say d, the new C, say C∗, is equal to dC. The characteristic

equation for C∗ is given by:

|C∗−λ
∗I|= 0 (6.3)

where λ ∗ are the eigenvalues of C∗. Substituting C∗ = dC,

|dC−λ
∗I|= 0⇒

∣∣∣∣d(C− λ ∗

d
I)
∣∣∣∣= 0 (6.4)

⇒ |dI|
∣∣∣∣C− λ ∗

d
I
∣∣∣∣= 0 (6.5)

182



Since |dI| 6= 0,

⇒
∣∣∣∣C− λ ∗

d
I
∣∣∣∣= 0 (6.6)

Comparing Equations 6.6 and Equation 6.2,

λ =
λ ∗

d
(6.7)

that is, the eigenvalues λ ∗ are also multiplied by the same constant factor d. For

another C matrix, say Ĉ, whose average pairwise difference lies between the origi-

nal average pairwise difference in C and that in C∗, the corresponding eigenvalues

λ̂ will lie between λ and λ ∗. We exploit this ordering of eigenvalues as a natural

measure of the extent of disagreement among the p-values obtained.

Since p-values assume values in the interval [0,1], the largest eigenvalue, η(C),

tends to have low numeric values. For convenience of implementation, we compute

the inverse of C, and use the largest eigenvalue of C−1 in our work. Since η(C−1)

is inversely proportional to the average difference between the p-values, we ac-

cordingly factor this in the design of our query condition. The proposed GQBT

approach is presented in Algorithm 5.

Almost all online active learning algorithms rely on empirically obtained thresh-

olds to decide if an unlabeled example needs to be queried. For example, Ho and

Wechsler [59] start the active learner with a random threshold and update the thresh-

old with the average of the previous n p-value differences, when a sequence of n

examples are not queried in succession. In contrast, in this approach, the largest

eigenvalue has a straightforward connotation that can be exploited. The selection

threshold δ is initialized to the largest eigenvalue of the C−1 matrix that is con-

structed assuming the pairwise differences between the p-values are equal to a unit

percentage (i.e. 0.01) each. Similar to what was proved in Equation 6.7, the eigen-

values for C−1 are divided by a factor of d, when C is multiplied by d. Hence,
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Algorithm 5 Generalized Query by Transduction for Online Active Learning
Require: Training set T = {(x1,y1) , ...,(xn,yn)}, classifier Ξ, selection threshold δ ,

stopping threshold γ , number of classes M, number of queried points p, budget
constraint β (maximum number of points that can be queried)

1: initialize p← 0
2: repeat
3: Get new unlabeled example xn+1.
4: for all class labels, yi, where i = 1, . . . ,M do
5: Assign label yi to xn+1.
6: Update the classifier Ξ, with T ∪{xn+1,yi}.
7: Compute non-conformity measure value, α

yi
n+1 to compute the p-value, Pi, w.r.t.

class yi (Equation 2.7) using the conformal predictions framework.
8: end for
9: Construct the matrix C, such that Ci j(P) =

∣∣Pi−Pj
∣∣ (Equation 6.1).

10: Compute η(C−1) as the largest eigenvalue of C−1.
11: if η(C−1) > δ then
12: Add xn+1 to training set i.e. T ← T ∪{xn+1,yc}, where yc is the correct label for

xn+1.
13: p← p+1.
14: end if
15: until η(C−1) > γ or p < β

when the pairwise differences are equal to 0.02 each, the largest eigenvalue of the

corresponding C−1 matrix is now equal to δ

2 . To apply this in the algorithm, if no

examples are selected after, say r, examples are observed, the selection threshold is

changed to: δ ← δ

2 , thus allowing for a more accommodative threshold. Depending

on the dataset under consideration, this can progressively be continued at periodic

intervals to δ ← δ

3 ,δ ← δ

4 , and so on, as may be required in a particular setting.

This provides for an automatic methodology to set (and modify) threshold values,

where the query condition becomes lenient with time.

We use Support Vector Machines (SVM) as the classifier in this work for a few

reasons. Firstly, there have been several active learning techniques in the recent

past that have used the margin distance in a SVM to query examples in active learn-

ing [313] [59], leading to the popularity of SVMs in active learning. Secondly, there
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have been recent efforts to develop incremental SVMs for an online setting [314] to

train newer examples into an existing SVM model. One of the primary limitations

of the proposed approach (or any transductive inference approach, for that matter)

is the computational overhead in Steps 5-7 in Algorithm 5 for each class label. The

use of incremental SVMs substantially offsets this limitation. Thirdly, the Lagrange

multipliers obtained while training a SVM are a straightforward choice to consider

as non-conformity scores, as pointed out by Vovk et al. [38]. The Lagrange multi-

pliers, αi, i = 1, . . . ,n, are computed while maximizing the dual formulation in the

soft margin SVM:

Q(α) =−1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jK(xi,x j)+
n

∑
i=1

αi (6.8)

subject to constraints ∑
n
i=1 αiyi = 0 and 0 ≤ αi ≤ C, i = 1, . . . ,n, and K(.) is the

kernel function. The Lagrange multipliers’ values are zero for examples outside the

margin, and lie between 0 and C for examples on and within the margin, thereby

providing a natural monotonic measure of non-conformity w.r.t. the corresponding

class.

To extend the definition of the non-conformity measure to a multi-class SVM,

we adopt the ‘one-against-the-rest’ approach, and define a binary SVM for each of

the class labels. The non-conformity measure is then computed as suggested by

Vovk et al. [38] (pg 59) using the non-conformity measures computed from each of

the individual SVMs, α
y
i :

Ayp
i = λα

y=yp
i +

1−λ

M−1 ∑
y6=yp

α
y
i (6.9)

where M is the number of classes, p = 1, . . . ,M, and λ is a parameter that is empir-

ically determined. Equation 6.9 states that the non-conformity measure for a data

instance, xi, in the multi-class SVM is a normalized sum of the non-conformity
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values of xi w.r.t y = +1 class in the binary SVM constructed for class yp, and the

y =−1 class in all the other binary SVMs constructed for the multi-class model.

Why Generalized QBT?

Before we present the experimental results, we show how the proposed GQBT is

a generalization of the QBT approach proposed by Ho and Wechsler [59]. Ho and

Wechsler define the quality of information of a new data example as I(xn+1) =

p j− pk, where p j and pk are the highest 2 p-values obtained using the conformal

predictions framework. We define the quality of information using the largest eigen-

value of the matrix C containing the pairwise differences between all p-values. In a

binary classification problem (or if only the top 2 p-values are used in a multi-class

setting), our approach becomes the same as Ho and Wechsler’s. This is because C

is now given by:  0 |p1− p2|

|p1− p2| 0


whose largest eigenvalue is |p1− p2| itself, which is the measure used by Ho and

Wechsler. However, the progressive choice of selection threshold values in our

approach (as δ , δ

2 , etc. detailed earlier) performs better than the empirical choice

of thresholds in Ho and Wechsler’s approach. This is illustrated in Figure 6.2,

which shows how the proposed GQBT approach has a lower label complexity i.e.

it achieves the highest accuracy by querying much fewer points than Ho and Wech-

sler’s approach.

Combining Multiple Criteria for Active Learning

It may often be essential to combine multiple criteria to decide if a particular unla-

beled example needs to be queried for its true label, and included in the training set,

and there have been recent efforts in this direction [265]. In our work, for example,
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Figure 6.2: Comparison of the proposed GQBT approach with Ho and Wechsler’s
QBT approach on the Musk dataset from the UCI Machine Learning repository.
Note that our approach reaches the peak accuracy by querying ≈ 80 examples,
while the latter needs ≈ 160 examples.

in addition to the Lagrange multipliers (whose values are closely related to the dis-

tance of the example from the SVM margin), it may be useful to consider another

non-conformity measure that estimates the density of examples in the neighbor-

hood of a given unlabeled example. This can be defined using the k-NN classifier

(a non-parametric density estimator), as stated earlier in Equation 2.6 in Chapter 2.

Evidently, the theory of conformal predictions can also be used with this measure

to obtain another set of p-values. We use results from statistical hypothesis testing

to combine these p-values. Given that the p-value is a uniformly distributed ran-

dom variable on the interval [0,1], the combined significance level or p-value of n

individual p-values can be given as [6]:

k
n−1

∑
i=0

(− lnk)i

i!
(6.10)

where k = (p1× p2× p3 . . .× pn), the product of the given set of p-values. While

we use this approach in our work, there are other methods in hypothesis testing to

combine p-values [205], which can be used too. Please refer to Chapter 5 of this
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dissertation for details on more such methods. A similar approach was also used in

[58] for head pose classification.

Figure 6.3 shows the improvement in performance obtained (on the same dataset

as in Figure 6.2) by combining the p-values obtained using the non-conformity mea-

sures computed from the SVM and the k-NN classifier. Note the reduction in label

complexity obtained by combining the p-values from the two non-conformity mea-

sures discussed in Section 6.2. The proposed approach needs only ≈ 50 examples

to reach the peak accuracy.

Figure 6.3: Performance comparison on the Musk dataset (as in Figure 6.2)

6.3 Experimental Results

We compared the performance of the proposed GQBT approach with three other

online active learning algorithms together with random sampling. The methods are

briefly outlined below:

• Random Sampling: In this method, when a new example arrives, we ran-

domly decide whether to query this point for its class label or not, i.e. each

example is queried with a probability of 0.5.
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• Margin based SVM: An SVM classifier is constructed from the given set of

training instances. For an unlabeled example xn+1, its decision value f (x) =

w.φ(x) + b is computed and if it is below a certain threshold, the point is

queried. If a certain number of unlabeled points are not queried in succession,

the threshold is updated as the average of the SVM decision values of the

unqueried examples.

• Query by Committee: A committee consisting of two classifiers, SVM and k-

NN (with k = 10), was used. For a given unlabeled example, the SVM output

values are converted into probabilities using Platt’s method [315]. For k-NN,

the class probability for the unlabeled example is defined as the fraction of

the number of points of a given class occurring in its k nearest neighbors.

Once we have the probability values from the two classifiers, we compute

the Kullback Leibler divergence between these two sets. A high divergence

implies that the point is informative and should be queried. The threshold

for the KL divergence value was updated as described for the margin based

SVM.

• Query by Transduction: This is the method proposed by Ho and Wechsler

[59] as described previously.

We selected five datasets (with different number of classes, dimensions and in-

stances) from the UCI Machine Learning repository [71] to test the generalizability

of the proposed approach. The datasets and their details are listed in Table 6.1.

An equal number of examples from each class was used in the initial training set.

For example, for the Breast Cancer dataset, 5 examples from each class were used

to form the initial training set of 10 examples. For each of the datasets, the ini-

tial training, testing and unlabeled pools were randomly partitioned three different
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Dataset Classes Size Dimensions Initial
training
set

Size of
unlabeled
pool

Size of
test set

Breast Can-
cer

2 569 30 10 259 300

Musk 2 1000 166 2 498 500
Wine 3 178 13 3 88 87
Waveform 3 5000 21 15 2485 2500
Image Seg-
mentation

7 2310 19 35 175 2100

Table 6.1: Datasets from the UCI Machine Learning repository used in our experi-
ments

times and the results were averaged from these 3 runs. Further, in each of the runs,

the unlabeled pool was randomly permuted 10 different times to remove any bias

on the order in which the points are observed, and the results of these 10 trials were

averaged for each run. A polynomial kernel was found to be the most well-suited

for all the datasets, as established by the peak accuracies achieved in our results.

The results of our experiments are presented in Figure 6.4 and Table 6.2. In

each of these experiments, the formulation of the proposed GQBT approach where

the non-conformity measures from the SVM and the k-NN are combined (as in

Section 6.2) was used. Table 6.2 shows the label complexity (the percentage of the

unlabeled pool that was queried to reach the peak accuracy in the active learning

process) of each of the methods. The results are self-explanatory, and demonstrate

the improvement in performance gained using the proposed approach. Label com-

plexity is defined as the percentage of the unlabeled pool that is queried to reach

the peak accuracy in the active learning process. In Table 6.2, note the low label

complexities of the proposed approach in all the cases. Also, note that the label

complexities for the other methods on datasets like Waveform and Image Segmen-

tation are very high although the accuracy did increase at a reasonable rate in the
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active learning process in Figure 6.4. This only implies that these methods reached

their peak accuracy when the unlabeled pool was almost exhausted. Note that in

the Musk dataset, the results started with an accuracy of≈ 70%, but since all meth-

ods had similar initial accuracies, the graph is shown from 85% accuracy onwards,

where the differences in performance are clearly seen.

Dataset Random
Sam-
pling

Margin-
based
SVM

Query
by Com-
mittee

Ho-
Wechsler’s
Initial QBT

Proposed
GQBT

Breast Cancer 92.8% 83.6% 80% 46.8% 28%
Musk 77% 55% 72.33% 86.67% 24.33%
Wine 87.5% 78.75% 97.5% 47.5% 35%
Waveform 99.6% 100% 98.2% 98.6% 89.2%
Image Seg-
mentation

100% 100% 100% 98.18% 66.06%

Table 6.2: Label complexities of each of the methods for all the datasets. Label
complexity is defined as the percentage of the unlabeled pool that is queried to
reach the peak accuracy in the active learning process

To evaluate the performance of the approach on a challenging real-world prob-

lem, we carried out experiments on face recognition from video, where the high

redundancy between frames in a video requires an active learning approach. We

used the VidTIMIT biometrics dataset [316] (described in Chapter 2), of which

we used the video recordings of 25 subjects reciting short sentences. Each of the

videos are sliced and stored as JPEG images of resolution 512 by 384, on which

automated face cropping was performed to crop out the face regions. To extract the

facial features, block based discrete cosine transform (DCT) was used (similar to

[92]). Each image was subdivided into 8 by 8 non-overlapping blocks, and the DCT

coefficients of each block were then ordered according to the zigzag scan pattern.

The DC co-efficient was discarded for illumination normalization, and the first 10

AC co-efficients of each block were selected to form compact local feature vectors.
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(a) Breast Cancer dataset (b) Musk dataset

(c) Wine dataset

(d) Waveform dataset (e) Image Segmentation dataset

Figure 6.4: Results with datasets from the UCI Machine Learning repository
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Each local feature vector was normalized to unit norm. Concatenating the features

from the individual blocks yielded the global feature vector for the entire image.

The cropped face image had a resolution of 128 by 128 and thus the dimensionality

of the extracted feature vector was 2560. Principal Component Analysis (PCA) was

then applied to reduce the dimension to 100, retaining about 99% of the variance.

50 images of each subject were randomly picked, and divided into the initial

training set (10), unlabeled pool (20) and the test set (20). A polynomial kernel was

used for the SVM classifier. Similar to the previous set of experiments, the unla-

beled pool was randomly permuted 3 different times to remove any bias on the or-

der in which the points are observed, and the results of these 3 trials were averaged.

Figure 6.5 shows the results of our experiments. As shown, the proposed GQBT

once again demonstrated a significantly improved performance over the other ap-

proaches. Note that the GQBT approach led to a significantly higher peak accu-

racy, and had a lower label complexity of 58.8% to reach the peak accuracy. Label

complexities of the other methods: Ho and Wechsler’s QBT - 98.2%; Query by

Committee - 100%; Margin-based SVM - 89%; Random sampling - 99.6%.

6.4 Summary

Transductive inference has gained popularity in recent years as a means to develop

pattern classification approaches that address the specific issue of predicting the

class label of a given data point, instead of the more general problem of inferring

the ideal classifier function. A Generalized Query by Transduction (GQBT) ap-

proach for active learning in the online setting, based on the theory of conformal

predictions, has been presented in this work. The proposed GQBT approach can be

used along with any existing pattern classification algorithm, and can also be used

to combine multiple criteria in selecting an unlabeled example appropriately in the
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Figure 6.5: Results obtained for GQBT on the VidTIMIT dataset

active learning process. The results of our experiments with different datasets from

the UCI Machine Learning repository demonstrate high promise in the proposed ap-

proach, with significantly lower label complexities than other existing online active

learning approaches. The GQBT approach was also evaluated on person recogni-

tion using videos from the VidTIMIT dataset, and showed superior performance in

this set of experiments too, supporting the potential of applicability of the proposed

approach in real-world problems.

One of the major limitations of this approach, as mentioned earlier, is the com-

putational overhead of transductive inference at each step. With recent advances in

incremental classifiers, this limitation can be overcome to a large extent. In future

work, we will study the performance of using the inductive flavor of the Confor-

mal predictions framework [63] to offset the computational overhead. We also plan

to study other approaches of combining p-values and their influence on the per-

formance of the approach. Further, we intend to study and identify appropriate

stopping criteria for the proposed active learning framework.
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6.5 Related Contributions

A related contribution on Batch Mode Active Learning for biometrics has also been

made as part of this work. In biometric applications like face recognition, real world

data is usually generated in batches such as frames of video in a capture session.

The captured data has high redundancy and it is a significant challenge to select

the most promising instances from this superfluous set for training a classifier. In

this work, a novel batch mode active learning scheme has been formulated, where

the instance selection is based on numerical optimization of an objective function,

which can be adapted to suit the requirements of a particular application. The re-

sults obtained on the person recognition problem certify the potential of this method

in being used for real world biometric recognition problems. For more details of

this work, please refer [312] [317].
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

The increasing application of machine learning, data mining and pattern recognition

methods in data-rich fields across various domains has made the reliable estimation

of confidence a universally relevant field of research. As pointed out in Chapter 1,

there have been extensive efforts to resolve both aleatory as well as epistemic types

of uncertainty using techniques such as probability theory, Monte Carlo simula-

tions, evidence aggregation theories, fuzzy logic and statistical hypothesis testing

methods. There have been critical debates on the appropriate forms of representing

uncertainty using methods including probability values, confidence intervals, credi-

ble intervals and gamesman intervals. However, the need for a refreshingly different

approach towards the estimation of uncertainty based on practical application rather

than asymptotic guarantees, has remained accentuated over the years.

As described in Chapter 2, recent efforts towards the estimation of confidence

in machine learning algorithms have resulted in the development of an emerg-

ing game-theoretic approach for hedging predictions. Vovk, Shafer and Gammer-

man [38] developed the Conformal Predictions framework based on the relation-

ship derived between transductive inference and the Kolmogorov complexity of an

identically independently distributed (i.i.d.) sequence of data instances. This frame-

work, which can be used with any machine learning classification or regression al-

gorithm, outputs prediction regions based on a user-defined confidence level. This

approach has desirable theoretical guarantees including calibration of errors in an

online setting. This property of calibration of errors, with respect to a user-defined

confidence level, is termed ‘validity’ in the framework. However, theoretical valid-



ity does not guarantee practical usefulness, and the applicability of this promising

framework in real-world contexts as an effective and efficient real-time reasoning

tool requires several significant computational challenges that need to be addressed.

Hence, the objective of this dissertation was to design and develop learning

methodologies and pattern recognition models that provide conformal predictions

for decision-making in realistic settings. We specifically focused on the develop-

ment of Conformal Prediction methods for machine learning based predictive mod-

els in multimedia pattern recognition, with applications in healthcare (cardiac deci-

sion support and radiology) and assistive technology systems (for individuals with

visual impairments). We note, however, that the research outcomes of this work are

fundamental by their impact, and the solutions developed as part of this dissertation

for these application domains are pertinent to a broader audience, including many

other related fields of healthcare and medicine, risk-sensitive financial management

models and security applications.

The fundamental intellectual merit of this work lies in the transformational na-

ture of the application of conformal predictive models, which can provide error

guarantees in risk-sensitive applications across various fields. This work demon-

strates how a sound computational framework based on fundamental theories can

translate to practical usefulness in many different domains. The intellectual merit

lies not only in strong contributions in pattern recognition and machine learning, but

also opens up new research directions at the intersections of these disciplines, and

in healthcare informatics, assistive technologies, disability studies, and cognitive

decision sciences.
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7.1 Summary of Contributions

The key contributions made in this dissertation are summarized in Figure 7.1. While

this figure mentions only the classification setting, this work has proposed these

contributions from a regression perspective too. As listed in Chapter 1, this work

Figure 7.1: Summary of the contributions made in this work

makes three specific contributions that aim to make the CP framework practically

useful in real-world multimedia pattern recognition problems. Figure 7.1 illustrates

that these contributions can be viewed as steps towards a holistic learning system.

1. To develop methods that can compute efficient conformal predictions for a

given classifier.

2. To study and propose solutions to retain the calibration property when con-

formal predictors are applied to multi-classifier fusion.

3. To extend the framework to continuous online learning, where the measures

of confidence computed by the framework are used for online active learning.
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These contributions have been validated in classification settings using the prob-

lems of risk prediction in cardiac decision support and multimodal person recogni-

tion, and in regression settings using head pose estimation and saliency prediction

in images. During this work, other contributions related to addressing the problems

of each of these applications domains (such as a generalizable framework for su-

pervised manifold learning and a clinically relevant inter-patient distance metric)

have been proposed.

7.2 Summary of Outcomes

The specific outcomes of this dissertation have been listed below:

• Dissemination: The various aspects of the contributions in this work have re-

sulted in a total of 23 peer-reviewed conference publications, 5 journal pub-

lications/book chapters and 1 provisional patent. The dissemination venues

include IEEE Computer Vision and Pattern Recognition (CVPR), Neural In-

formation Processing Systems (NIPS), IEEE International Conference on

Computer Vision (ICCV), International Conference on Pattern Recognition

(ICPR), ACM Multimedia, and the Springer Lecture Notes on Computer Sci-

ence series.

• Datasets and Code: While existing publicly available datasets were used for

multimodal person recognition, datasets were created for each of the other

three application domains: head pose estimation, cardiac decision support

and saliency prediction in radiology. The FacePix dataset for head pose esti-

mation has been made publicly available1. A Matlab toolbox with inductive

and transductive approaches to Conformal Predictions for classification and
1http://www.facepix.org
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regression has been implemented. Efforts are being undertaken to make this

toolbox publicly available within the next few months.

• Funding Opportunities: The work in this dissertation resulted in submission

of grant proposals to the American Heart Association and National Institute

of Health (on ‘Advanced Computational Techniques in Cardiovascular Dis-

ease: Individualized Prediction of Outcomes Following Coronary Stenting

Using Clinical Machine Learning’) and the National Science Foundation (on

‘Conformal Predictions in Healthcare and Assistive Technologies’).

• Related Theses: In association with the work in this dissertation, the prob-

lems in the application domains have resulted in two completed Masters the-

ses (one on saliency prediction in videos, and another on clinical machine

learning in interventional cardiology), and a continuing PhD thesis (on batch

mode active learning for biometrics).

7.3 Future Work

The contributions of this dissertation have shown the promise and merit of using

conformal predictors for reliable estimation of confidence in various multimedia

pattern recognition problems. As shown in Figure 7.2, while machine learning

based predictive models are used increasingly in different applications, there still

exists a gap of trust between end users and the predictive models (physicians and

predictive patient models, for example). The contributions in this work attempt to

narrow this gap by providing the user with the ability to control a level of confidence

that is obtained from a system.

The framework, however, is in its nascent stages, and is slowly being absorbed

into related bodies of work. The possibilities of future work are numerous, and a

few sample directions are presented in this section.
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Figure 7.2: A high-level view of this work

Efficiency Maximization

• An alternate formulation for Multiple Kernel Learning in efficiency maxi-

mization was proposed for the k-NN classifier in Chapter 3. In this alternate

formulation, the kernel function was incorporated from the start of the deriva-

tion, rather than the other formulation where data was projected to convert

the SVM-LDA problem to a SVM problem, and kernel learning was subse-

quently performed. It is expected that the alternate formulation will provide

better results for minimizing multiple predictions (or maximizing efficiency).

In future work, we will study the effectiveness of this alternate formulation

for the cardiac decision support problem, and also investigate the connections

(or equivalence) between the two formulations.

• The kernel learning formulation for the classification context in Chapter 3

was aimed at ensuring that the non-conformity score of a test data instance

with respect to the ‘correct’ class label is low. However, the discussion of the

conceptual framework was tailored towards the non-conformity score of the
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k-NN classifier. While this is a fairly desirable criterion that can generalize

to many other classifiers, we plan to revisit the conceptual framework of this

portion of the work from the viewpoint of generalizing to non-conformity

scores commonly used for other classifiers.

• In the regression setting (Chapter 4), a supervised manifold learning approach

was used as a form of metric learning for maximizing efficiency. However, it

is possible that metric learning with a specific objective function tailored to

increase efficiency can be designed too. Also, when kernel ridge regression is

used (or an equivalent kernel version of any regression technique), a suitable

kernel function can be learnt (similar to what was proposed for classification

in Chapter 3). Both these directions are potentially interesting and valuable

for future work.

• The CP framework for regression has so far been most efficiently defined for

ridge regression, and this algorithm was used in this work to conceptualize the

methodology for efficiency maximization. There is a need to define suitable

variants of the approach for other regression methods too.

Information Fusion

• In combining p-values from multiple hypothesis tests, this dissertation (Chap-

ter 5) considers the individual modalities (or individual features from a single

modality) to be independent. Quantile combination methods and order statis-

tic methods have typically been studied for combining p-values from inde-

pendent tests. However, it is possible that the individual hypothesis tests (cor-

responding to each modality or feature) are dependent, necessitating a differ-

ent approach to combine the p-values from the individual tests or modalities.

In real-world scenarios, it is more likely that the different data sources have a
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certain extent of dependency. Several methods described to combine p-values

of dependent tests have been discussed by Pesarin in [204], and using these

methods to combine p-values in fusion settings and studying calibration is a

very necessary future step of this work.

• While the method proposed in this work to combine p-values from attribute-

level classifiers (or regressors) generates p-values at an entity level, it would

have to be investigated to understand if there are any relationships between

the obtained values. For example, in the multimodal person recognition prob-

lem, if the user would like to understand which of the modalities resulted in

errors (so that appropriate corrections can be made, possibly in the form of an

additional training phase for that modality), it would be essential to capture

the relationships between the p-values, and identify appropriate contributing

factors to the entity-level values. Such a study can provide insights that may

be potentially useful in several ways, including serving as a criterion for ac-

tive learning or transfer learning techniques.

• Further, in this dissertation, we studied only the calibration properties of

multiple classifier/regressor fusion using the p-values obtained from the CP

framework. However, for practical usage - as mentioned earlier - it is essen-

tial to consider the efficiency too. Hence, a logical extension of this work

would be to combine the methodology proposed for efficiency maximization

with the fusion approach for more appreciable results in real-world problems.

Active Learning

• In the Generalized Query by Transduction (GQBT) approach (Chapter 6),

the largest eigenvalue of the p-value difference matrix provides a convenient

measure of uncertainty to decide if a particular data instance needs to be
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included for further training. The results showed substantial improvements

over other related approaches. However, it would be necessary to investigate

the connections between this discrepancy measure and other measures such

as Shannon entropy or Jensen divergence. Further, it is also possible to de-

fine a similar p-value difference matrix for Inductive Conformal Predictors.

Hence, an equivalent Generalized Query by Induction method can be pro-

posed along the same lines, and such a method will have significantly lower

computational costs.

• An important question, often neglected in existing active learning methods,

is the choice of a suitable stopping criteria that can indicate when further

training is not required. As observed in some of our results, the accuracy of

a classifier can sometimes reach a peak value, and then start falling down as

more training data examples are used. Overfitting may be one possible reason

to explain this observation. Nevertheless, this observation vindicates the need

for defining a suitable stopping criterion in the proposed GQBT approach.

Other Possible Directions

Limitations specific to each of the contributions in this dissertation were stated in

the above paragraphs. However, there are other possible directions of future work

that can impact all of the contributions. Pointers to these directions are briefly

described below.

• Inductive Conformal Predictors: An inherent limitation of transductive ap-

proaches is the computational overhead involved in re-training an entire set

of data instances, whenever a single new test data instance is encountered.

This limitation is a hindrance for adoption of this work in real-time applica-

tion contexts. In order to address this issue, we plan to study the performance
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of each of the contributions in this dissertation with the Inductive Confor-

mal Predictions framework [63] [48]. In this inductive approach, a subset of

training data is randomly set aside as a ‘calibration’ set. When a new test

data instance arrives, the p-values in the CP framework are computed with

respect to the data instances in the calibration set, thus avoiding the need

for re-training the model. Our preliminary experiments in this direction sug-

gested that this approach provides significant computational benefits, and we

intend to follow this line of work in the near future.

• Mondrian Conformal Predictors: Another issue that is prominent especially

in healthcare related applications is that data often is imbalanced in terms

of the class labels. In one of the related contributions of this work [78], we

performed a study that showed the effectiveness of Synthetic Minority Over-

sample Technique (SMOTE) as a data processing method to handle such class

imbalance. However, when the CP framework is applied to such a scenario,

the calibration property may not be as meaningful, since all the errors may be

concentrated in a specific class (or a localized subset of classes). To address

this issue, Vovk et al. [38] proposed a modified version of the CP frame-

work called Mondrian conformal predictors, which from one perspective, is

a generalized view of the transductive and inductive variants of the frame-

work. Mondrian conformal predictors can guarantee conditional validity, i.e.

calibration within each of the class labels in a given problem. This is very de-

sirable in risk-sensitive applications, and we plan to study the usefulness of

this approach in our future work. We will also work on maximizing efficiency

in the context of the Mondrian framework.

• Transfer Learning using Conformal Predictors: The problem of transfer learn-
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ing, where information gained in one learning task is used to improve perfor-

mance in another related task, is an important new area of research. Several

of the existing approaches use measures such as those based on entropy [318]

or conditional independence [319]. Naturally, the measures obtained from the

CP framework (either the non-conformity scores, p-values or the discrepancy

measure obtained in the GQBT approach) can be potentially used in transfer

learning contexts.

Application Perspectives

The problems addressed in each of the applications in this dissertation are also

potential avenues of future research. While pointers to these opportunities were

presented in the respective chapters, a few samples are summarized below.

• Cardiac Decision Support: Advances in medical technologies have resulted

in a tremendous increase in the quantity of available information in terms of

patient records, diagnostic tests, genomics, treatments, etc. Further, there has

been a paradigm shift in the field from evidence based medicine to personal-

ized medicine. This shift only reiterates the need to reduce uncertainty in pre-

dicting patient outcomes as a function of treatment [65]. Using efficient and

valid conformal predictors in various kinds of personalized predictive mod-

els in biomedicine presents a potential direction of this work. Also, while

efficiency of these predictors was maximized using kernel learning in this

work, it is possible to design clinically relevant kernels that use knowledge

bases such as ontologies together with data [134]. This presents even more

interesting challenges for future work.

• Multimodal Biometrics: As security and surveillance systems assume greater

roles in crime prevention, the need to provide reliable estimates of the identi-
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ties of persons of interest in real-time remains a significant challenge. The ex-

tension of the CP framework to information fusion contexts is a valuable first

step in this direction, but a lot more needs to be done for such contributions

to be applied in on-field scenarios. While inductive conformal predictors can

be adopted to provide real-time performance, the validity of the calibration

properties of the framework on large-scale datasets remains in question, and

is a key issue to be studied. In addition, this work did not consider temporal

characteristics of speech and video signals while extending the CP frame-

work. Exploring the properties of the framework for temporal sequences is

another important problem to be investigated.

• Person-Independent Head Pose Estimation: While real-time head pose es-

timation technologies have reached stages of commercialization (for exam-

ple, FaceAPI 2) in recent years, fundamental research issues lie unsolved in

capturing low-dimensional representations of data using manifold-based ap-

proaches. Identifying the intrinsic dimensionality of data with geometric re-

lationships remains a challenge. Further, since the objective of this work was

to equip a wearable Social Interaction Assistant with real-time pose estima-

tion, computer vision problems related to wearable systems (such as decimat-

ing redundant frames or deblurring frames in a video captured by a moving

person) constitute issues that need to be addressed in this regard.

• Saliency Prediction: Using eye gaze of experts to train a machine learning

model that can predict saliency in data such as medical images is a novel

concept that is still in its early stages. One of the lessons learnt in this work

was the need to develop predictive models that can learn with very little data,
2http://www.seeingmachines.com
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since medical images with eye gaze information is not very easily available.

While there are widespread efforts in building models that learn from large

datasets in the last few years, there is also a need to develop models that can

learn from very small datasets. This is a fundamental problem that can have

impact in many fields. Additionally, saliency is a very personal and subjective

concept - building models that can be adapted over time to each individual

user presents a problem, which when solved can have great impact.
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APPENDIX A 

PROOF RELATED TO DISCREPANCY MEASURE IN GENERALIZED QUERY BY 

TRANSDUCTION 



In Chapter 6, as part of the Generalized Query by Transduction approach, we de-

fined a matrix C which contains the absolute value of the pairwise differences be-

tween all the p-values obtained from the Conformal Predictions framework:

Ci j(P) =
∣∣Pi−Pj

∣∣ (A.1)

We now prove that for any given set of p-values, this matrix C will always have

exactly one positive eigenvalue, which we use as a measure of disagreement in this

work. We prove this claim in this appendix.

Lemma 1: An N by N square matrix which has −2 in all its superdiagonal en-

tries, positive constants in all entries of the last row and 0 in all the other positions,

always has a positive determinant.

Proof: Consider the case when N = 2. The matrix M2 can be written as:

M2 =

 0 −2

d1 d2


where d1 and d2 are positive constants. It is trivial to verify that this matrix has a

positive determinant. Let us also consider the case when N = 3. The matrix M3 is

now given as:

M3 =


0 −2 0

0 0 −2

d1 d2 d3


Again, it is easy to verify that this matrix has a positive determinant. Let us

now assume that the proposition holds for some N = n, that is, let us assume that

the following matrix Mn has a positive determinant det(Mn):
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Mn =



0 −2 0 0 . . . 0

0 0 −2 0 . . . 0
...

d1 d2 d3 d4 . . . dn


Now, consider the case when N = n+1. The matrix Mn+1 is given by:

Mn+1 =



0 −2 0 0 . . . 0 0

0 0 −2 0 . . . 0 0
...

d1 d2 d3 d4 . . . dn dn+1


The determinant of Mn+1 is computed as:

det(Mn+1) =−(−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 0 . . . 0 0

0 0 −2 . . . 0 0
...

d1 d3 d4 . . . dn dn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
The n×n matrix on the right is of a similar form as Mn, and hence its determinant,

say det(M̂n) is greater than zero. Therefore:

det(Mn+1) = 2×det(M̂n) > 0

since the dis are arbitrary constants. Thus, we see that if the proposition holds for

N = n, then it also holds for N = n+1. Therefore, by the principle of mathematical

induction, we conclude that the proposition holds for all N. This proves Lemma 1.

Lemma 2: An N by N square matrix M where

• MNN = 0
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• Mi j =−2 for all i, j with i = j except i = N and j = N

• MiN = 1, except when i = N

• MN j = a positive constant, except when j = N

• 0s in all other positions

has a positive determinant if N is odd and a negative determinant if N is even.

Proof: Let N = 2. The matrix M2 is given by:

M2 =

 −2 1

d1 0


Trivially, the determinant of M2 is negative for positive d1. Now, consider the

case when N = 3. The matrix M3 is given by:

M3 =


−2 0 1

0 −2 1

d1 d2 0


It is easy to verify that the determinant of this matrix is positive for positive

values of d1 and d2.

Let us assume that the proposition holds for N = 2n−1 and N = 2n, where n is

a positive integer. Let us consider the matrix M2n+1

M2n+1 =



−2 0 0 . . . 0 1

0 −2 0 . . . 0 1
...

d1 d2 d3 . . . d2n 0


The determininant is given by
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det(M2n+1) = (−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 0 0 . . . 0 1

0 −2 0 . . . 0 1
...

d2 d3 d4 . . . d2n 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

+1×

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 0 . . . 0

0 0 −2 . . . 0
...

d1 d2 d3 . . . d2n

∣∣∣∣∣∣∣∣∣∣∣∣∣
The positive sign appears in front of 1 as it is in an odd position 2n + 1. The

first determinant evaluates to a negative value as, by our assumption, the proposi-

tion holds for N = 2n and the second determinant is positive by Lemma 1. Thus,

det(M2n+1) is positive.

Now, consider the matrix M2n+2:

M2n+2 =



−2 0 0 . . . 0 1

0 −2 0 . . . 0 1
...

d1 d2 d3 . . . d2n+1 0


Its determinant is given as:

det(M2n+2) = (−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 0 0 . . . 0 1

0 −2 0 . . . 0 1
...

d2 d3 d4 . . . d2n+1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
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−1×

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −2 0 . . . 0

0 0 −2 . . . 0
...

d1 d2 d3 . . . d2n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
The negative sign appears in front of 1 as it is in an even position 2n + 2. The

first determinant is positive since it is proved that the proposition holds for N =

2n + 1 and the second determinant is positive by Lemma 1. Hence, det(M2n+2) is

negative. Thus, it is proved that if the proposition holds for N = 2n−1 and N = 2n,

then it also holds for N = 2n+1 and N = 2n+2 and therefore, by the principle of

mathematical induction, Lemma 2 holds for all N.

Lemma 3: For any given set of N p-values, the matrix C has a positive deter-

minant if N is odd and a negative determinant if N is even.

Proof: Consider the case when N = 3 and let the three p-values be a, b and c.

Let d1 be the absolute difference between a and b and d2 be the absolute difference

between b and c. The matrix C3 is given by:

C3 =


0 d1 d1 +d2

d1 0 d2

d1 +d2 d2 0


Its determinant is given by:

det(C3) =

∣∣∣∣∣∣∣∣∣∣
0 d1 d1 +d2

d1 0 d2

d1 +d2 d2 0

∣∣∣∣∣∣∣∣∣∣
Using the transformations Row1 = Row1 - Row2 and Row2 = Row2 - Row3,

we have:
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det(C3) =

∣∣∣∣∣∣∣∣∣∣
−d1 d1 d1

−d2 −d2 d2

d1 +d2 d2 0

∣∣∣∣∣∣∣∣∣∣
= d1d2

∣∣∣∣∣∣∣∣∣∣
−1 1 1

−1 −1 1

d1 +d2 d2 0

∣∣∣∣∣∣∣∣∣∣
Using the transformations Column1 = Column1 - Column2 and Column2 =

Column2 - Column3, we have:

det(C3) = d1d2

∣∣∣∣∣∣∣∣∣∣
−2 0 1

0 −2 1

d1 d2 0

∣∣∣∣∣∣∣∣∣∣
⇒ det(C3) > 0

by Lemma 2.

In general, let the N p-values be a1,a2,a3 . . .aN . Let d1 be the absolute differ-

ence between a1 and a2, d2 be the absolute difference between a2 and a3 and so on.

The determinant of the matrix C is then given by:

det(C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 d1 d1 +d2 . . . ∑di

d1 0 d2 . . . ∑di−d1

...

∑di ∑di−d1 ∑di− (d1 +d2) . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Using the transformations Row1 = Row1-Row2, Row2 = Row2-Row3 . . . Row(N-

1) = Row(N-1)-RowN, we get:
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det(C) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−d1 d1 d1 . . . d1

−d2 −d2 d2 . . . d2

...

∑di ∑di−d1 ∑di− (d1 +d2) . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= d1d2 . . .dN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1 1 . . . 1

−1 −1 1 . . . 1
...

∑di ∑di−d1 ∑di− (d1 +d2) . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Using the transformations Column1 = Column1-Column2, Column2 = Column2-

Column3 . . . Column(N-1) = Column(N-1)-ColumnN, we get:

det(C) = d1d2 . . .dN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

−2 0 0 . . . 1

0 −2 0 . . . 1
...

d1 d2 d3 . . . 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Hence, det(C) > 0 if N is odd and det(C) < 0 if N is even by Lemma 2. This

proves Lemma 3.

Theorem: The matrix C, which contains the absolute values of the pairwise dif-

ferences between all the p-values obtained from the Conformal Predictions frame-

work, i.e. Ci j(P) =
∣∣Pi−Pj

∣∣, will always have exactly one positive eigenvalue.

Proof: Given an n×n matrix M, the characteristic polynomial of M is written

as:

xn−g1xn−1 +g2xn−2− ...+(−1)ngn = 0 (A.2)

where the coefficient g j is the sum of the determinants of all the sub-matrices of M

taken j rows and columns at a time (symmetrically). Thus, g1 is the trace of M (i.e.,
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the sum of the diagonal elements), g2 is the sum of the determinants of the n(n−1)
2

sub-matrices that can be formed from M by deleting all but two rows and columns

(symmetrically), and so on. Continuing in this way, we can find g3, g4,... up to gn,

which of course is the determinant of the entire n×n matrix. Note that the n roots

of the characteristic polynomial are the eigenvalues of the matrix M.

Now, let us assume that we have a similar characteristic polynomial for the

given matrix C. From Descartes’ rule of signs, if the terms of a single-variable

polynomial with real coefficients are ordered by descending variable exponent, then

the number of positive roots of the polynomial is either equal to the number of sign

differences between consecutive nonzero coefficients, or less than it by a multiple

of 2.

From Lemma 3, we know that det(C) > 0 if n is odd and det(C) < 0 if n is even.

Hence, in the equation for the characteristic polynomial (Equation A.2), it is evident

that g1 is always positive (since it is the sum of sub-matrices of C, taking 1 row and

column at a time, each of whose determinant is positive). Similarly, g2 is always

negative, g3 is always positive, and so on. Substituting these signs in Equation A.2,

we see that the characteristic polynomial for C has only one sign change between

consecutive non-zero co-efficients (between the first and second terms). Thus, from

Descartes’ rule of signs, the matrix C always has only one positive eigenvalue (root

of the characteristic polynomial). This proves the theorem.
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