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Abstract—We study the ergodic secrecy capacity of a block-
fading wiretap channel when there are multiple antennas at
the transmitter, the legitimate receiver and the eavesdropper.
We consider that the receivers are aware of their respective
channel matrices while the transmitter is only provided by a
B-bits feedback of the main channel state information. The
feedback bits are sent by the legitimate receiver, at the beginning
of each fading block, over an error free public link with limited
capacity. Assuming an average transmit power constraint, we
provide an upper and a lower bounds on the ergodic secrecy
capacity. Then, we present a framework to design the optimal
codebooks for feedback and transmission. In addition, we show
that the proposed lower and upper bounds coincide asymp-
totically as the capacity of the feedback link becomes large,
i.e. B → ∞; hence, fully characterizing the secrecy capacity
in this case.

I. INTRODUCTION

The broadcast nature of the wireless channel makes radio

transmissions vulnerable to eavesdropping attacks. To date, the

security of wireless communications is mainly performed at

the application layer using cryptographic techniques. However,

with the emergence of ad-hoc and decentralized networks,

and the new research directions towards the next wave of

innovation known as the Internet of Things, these high level

techniques turn out to be complex and challenging to imple-

ment. Therefore, there has been a significant recent interest in

studying the inherent ability of the physical layer to provide

secure communications. This is known as Wireless Physical

Layer Security. In his seminal work [1], Wyner introduced the

degraded wiretap channel where a source exploits the structure

of the medium channel to transmit a message reliably to the

intended receiver, while leaking asymptotically no information

to the eavesdropper. Ulterior works generalized Wyner’s work

to the case of non-degraded channels [2], Gaussian channels

[3], and fading channels [4].

Multiple-input multiple-output (MIMO) systems have an

increasingly important part to play in emerging wireless com-

munication networks. In fact, when used with appropriately

designed signal processing algorithms, multiple antenna arrays

can considerably enhance the performance [5]. The problem of

analyzing the secrecy capacity of multiple antenna systems has
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been of great interest in last years. The secrecy capacity for the

multiple-input single-output (MISO) wiretap Gaussian channel

has been proven in [6]–[8]. In [6], the authors furthermore

give an upper bound for the MIMO case with asymptotic

signal to noise ratio (SNR). Another work [9] characterizes the

secrecy capacity for the MISO case, with a multiple-antenna

eavesdropper, when the main and the eavesdropping channels

are known to all terminals. The secrecy capacity of MIMO

Gaussian channels has been investigated in [10], while the case

of MIMO transmission with a multiple-antenna eavesdropper

has been considered in [11]–[13] when the channel matrices

are fixed and known.

Transmit beamforming is one of the simplest approaches

to achieve full diversity in MIMO wireless systems. Unfortu-

nately, to obtain the optimal performance, this method requires

a complete knowledge of the channel state information (CSI)

at the transmitter (CSIT) or the knowledge of the optimal

beamforming vector; which are both difficult to have in practi-

cal scenarios. One way to overcome this challenge is by using

feedback [14]. For the case of a single antenna transmission, an

upper and a lower bounds on the secrecy capacity of the wire-

tap channel with finite rate feedback have been proposed in

[15] for block-fading channels. For the MIMO case, the work

in [16] analyzes a secrecy sum-rate for the downlink multiuser

MIMO system, over fast fading channel, with limited CSI

feedback. Another work [17] evaluates the impact of quantized

channel direction information on the achievable secrecy rate,

for multiple-antenna wiretap channels, using artificial noise

and assuming that the channel of the eavesdropper is unknown

at the transmitter.

In this paper, we investigate the secrecy capacity of

multiple-antenna block-fading wiretap channels with limited

CSI feedback. Indeed, we consider that the transmitter is un-

aware of the channel matrices of the main and the eavesdrop-

per channels, and is only provided by a finite CSI feedback

sent by the legitimate receiver through an error free link with

limited capacity. Assuming an average power constraint at

the transmitter, we provide an upper and a lower bounds on

the ergodic secrecy capacity. Then, we present an optimal

framework for feedback and transmission that maximizes

the forward secrecy rate. For the particular case of infinite

feedback, we prove that our bounds coincide; hence, fully

characterizing the secrecy capacity in this case.



The paper is organized as follows. Section II describes

the system model. The main results are summarized in

Section III; the ergodic secrecy capacity is characterized in

subsection III-A while the optimal framework for feedback

and transmission is provided in subsection III-B. Details on

the analysis of the secrecy capacity bounds are presented in

Section IV. Finally, selected numerical results are presented

in Section V, and Section VI concludes the paper.

Notations: Throughout the paper, we use the following

notational conventions. The expectation operation is denoted

by E[.], log represents the natural logarithm unless otherwise

indicated, and we define {ν}+=max(0, ν). The entropy of

a discrete random variable X is denoted by H(X), and the

mutual information between random variables X and Y is

denoted by I(X,Y ). A sequence of length n is denoted by

Xn, X(k) represents the k-th element of X , and X(l, k) the

k-th element of X in the l-th fading block. In addition, we use

||.|| for the Euclidean norm, the superscript ∗ for the Hermitian

transpose of a matrix, and the symbols tr[.] and |.| for the

trace and the determinant, respectively. The notation X � 0
indicates that X is positive semidefinite, and we use IN to

denote the identity matrix of size N .

II. SYSTEM MODEL

We consider a discrete-time memoryless wiretap channel

where a transmitter wants to communicate a secret message

to a legitimate receiver in the presence of an eavesdropper. The

model of interest consists of a multiple-antenna channel with

NT transmit antennas, NR receive antennas at the legitimate

receiver, and NE receive antennas at the eavesdropper. The

respective received signals at the intended receiver and the

eavesdropper, at time instant t, are given by

YR(t) = HR(t)X(t) + ZR(t)

YE(t) = HE(t)X(t) + ZE(t)
, (1)

where X(t) is the transmitted signal, HR(t) ∈ CNR×NT and

HE(t) ∈ CNE×NT are the complex channel gain matrices,

and ZR(t) and ZE(t) are, each, independent and identically

distributed (i.i.d.) additive complex Gaussian noise vectors

with zero mean and identity covariance matrix. We consider

a block-fading channel where the channel gain matrices re-

main constant within a fading block of length κ>>1, i.e.,

HR(κl) = HR(κl − 1) = · · · = HR(κl − κ+ 1) = HR(l) and

HE(κl) = HE(κl−1) = · · · = HE(κl−κ+1) = HE(l), where

l = 1, · · · , L, and L is the total number of fading blocks. We

assume that the channel encoding and decoding frames span

a large number of fading blocks, i.e., L is large, and that the

blocks change independently from a fading block to another.

The channel input {X(t)}t is subject to an average total

power constraint

1

n

n
∑

t=1

||X(t)||2 ≤ Pavg, (2)

where n=κL.

We assume perfect CSI at the receiver sides. That is, the

legitimate receiver is instantaneously aware of its channel

ENC DECR

DECE

B&PC P(YR|HR, X)

P(YE|HE, X)

P(HR)

P(HE)

Xn

Xn

Un

Un

Hn
R

Hn
R

Hn
E

Hn
E

Y n
R

Y n
E

W T n Ŵ
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Fig. 1. Block diagram of the channel model.

gain matrix HR(l), and the eavesdropper knows HE(l), with

l = 1, · · · , L. The statistics of the main and the eavesdropping

channels are available to all nodes. Further, we assume that

the transmitter is not aware of the instantaneous channel re-

alizations of neither channel. However, the legitimate receiver

provides the transmitter with a B-bits CSI feedback through

an error-free channel with limited capacity. This feedback

is transmitted at the beginning of each fading block and is

also tracked by the eavesdropper. A block diagram of the

communication system is presented in Fig. 1. The message W

must be kept confidential from the eavesdropper. Therefore, we

impose a secrecy constraint on the information leakage-rate,
1
nI(W,Y n

E ), which is required to asymptotically approach zero

as n → ∞.

In the light of the work in [18], the adopted feedback

strategy consists on partitioning the space of the main channel

gain into Q regions {H1, · · · ,HQ}, where Q = 2B . Knowing

HR perfectly, the legitimate receiver determines in which

region, Hq with q=1, · · · , Q, the channel matrix lies. Also,

the legitimate receiver associates the partition index q with

each region Hq , and transmits the index codeword uq through

the feedback channel.

At the transmitter side, each feedbacked information uq

corresponds to a unitary beamforming matrix Vq and a di-

agonal power control matrix Λq with q = 1, · · · , Q. That

is, for each fading block, the transmitter uses the feedbacked

information to apply the appropriate beamforming matrix and

power control matrix to the encoded symbol T . The forward

signal X can then be written in the form

X = VqΛ
1/2
q T,

and we let E[T ∗T ]=1 for normalization. By taking

ρq=VqΛqV
∗
q , the respective received SNRs at the legitimate

receiver and the eavesdropper are HRρqH
∗
R and HEρqH

∗
E .

Note that the chosen set of beamforming and power control

matrices should satisfy the average power constraint, i.e.,

tr [E[ρq]]≤Pavg for all q ∈ {1, · · · , Q}, with the expectation

taken over all channel gain realizations. It is assumed that

all nodes are aware of the codebooks used for feedback

and transmission. More details on the optimal codebooks

generation are available on the following section.



III. MAIN RESULTS

In this section, we present the main results obtained for

the ergodic secrecy capacity of the considered system model.

Also, a framework characterizing the generation of optimal

codebooks for the feedback and the transmission strategies is

introduced.

A. Lower and Upper Bounds on the Ergodic Secrecy Capacity

Theorem 1: For the discrete-time memoryless multiple-

antenna wiretap channel described in (1), with an error free

B-bits CSI feedback link, sent at the beginning of each fading

block, and the average power constraint in (2), the following

secrecy rate is achievable

C−
s =

Q
∑

q=1

max
{Hq,ρq}

E
HE













log

min
HR∈Hq

|INR
+HRρqH

∗
R|

|INE
+HEρqH

∗
E |







+





Pq,

(3)

where Q=2B, tr [E[ρq]]≤Pavg, ρq�0, and Pq=Pr [HR ∈ Hq]
for all q ∈ {1, · · · , Q}.

Proof: A detailed proof of Theorem 1 is provided in the

following section. Here, we outline the achievability scheme.

We adopt a variable rate transmission controlled by the

feedback information sent by the legitimate receiver. Thereby,

during each fading block, if the main channel gain matrix falls

within the partition region Hq, q ∈ {1, · · ·, Q}, the transmitter

conveys codewords at rate Rq = min
HR∈Hq

log |INR
+HRρqH

∗
R| ,

with the transmission strategy ρq. Rate Rq changes only

periodically and is held constant over the duration interval of

a fading block. Let Tq be a channel gain matrix from Hq satis-

fying Tq = argmin
HR∈Hq

|INR
+HRρqH

∗
R| . The considered scheme

guarantees that when the channel to the eavesdropper is better

than the worst main channel gain in region Hq , the mutual

information between the transmitter and the eavesdropper is

upper bounded by Rq . Otherwise, this mutual information will

be log |INE
+HEρqH

∗
E |. We can then optimize over the main

channel gain regions, Hq’s, and the transmission strategies,

ρq’s, to maximize the secrecy rate.

Intuitively, Theorem 1 states that even a 1-bit feedback at

the beginning of each fading block ensures a positive secrecy

rate. We now present an upper bound on the secrecy capacity

with limited CSI feedback.

Theorem 2: For the discrete-time memoryless multiple-

antenna wiretap channel described in (1), with an error free

B-bits CSI feedback link, sent at the beginning of each fading

block, and the average power constraint in (2), an upper bound

on the secrecy capacity is given by

C+
s =

Q
∑

q=1

max
{Hq,ρq}

E
HR∈Hq

HE

[

{

log
|INR

+HRρqH
∗
R|

|INE
+HEρqH

∗
E |

}+
]

Pq,

(4)

where Q=2B, tr [E[ρq]]≤Pavg, ρq�0, and Pq=Pr [HR ∈ Hq]
for all q ∈ {1, · · · , Q}.

Proof: The proof is provided in the following section.

Letting Q goes to ∞, the lower bound in (3) and the upper

bound in (4) coincide, hence, fully characterizing the secrecy

capacity in this case.

Corollary 1: The secrecy capacity of a discrete-time mem-

oryless multiple-antenna wiretap block fading channel with

perfect main CSIT, and the average power constraint in (2), is

given by

Cs = max
ρ(HR)

E
HE,HR

[

{

log
|INR

+HRρ(HR)H
∗
R|

|INE
+HEρ(HR)H∗

E |

}+
]

, (5)

where tr [E[ρ(HR)]] ≤ Pavg and ρ(HR) � 0.

Proof: Corollary 1 results directly from the expressions of

the achievable rate in (3) and the upper bound in (4), by letting

Pq =
1

Q
and taking into consideration that as Q → ∞, the set

of partition regions, {H1, · · ·,HQ}, becomes infinite and the

legitimate receiver is basically forwarding matrix HR to the

transmitter. �

To the best of our knowledge, this result has not

been reported in earlier works. For the special case of

NT=NR=NE=1, the secrecy capacity in corollary 1 coincides

with the result in theorem 2 from reference [4].

B. Optimal Framework for Feedback and Transmission

Finding the optimal feedback strategy, {H1, · · ·,HQ}, and

the optimal transmission strategy, {ρ1, · · ·, ρQ}, that maxi-

mizes the achievable secrecy rate C−
s in (3), is equivalent to

the design of a vector quantizer with a modified distortion

measure.

Let λ be the Lagrange multiplier corresponding to the

average transmit power constraint. We define the following

distortion measure

δ (HR, HE, ρq)=−

[

{

log
|INR

+HRρqH
∗
R|

|INE
+HEρqH

∗
E |

}+

−λ (trρq−Pavg)

]

,

(6)

where ρq � 0 and q = {1, · · ·, Q}. We need to find the optimal

{H1, · · ·,HQ} and {ρ1, · · ·, ρQ} that minimizes the average

distortion measure ∆ given by

∆ =

Q
∑

q=1

E
HE

[δ (Tq, HE, ρq)]Pq, (7)

where Tq = argmin
HR∈Hq

|INR
+HRρqH

∗
R|, and Pq = Pr [HR∈Hq].

To solve this optimization problem, we use Lloyd’s al-

gorithm [19]. The Optimal Framework for Feedback and

Transmission (OFFT) for the achievable secrecy rate C−
s is

given in Algo.11. Note that Algo.1 is an offline optimization

algorithm, and hence, complexity has a relatively small impact

on implementation.

1In general, there is no guarantee that Lloyd’s algorithm will converge to
the global optimum [19].



Algorithm 1: OFFT for C−
s

Input : Q, Pavg.

Output: Optimal feedback and transmission codebooks

{H1, · · ·,HQ} and {ρ1, · · ·, ρQ}.

Consider a random partition of the space of HR:

H1 = {H1, · · ·,HQ};

Define H0 as the set of Q empty regions;

Let itr = 1;

while Hitr 6= Hitr−1 do

for q = 1 : Q do

Tq(ρq) = argmin
HR∈Hq

|INR
+HRρqH

∗
R|;

Find the optimal transmission strategy:

ρq = argmin
ρq

E
HE

[δ (Tq(ρq), HE, ρq)]Pq;

for q = 1 : Q do

Find the optimal partition region:

Hq = {HR : δ (HR, HE, ρq) ≤ δ (HR, HE, ρj) ;

∀j ∈ {1, · · ·, Q}, j 6= q} ;

itr = itr + 1;

Hitr = {H1, · · ·,HQ};

IV. ERGODIC CAPACITY ANALYSIS

In this section, we establish the lower and the upper bounds

on the ergodic secrecy capacity presented in the previous

section in Theorem 1 and Theorem 2, respectively.

A. Proof of Achievability in Theorem 1

Given a partition of the channel gain space {H1, · · · ,HQ}
and a transmission strategy {ρ1, · · · , ρQ}, let Tq,

q∈{1, · · ·, Q}, be the element of Hq that minimizes the

function

ξ(HR) = |INR
+HRρqH

∗
R| ,

i.e.,
∣

∣INR
+ TqρqT

∗
q

∣

∣ ≤ |INR
+HRρqH

∗
R| , for all HR ∈ Hq.

We note that such a minimum exists since the function ξ(HR)
is concave, and Hq corresponds to a Voronoi region which is

by definition a convex set. We assume that the rates

Rq= log
∣

∣INR
+ TqρqT

∗
q

∣

∣ , q ∈ {1, · · ·, Q},

are selected in advance. We need to prove that the rate

R−
s =

Q
∑

q=1

Pq E
HE

[

{Rq − log |INE
+HEρqH

∗
E |}

+
]

− ǫ1, (8)

with Pq = Pr [HR ∈ Hq], is achievable. Let

Re =

Q
∑

q=1

Pq E
HE

[log |INE
+HEρqH

∗
E |]− ǫ2. (9)

The considered wiretap codebook is generated by uniformly

partitioning random Gaussian codewords into 2nR
−

s bins; each

containing 2nRe codewords. That is, to transmit a message

W , the transmitter selects the corresponding bin and then

randomly chooses a binary sequence among all the uniformly

distributed codewords in the selected bin. During each fading

block, of length κ, the transmitter sends κRq information bits

using the generated Gaussian codebook. Then, using the weak

law of large numbers, when the number of spanned fading

blocks L is large, the entire binary sequence is transmitted

with high probability. Also, since Rq ≤ log |INR
+HRρqH

∗
R|

is valid for all fading blocks, the receiver can decode the

transmitted signal with a negligible probability of error.

For the secrecy analysis, we need to prove that the equivoca-

tion rate satisfies Re ≥ R−
s − ǫ. We have

nRe = H(W |Y n
E , HL

E , UL) (10)

≥ I(W ;Xn|Y n
E , HL

E , UL) (11)

= H(Xn|Y n
E , HL

E , UL)−H(Xn|Y n
E , HL

E , UL,W ). (12)

On one hand, we can write

H(Xn|Y n
E , HL

E , UL)

=

L
∑

l=1

H(Xκ(l)|Y κ
E (l),HE(l),U(l)) (13)

≥
∑

l∈SL

H(Xκ(l)|Y κ
E (l),HE(l),U(l)) (14)

≥
∑

l∈SL

κ

(

Q
∑

q=1

Pq (Rq− log |INE
+HE(l)ρqH

∗
E(l)|)−ǫ′

)

(15)

=

L
∑

l=1

κ

(

Q
∑

q=1

Pq {Rq− log |INE
+HE(l)ρqH

∗
E(l)|}

+−ǫ′

)

(16)

= n

Q
∑

q=1

Pq E
HE

[

{Rq − log |INE
+HEρqH

∗
E |}

+
]

− nǫ′ (17)

= nR−
s − nǫ′, (18)

where (13) results from the memoryless property of the

channel and the independence of the Xκ(l)’s, (14) is obtained

by removing all the terms corresponding to the fading blocks

l 6∈ SL, with SL = {l ∈ {1, · · · , L} : Tq(l) > HE(l)}, and

(17) follows from the ergodicity of the channel as L → ∞.

On the other hand, using list decoding argument at

the eavesdropper side and applying Fano’s inequality [4],
1
nH(Xn|Y n

E , HL
E , UL,W ) vanishes as n → ∞ and we can

write

H(Xn|Y n
E , HL

E , UL,W ) ≤ nǫ”. (19)

Substituting (18) and (19) in (12), we get Re ≥ R−
s − ǫ, with

ǫ = ǫ′ + ǫ”, and ǫ′ and ǫ” are selected to be arbitrarily small.

Maximizing over the main channel gain partition regions

Hq and the associated transmission strategies ρq , for each

q ∈ {1, · · · , Q}, concludes the proof. �



B. Proof of the Upper Bound in Theorem 2

Let RE be the equivocation rate at the eavesdropper. We

recall that n=κL, with L being the total number of spanned

fading blocks and κ the length of each block. We have

nRE = H(W |Y n
E , HL

E , UL) (20)

= H(W |Y n
E , HL

E , HL
R , UL) (21)

= I(W ;Y n
R |Y n

E ,HL
E ,HL

R ,UL)+H(W |Y n
R ,Y n

E ,HL
E ,HL

R ,UL)
(22)

≤ I(W ;Y n
R |Y n

E , HL
E , HL

R , UL)+nǫ (23)

=

L
∑

l=1

κ
∑

k=1

H(YR(l, k)|Y
n

E , HL
E , HL

R , UL, Y
κ(l−1)+(k−1)

R )

−H(YR(l, k)|W,Y n
E , HL

E , HL
R , UL, Y

κ(l−1)+(k−1)
R )+nǫ (24)

≤
L
∑

l=1

κ
∑

k=1

H(YR(l, k)|YE(l, k), HE(l), HR(l), U
l)

−H(YR(l, k)|W,X(l, k),Y n
E , HL

E ,H
L
R,U

L,Y
κ(l−1)+(k−1)

R )+nǫ

(25)

=

L
∑

l=1

κ
∑

k=1

H(YR(l, k)|YE(l, k), HE(l), HR(l), U
l)

−H(YR(l, k)|X(l, k), YE(l, k), HE(l), HR(l), U
l)+nǫ (26)

=
L
∑

l=1

κ
∑

k=1

I(X(l, k);YR(l, k)|YE(l, k),HE(l),HR(l),U
l)+nǫ

(27)

≤
L
∑

l=1

κ
∑

k=1

{

I(X(l, k);YR(l, k)|HR(l), U
l)

− I(X(l, k);YE(l, k)|HE(l), U
l)
}+

+nǫ (28)

=

L
∑

l=1

κ
{

I(X(l);YR(l)|HR(l), U
l)

− I(X(l);YE(l)|HE(l), U
l)
}+

+nǫ, (29)

where (21) comes from the independence of W and HL
R given

Y n
E , HL

E and UL, inequality (23) follows from the fact that

H(W |Y n
R , Y n

E , HL
E , HL

R , UL)≤H(W |Y n
R , HL

R , UL),

and Fano’s inequality H(W |Y n
R , HL

R , UL)≤nǫ, and (28) holds

true following similar lines as [11]–[13]; since given HR(l)
and HE(l), the channel at hand is a multiple antenna wiretap

channel.

The right-hand side of (29) is maximized by a Gaussian

input. That is, taking X(l) ∼ CN
(

0, ω
1/2
l (U l)

)

, with the

power policy ωl(U
l) satisfying the average power constraint,

we can write

nRE ≤
L
∑

l=1

κ E
Ul,HR(l)

HE(l),

[

{

log
|INR

+HR(l)ωl(U
l)H∗

R(l)|

|INE
+HE(l)ωl(U l)H∗

E(l)|

}+
]

+nǫ

(30)

≤
L
∑

l=1

κ E
U(l),
HR(l),

HE(l)











log
|INR

+HR(l) E
Ul−1

[ωl(U
l)|U(l)]H∗

R(l)|

|INE
+HE(l) E

Ul−1
[ωl(U

l)|U(l)]H∗
E(l)|







+

+nǫ

(31)

=
L
∑

l=1

κ E
U(l),
HR(l),

HE(l)

[

{

log
|INR

+HR(l)Ωl(U(l))H∗
R(l)|

|INE
+HE(l)Ωl(U(l))H∗

E(l)|

}+
]

+ nǫ

(32)

=

L
∑

l=1

κ E
U,HR,HE

[

{

log
|INR

+HRΩl(U)H∗
R|

|INE
+HEΩl(U)H∗

E |

}+
]

+ nǫ,

(33)

where (31) is obtained by using Jensen’s inequality since the

function X →

{

log
|I+AXA∗|

|I+BXB∗|

}+

is concave over the set of

nonnegative definite matrices, Ωl(U(l)) in (32) is defined as

Ωl(U(l))= E
Ul−1

[

ωl(U
l)|U(l)

]

, and where (33) follows from

the ergodicity and the stationarity of the channel gains, i.e.,

the expectation in (32) does not depend on the block fading

index. Thus, we have

RE ≤
1
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L
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E
U,HR,HE

[
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E |
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(35)

= E
U,HR,HE

[

{

log
|INR

+HRΩ(U)H∗
R |

|INE
+HEΩ(U)H∗

E |

}+
]

+ ǫ, (36)

where (35) comes from applying Jensen’s inequality

once again, and where Ω(U) in (36) is defined as

Ω(U)=

L
∑

l=1

Ωl(U). Maximizing over the main channel gain

partition regions Hq and the associated transmission strategies

ρq, for each q ∈ {1, · · · , Q}, concludes the proof. �

V. NUMERICAL RESULTS

In this section, we provide selected simulation results for the

case of i.i.d. Rayleigh fading channels. Figure 2 illustrates the

achievable secrecy rate C−
s , in nats per channel use (npcu),

when the transmitter, the legitimate receiver and the eaves-

dropper have 2 antennas, i.e. NT=NR=NE=2. The secrecy

capacity Cs, from Corollary 1, is also presented in Fig. 2 as a

benchmark. It represents the secrecy capacity with full main

CSI at the transmitter. We can see that, as the capacity of the

feedback link grows, i.e., the number of bits B increases, the

achievable rate grows toward the secrecy capacity Cs.

In Figure 3, the achievable secrecy rate C−
s is presented

along with the secrecy capacity Cs when both the transmitter
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Fig. 2. Achievable secrecy rate, for Rayleigh fading channels, with
NT=NR=NE=2 and various B-bits feedback, B=4, 6, 12.
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Fig. 3. Comparison of the achievable secrecy rates when the eavesdropper
has one and two antennas with NT=NR=2 and 12-bits feedback.

and the legitimate receiver have two antennas, i.e. NT=NR=2,

and twelve bits are used for CSI feedback, i.e. B=12. The

figure compares the cases when the eavesdropper has only

one antenna, i.e. NE=1 and when he has two, i.e. NE=2. As

expected, the secrecy rate is higher when the eavesdropper has

fewer antennas compared to the transmitter and the legitimate

receiver.

VI. CONCLUSION

In this paper, we investigated the secrecy capacity of the

multiple-antenna block-fading wiretap channel with limited

CSI feedback. Assuming full CSI on the receivers’ side and

an average power constraint at the transmitter, we presented

an achievable secrecy rate and an upper bound on the ergodic

secrecy capacity when the feedback link is limited to B bits

per fading block. In order to maximize the secrecy rate, we

presented a framework that generates the optimal feedback

and transmission codebooks. Furthermore, we showed that

the proposed lower and upper bounds coincide asymptoti-

cally as the capacity of the feedback link becomes large,

i.e. B → ∞; hence, fully characterizing the secrecy capacity

in this case.
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