GAPs: Geospatial Abduction Problems

PAULO SHAKARIAN and V.S. SUBRAHMANIAN
University of Maryland

and

MARIA LUISA SAPINO

Universita di Torino

There are many applications where we observe various phenomena in space (e.g. locations of
victims of a serial killer), and where we want to infer “partner” locations (e.g. the location where
the killer lives) that are geospatially related to the observed phenomena. In this paper, we define
geospatial abduction problems (GAPs for short). We analyze the complexity of GAPs, develop
exact and approximate algorithms (often with approximation guarantees) for these problems to-
gether with analyses of these algorithms, and develop a prototype implementation of our GAP
framework. We demonstrate accuracy of our algorithms on a real world data set consisting of
insurgent IED (improvised explosive device) attacks against US forces in Iraq (the observations
were the locations of the attacks, while the “partner” locations we were trying to infer were the
locations of IED weapons caches).

Categories and Subject Descriptors: 1.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Nonmonotonic reasoning and belief revision; 1.2.3 [Artificial Intelligence|: Problem
Solving, Control Methods, and Search— Heuristic methods; 1.2.1 [Artificial Intelligence|: Ap-
plications and Expert Systems— Cartography

General Terms: Theory, Algorithms, Experimentation

Additional Key Words and Phrases: Abduction, Complexity Analysis, Heuristic Algorithms

1. INTRODUCTION

There are numerous applications where we wish to draw geospatial inferences from
observations. For example, criminologists [Rossmo and Rombouts 2008; Branting-
ham and Brantingham 2008] have found that there are spatial relationships between
a serial killer’s house (the geospatial inference we wish to make), and locations
where the crimes were committed (the observations). A marine archaeologist who
finds parts of a wrecked ship or its cargo at various locations (the observations) is
interested in determining where the main portion of the wreck lies (the geospatial
inference). Wildlife experts might find droppings of an endangered species such as
the Malayan sun bear (observations) and might want to determine where the bear’s
den is (the geospatial inference to be made). In all these cases, we are trying to
find a single location that best explains the observations (or the k locations that best

University of Maryland, College Park, MD 20742, USA. Email: {pshak,vs}@cs.umd.edu
Universita di Torino, Torino, Italy. Email: mlsapino@di.unito.it

Some of the authors of this paper were funded in part by AFOSR grant FA95500610405 and ARO
grants W911NF0910206 and W911NF0910525.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20 ACM 0004-5411/20/0100-0001 $5.00

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20, Pages 1-077.

2 . Paulo Shakarian et al.

explain the observations). There are two common elements in such applications.

First, there is a set O of observations of the phenomena under study. For the sake
of simplicity, we assume that these observations are points where the phenomenon
being studied was known to have been present. Second, there is some domain
knowledge D specifying known relationships between the geospatial location we are
trying to find and the observations. For instance, in the serial killer application,
the domain knowledge might tell us that serial killers usually select locations for
their crimes that are at least 1.2 km from their homes and at most 3 km from their
homes. In the case of the sun bear, the domain knowledge might state that the sun
bear usually prefers to have a den in a cave, while in the case of the wreck, it might
be usually within a radius of 10 miles of the artifacts that have been found.

The geospatial abduction problem (GAP for short) is the problem of finding the
most likely set of locations that is compatible with the domain knowledge D and
that best “explains” the observations in O. To see why we look for a set of locations,
we note that the serial killer might be using both his home and his office as launch-
ing pads for his attacks. In this case, no single location may best account for the
observations. In this paper, we show that many natural problems associated with
geospatial abduction are NP-Complete, which cause us to resort to approximation
techniques. We then show that certain geospatial abduction problems reduce to
several well-studied combinatorial problems that have viable approximation algo-
rithms. We implement some of the more viable approaches with heuristics suitable
for geospatial abduction, and test them on a real-world data-set. The organization
and main contributions of this paper are as follows.

—Section 2 formally defines geospatial abduction problems (GAPs for short) and
Section 3 analyzes their complexity.

—Section 4 develops a “naive” algorithm for a basic geospatial abduction problem
called k-SEP and shows reductions to set-covering, dominating set, and linear-
integer programming that allow well-known algorithms for these problems to be
applied to GAPs.

—Section 5 describes two greedy algorithms for k-SEP and compares them to a
reduction to the set-covering problem.

—Section 6 describes our implementation and shows that our greedy algorithms
outperform the set-covering reduction in a real-world application on identifying
weapons caches associated with Improvised Explosive Device (IED) attacks on
US troops in Iraq. We show that even if we simplify k-SEP to only cases where
k-means classification algorithms work, our algorithms outperform those.

—Section 7 compares our approach with related work.

2. GEOSPATIAL ABDUCTION PROBLEM (GAP) DEFINITION

Throughout this paper, we assume the existence of a finite, 2-dimensional M X
N space St for some integers M, N > 1 called the geospatial universe (or just
universe). Fach point p € S is of the form (z,y) where z,y are integers and
0<z<Mand0<y<N. We assume that all observations we make occur within

I1We use integer coordinates as most real world geospatial information systems (GIS) systems use
discrete spatial representations.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

GAPs: Geospatial Abduction Problems . 3

S

. I HPY (L.\‘___

Fig. 1. A space. Red dots denote observations. Yellow squares denote infeasible locations. Green
stars show one (0,3) explanation, while pink triangles show another (0,3) explanation.

space S. We use the space shown in Figure 1 throughout this paper to illustrate
the concepts we introduce. We assume that S has an associated distance function
d which assigns a non-negative distance to any two points and satisfies the usual
distance axioms.?

DEFINITION 2.1 OBSERVATION. An observation O is any finite subset of S.

Consider the geospatial universe shown in Figure 1. In the serial killer application,
the red dots would indicate the locations of the murders, while in the ship-wreck
example, they would indicate the locations where artifacts were found. We wish to
identify the killer’s location (or the sunken ship or the sun bear’s den).

As mentioned earlier, there are many constraints that govern where such locations
might be. For instance, it is unlikely that the sun-bear’s den (or the killer’s house
or office) is in the water, while the sunken ship is unlikely to be on land.

DEFINITION 2.2 FEASIBILITY PREDICATE. A feasibility predicate feas is a func-
tion from S to { TRUE, FALSE}.

Thus, feas(p) = TRUE means that point p is feasible and must be considered in the
search. Figure 1, denotes infeasible places via a yellow square. Throughout this
paper, we assume that feas is an arbitrary, but fixed predicate.? Further, as feas
is defined as a function over {TRUE, FALSE}, it can allow for user input based on
analytical processes currently in place. For instance, in the military, analysts often
create “MCOQ” overlays where “restricted terrain” is deemed infeasible [US Army
1994]. We can also easily express feasibility predicates in a Prolog-style language —
we can easily state (in the serial killer example) that point p is considered feasible
if p is within R units of distance from some observation and p is not in the water.
Likewise, in the case of the sun bear example, the same language might state that p
is considered feasible if p is within R; units of distance from marks on trees, within
R units of scat, and if p has some landcover that would allow the bear to hide.
A Prolog-style language that can express such notions of feasibility is the hybrid
knowledge base paradigm [Lu et al. 1996] in which Prolog style rules can directly
invoke a GIS system.

2d(z,x) = 0;d(z,y) = d(y, x); d(z,y) + d(y, 2) > d(z, 2).

3We also assume throughout the paper that feas is computable in constant time. This is a realistic
assumption, as for most applications, we assume feas to be user-defined. Hence, we can leverage
a data-structure indexed with the coordinates of S to allow for constant-time computation.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

4 . Paulo Shakarian et al.

DEFINITION 2.3 (a, 3) EXPLANATION. Suppose O is a finite set of observations,
€ is a finite set of points in S, and a > 0, B > 0 are some real numbers. £ is said
to be an («,) explanation of O iff:

—p € & implies that feas(p) = TRUE, i.e. all points in € are feasible and

—(Yo e O)(Fp e &) a<d(p,o)<p, ie every observation is neither too close nor
too far from some point in .

Thus, an (a, 8) explanation is a set of points (e.g. denoting the possible locations
of the home/office of the serial killer or the possible locations of the bear’s den).
Each point must be feasible and every observation must have an analogous point
in the explanation which is neither too close nor too far.

Given an («,3) explanation &, there may be an observation o € O such that
there are two (or more) points py,ps € & satisfying the conditions of the second
bullet above. If £ is an explanation for O, a partnering function g is a function
from O to & such that for all 0 € O, o < d(ps(0),0) < 8. pe(o) is said to be o’s
partner according to the partnering function gg. We now present a simple example
of (o, 8) explanations.

ExaMPLE 2.1. Consider the observations in Figure 1 and suppose a = 0,3 = 3.
Then the two green stars denote an («, 3) explanation, i.e. the set {(6,6),(12,8)} is
a (0,3) explanation. So is the set of three pink triangles, i.e. the set {(5,6), (10, 6),
(13,9)} is also an (0,3) explanation.

The basic problem that we wish to solve in this paper is the following.

The Simple (o, 5) Explanation Problem (SEP).

INPUT: Space S, a set O of observations, a feasibility predicate feas, and numbers
a>0,8>0.

OUTPUT: “Yes” if there exists an («a, §) explanation for O — “no” otherwise.

A variant of this problem is the k-SEP problem which requires, in addition, that
€ contains k elements or less, for k& < |O|. Yet another variant of the problem tries
to find an explanation £ that is “best” according to some cost function.

DEFINITION 2.4 COST FUNCTION Y. A cost function x is a mapping from expla-
nations to non-negative reals.

We will assume that cost functions are designed so that the smaller the value they
return, the more desirable an explanation is. Some example cost functions are
given below. The simple one below merely looks at the mean distances between
observations and their partners.

EXAMPLE 2.2 MEAN-DISTANCE. Suppose S, O, feas, a, 8 are all given and sup-
pose & is an (a, B) explanation for O and pg is a partnering function. We could
initially set the cost of an explanation £ (with respect to this partnering function)
to be:

Yoo () = Yoco d|((g7| pe(0))

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

GAPs: Geospatial Abduction Problems . 5

Py

7
\ o \ |/ e P’

el
=
o
o
kel
~
o
N

Fig. 2. Left: Points {01, 02,03} indicate locations of evidence of the Malayan sun bear (we shall
refer to these as set O). Points {p1,p2,...,ps} indicate feasible dwellings for the bear. The
concentric rings around each element of O indicate the distance o = 1.7km and § = 3.7km.
Right: Points {p1,p2,p3} are feasible for crime-scenes {o1,02}. {p1,p2} are safe-houses within

a distance of [1,2] km. from crime scene o1 and {p2,p3} are safe-houses within a distance of [1, 2]
km. from crime scene o5.

Suppose ptn(E) is the set of all partner functions for € in the above setting. Then
we can set the cost of £ as:

Xmean(E) = infixes (€) | pe € ptn(€)}.

The above definition removes reliance on a single partnering function as there may
be several partnering functions associated with a single explanation. We illustrate
this definition using our sun bear example.

ExXAMPLE 2.3. Wildlife experts have found droppings and other evidence of the
Malayan sun bear in a given space, S, depicted in Figure 2. Points {01,02,03}
indicate locations of evidence of the Malayan sun bear (we shall refer to these as set
O). Points {p1,p2,...,ps} indicate feasible dwellings for the bear. The concentric
rings around each element of O indicate the distance a = 1.7Tkm and 8 = 3.7km.
The set {p3, ps} is a valid (1.7,3.7) explanation for the set of evidence, O. However,
we note that observation oy can be partnered with either point. If we are looking to
minimize distance, we notice that d(o2,p3) = 3km and d(o2,ps) = 3.6km, hence ps3
is the partner for oo such that the distance is minimized.

We now define an “optimal” explanation as one that minimizes cost.

DEFINITION 2.5. Suppose O is a finite set of observations, £ is a finite set of
points in S, a > 0, B > 0 are some real numbers, and x is a cost function. & is

said to be an optimal (o,) explanation iff € is an (a, B) explanation for O and
there is no other («, 8) explanation &' for O such that x(&') < x(£).

We present an example of optimal («, 3) explanations below.

ExXaMPLE 2.4. Consider the sun bear from Ezxample 2.3 whose behavior is de-
picted in Figure 2 (left). While {ps,ps} is a valid solution for the k-SEP problem

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

6 . Paulo Shakarian et al.

(k =2), it does not optimize mean distance. In this case the mean distance would
be 3km. However, the solution {ps,pr} provides a mean-distance of 2.8km.

Suppose we are tracking a serial killer who has struck at locations O = {01, 02}.
The points {p1,p2,p3} are feasible locations as safe-houses for the killer (partners).
This is depicted in Figure 2 (right). Based on historical data, we know that serial
killers strikes are at least 1km away from a safe-house and at most 2km from the
safe house (a« =1, f =2). Thus, for k = 2, any valid explanation of size 2 provides
an optimal solution wrt mean-distance as every feasible location for a safe-house is
within 2km of a crime scene.

We are now ready to define the cost-based explanation problem.
The Cost-based («,) Explanation Problem.
INPUT: Space S, a set O of observations, a feasibility predicate feas, numbers
a >0, 8 >0, a cost function y and a real number v > 0.
OUTPUT: “Yes” if there exists an («, 8) explanation £ for O such that x(€) <wv
— “no” otherwise.

It is easy to see that standard classification problems like k-means * can be
captured within our framework by simply assuming that o = 0, 8 > max(M, N)?
and that all points are feasible. In contrast, standard classification algorithms
cannot take feasibility into account - and this is essential for the above types of
applications.

4

3. COMPLEXITY OF GAP PROBLEMS

SEP can be easily solved in PTIME. Given a set O of observations, for each o € O,
let P, = {p € S| feas(p) = TRUE A a < d(p,0) < B}. If P, # 0 for each
o, we return “yes”. We call this algorithm STRAIGHTFORWARD-SEP. Another
algorithm would merely find the set F' of all feasible points and return “yes” iff for
every observation o, there is at least one point p € F such that a < d(p,0) < 3. In
this case, F' is the explanation produced - but it is a very poor explanation. In the
serial killer example, F' merely tells the police to search all feasible locations without
trying to do anything intelligent. k-SEP allows the user to constrain the size of the
explanation so that “short and sweet” explanations that are truly meaningful are
produced. The following result states that k-SEP is NP-Complete - the proof is a
reduction from Geometric Covering by Discs (GCD) [Johnson 1982].

THEOREM 3.1. k-SEP is NP-Complete.

In the associated optimization problem with k-SEP, we wish to produce an ex-
planation of minimum cardinality. Note that minimum cardinality is a common
criterion for parsimony in abduction problems [Reggia and Peng 1990]. We shall
refer to this problem as MINSEP. This problem is obviously NP-hard by Theo-
rem 3.1. We can adjust STRAIGHTFORWARD-SEP to find a solution to MINSEP
by finding the minimum hitting set of the P,’s.

ExAMPLE 3.1. Consider the serial killer scenario in Example 2.4 and Figure 2

(right). Crime scene (observation) o1 can be partnered with two possible safe-houses

4See [Alpaydin 2010] for a survey on classification work.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

GAPs: Geospatial Abduction Problems . 7

{p1,p2} and crime scene oq can be partnered with {p2,ps}. We immediately see that
the potential safe house located at po is in both sets. Therefore, po is an explanation
for both crime scenes. As this is the only such point, we conclude that {p2} is the
minimum-sized solution for the SEP problem. However, while it is possible for
STRAIGHTFORWARD-SEP to return this set, there are mo assurances it does. As
we saw in Example 2.4, € = {p1,p2} is a solution to SEP, although a solution with
lower cardinality ({p2}) exists. This is why we introduce the MINSEP problem.

With the complexity of k-SEP, the following corollary tells us the complexity
class of the Cost-based Explanation problem. We show this reduction by simply
setting the cost function x (&) = |£].

COROLLARY 3.1. Cost-based Explanation is NP-Complete.

As described earlier, MINSEP has the feel of a set-covering problem. Although
the generalized cost-based explanation cannot be directly viewed with a similar
intuition (as the cost maps explanations to reals — not elements of S), there is an

important variant of the Cost-based problem that does. We introduce weighted
SEP, or WT-SEP below.

Weighted Spatial Explanation. (WT-SEP)

INPUT: A space S, a set O of observations, a feasibility predicate feas, numbers
a >0, 8 >0, aweight function ¢: § — R, and a real number v > 0.

OUTPUT: “Yes” if there exists an (o,) explanation € for O such that 3 . c(p) <
v — “no” otherwise.

In this case, we can easily show NP-Completeness by reduction from k-SEP, we
simply set the weight for each element of S to be one, causing Zpes ¢(p) to equal
the cardinality of £.

COROLLARY 3.2. WT-SEP is NP-Complete.

Cost-based explanation problems presented in this section are very general. While
the complexity results hold for an arbitrary function in a general case, we also con-
sider specific functions as well. Below we present the total-distance minimization
explanation problem (TD-SEP). This is a problem where we seek to minimize the
sum of distances between observations and their closest partners while imposing a
restriction on cardinality.

Total Distance Minimization Explanation Problem. (TD-SEP)

For space S, let d: S x S — R be the Euclidean distance between two points in S.
INPUT: A space S, a set O of observations, a feasibility predicate feas, numbers
a >0, 8> 0, positive integer k < |O|, and real number v > 0.

OUTPUT: “Yes” if there exists an («, 3) explanation £ for O such that |£] = k
and), comin, ee d(0i,pj) < v — “no” otherwise.

THEOREM 3.2. TD-SEP is NP-Complete.

The NP-hardness of the TD-SEP is based on a reduction from the k-Median
Problem [Papadimitriou 1981]. This particular reduction (details in the appendix)

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

8 . Paulo Shakarian et al.

Algorithm 1 (NAIVE-KSEP-EXACT)

INPUT: Space S, a set O of observations, a feasibility predicate feas, real numbers
a >0, >0, and natural number & > 0
OUTPUT: Set £ C S of size k (or less) that explains O

(1) Let M be a matrix array of pointers to binary string {0,1}/°l. M is of the same
dimensions as S. Each element in M is initialized to NULL. For a given p € S, M|p]
is the place in the array.

(2) Let L be a list of pointers to binary strings. L is initialized as null.

(3) For each o; € O do the following
(a) Determine all points p € S such that a < d(o,p) < 3 such that feas(p) = TRUE.
(b) For each of these points, p, if M[p] = NULL then initialize a new array where

only bit 4 is set to 1. Then add a pointer to M[p] in L.

(c) Otherwise, set bit i of the existing array to 1.

(4) For any k elements of L (actually the k elements pointed to by elements of L), we
shall designate ¢1,...,¢;,... L, as the elements. We will refer to the ith bit of element
Ej as éj (Z)

(5) Exhaustively generate all possible combinations of k elements of L until one such

combination is found where Vi € [1,]0]], Z?Zl(@-(i)) >0

(6) If no such combination is found, return NO. Otherwise, return the first combination
that was found.

also illustrates how the k-median problem is a special case of GAPs, but k-median
problems cannot handle arbitrary feasibility predicates of the kind that occur in
real-life geospatial reasoning. The same argument applies to k-means classifiers as
well.

4. EXACT ALGORITHM FOR GAP PROBLEMS

This section presents four exact approaches to solve k-SEP and WT-SEP. First,
we provide an enumerative approach that exhaustively searches for an explanation.
Then, we show that the problem reduces to set-cover, dominating set, and linear-
integer programming. Existing algorithms for these problems can hence be used
directly. Throughout this section, we shall use the symbols A to represent the
bound on the number of partners that can be associated with a single observation
and f to represent the bound on the number of observations supported by a single
partner. Note that both values are bounded by (3% — a?), however they can be
much less in practice — specifically f is normally much smaller than A.

4.1 Naive Exact Algorithm

We now show correctness of NAIVE-KSEP-EXACT. This algorithm provides an exact
solution to k-SEP but takes exponential time (in k). The algorithm first identifies
a set L of all elements of S that could be possible partners for O. Then, it considers
all subsets of L of size less than or equal to k. It does this until it identifies one
such subset as an explanation.

PROPOSITION 4.1. If there is a k-sized simple («,3) explanation for O, then
NAIVE-KSEP-EXACT returns an explanation. Otherwise, it returns NO.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

GAPs: Geospatial Abduction Problems . 9

Finally, we have the complexity of the algorithm.

PROPOSITION 4.2. The complexity of NAIVE-KSEP-EXACT is O(ﬁ(ﬂ'(ﬁQ -
a?)|O)) D).

An exact algorithm for the cost-based explanation problems follows trivially from
the NAIVE-KSEP-EXACT algorithm by adding the step of computing the value for
x for each combination. Provided this computation takes constant time, this does

not affect the O(ﬁ(w(ﬁ2 —a?)|0))*+1) run time of that algorithm.

4.2 An Exact Set-Cover Based Approach

We now show that k-SEP polynomially reduces to an instance of the popular set-
covering problem [Karp 1972] which allows us to directly apply the well-known
greedy algorithm reviewed in Paschos [1997]. Set-Cover is defined as follows.

The Set-Cover Problem. (Set-Cover)

INPUT: Set of elements, E and a family of subsets of E, FF ={S1,...,Smaz}, and
positive integer k.

OUTPUT: “Yes” if there exists a k-sized subset of F, F}, such that Ule{Si €
Fk} =F.

Through a simple modification of NAIVE-KSEP-EXACT, we can take an instance
of k-SEP and produce an instance of Set-Cover. We run the first four steps,
which only takes O(A - |O|) time by the proof of Proposition 4.2.

THEOREM 4.1. k-SEP polynomially reduces to Set-Cover.

ExaMPLE 4.1. Consider the serial killer scenario in Fxample 2.4 and Figure 2
(right). Suppose we want to solve this problem as an instance of k-SEP by a
reduction to set-cover. We consider the set of crime-scene locations, O = {o1, 02}
as the set we wish to cover. We obtain our covers from the first four steps of
NAIVE-KSEP-EXACT. Let us call the result list L. Hence, we can view the values of
the elements in L as the following sets S1 = {01}, 52 = {01,02}, 53 = {02}. These
correspond with points p1,pa, p3 respectively. As Sy covers O, ps is an explanation.

The traditional approach for approximation of set-cover has a time complexity
of O(|E| - |F| - size), where size is the cardinality of the largest set in the family
F (i.e. size = max;<|p||S;|). This approach obtains an approximation ratio of 1+
In(size) [Paschos 1997]. As f is the quantity of the largest number of observations
supported by a single partner, the approximation ratio for k-SEP using a greedy-
scheme after a reduction from set-cover is 14+1In(f). The NAIVE-KSEP-SC algorithm
below leverages the above reduction to solve the k-SEP problem.

PROPOSITION 4.3. NAIVE-KSEP-S5C has a complezity of O(A - f - |O|?) and an
approzimation ratio of 1+ In(f).

PROPOSITION 4.4. A solution £ to NAIVE-KSEP-SC provides a partner to every
observation in O if a partner exists — otherwise, it returns IMPOSSIBLE.

The algorithm NAIVE-KSEP-SC is a naive, straight-forward application of the
O(|E| - |F| - size) greedy approach for set-cover as presented in Paschos [1997].

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

10 . Paulo Shakarian et al.

Algorithm 2 (NAIVE-KSEP-SC)

INPUT: Space S, a set O of observations, a feasibility predicate feas, and real
numbers o > 0, > 0
OUTPUT: Set £ C S that explains O

(1) Initialize list € to null
(2) Let M be a matrix array of the same dimensions as S of lists of pointers initialized
to null. For a given p € S, M|[p] is the place in the array.
(3) Let L be a list of pointers to lists in M, L is initialized to null.
(4) Let O be an array of Booleans of length |O|. Vi € [1,|0|], initialize O’[i] = TRUE.
For some element o € O, O’[0] is the corresponding space in the array.
(5) Let numObs = |0
(6) For each element o € O, do the following.
(a) Determine all elements p € S such that feas(p) = TRUE and d(o, p) € [o, 3]
(b) If there does not exist a p € S meeting the above criteria, then terminate the
program and return IMPOSSIBLE.
(¢) If M[p] = null then add a pointer to M|[p] to L
(d) Add a pointer to o to the list M|p].
(7) While numObs > 0 loop
(a) Initialize pointer cur_ptr to null
(b) Initialize integer cur_size to 0
(c) For each ptr € L, do the following:
i. Initialize integer this_size to 0
ii. Let M[p] be the element of M pointed to by ptr
iii. For each obs_ptr in the list M[p], do the following
A. Let i be the corresponding location in array O’ to obs_ptr
B. If O’[i] = TRUE, increment this_size by 1
iv. If this_size > cur_size, set cur_size = this_size and have cur_ptr point to
M)
(d) Addpto &
(e) For every obs_ptr in the list pointed to by cur_ptr, do the following:
i. Let i be the corresponding location in array O’ to obs_ptr
ii. If O[], then set it to FALSE and decrement numObs by 1
(f) Add the location in space S pointed to by cur_ptr to €
(8) Return &

We note that it is possible to implement a heap to reduce the time-complexity to
O(A- f-10]-1g(A-]0))) - avoiding the cost of iterating through all possible partners
in the inner-loop.

In addition to the straightforward greedy algorithm for set-covering, there are
several other algorithms that provide different time complexity /approximation ratio
combinations. However, with a reduction to the set-covering problem we must
consider the result of Lund and Yannakakis [1994] which states that set-cover cannot
be approximated within a ratio ¢ - log(n) for any ¢ < 0.25 (where n is the number
of subsets in the family F) unless NP C DTIM E[nPolYy 108 n],

A reduction to set-covering has the advantage of being straightforward. It also al-
lows us to leverage the wealth of approaches developed for this well-known problem.
In the next section, we show that k-SEP reduces to the dominating set problem as

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

GAPs: Geospatial Abduction Problems . 11

Algorithm 3 (KSEP-TO-DOMSET)

INPUT: Space S, a set O of observations, a feasibility predicate feas, and real
numbers a > 0, 6 >0
OUTPUT: Graph G for use in an instance of a DomSet problem

(1) Let Go = (Vo, Eo) be a graph. Set Vo = S and Eo = 0.

(2) Let S be a mapping defined as S : S — Vo. In words, S takes elements of the space
and returns nodes from G as defined in the first step. This mapping does not change
during the course of the algorithm.

(3) For each o; € O do the following
(a) Determine all points p € S that are such that o < d(o,p) < 8. Call this set P;
(b) For all p € P; calculate feas(p). If feas(p) = FALSE, remove p from P;.

(c) Let Vi ={v € Vo|3p € P; such that S(p) = v}.

(d

(e

) Add |P;| new nodes to V. Add these nodes to V; as well.

) For every pair of nodes vi,v2 € V;, add edge (v1,v2) to Fo.
(4) Remove all v € Vo where there does not exist an v’ such that (v,v") € Eo
(5) If any P; = 0 return IMPOSSIBLE. Otherwise return Go.

well. We then explore alternate approximation techniques based on this reduction.

4.3 An Exact Dominating Set Based Approach

We show below that k-SEP also reduces to the well known dominating set prob-
lem (DomSet) [Garey and Johnson 1979] allowing us to potentially leverage fast
algorithms such as the randomized-distributed approximation scheme in Jia et al.
[2002]. DomSet is defined as follows.

Dominating Set. (DomSet)

INPUT: Graph G = (V, E) and positive integer K < |V|.

OUTPUT: “Yes” if there is a subset V' C V such that |V’| < K and such that
every vertex v € V — V' is joined to at least one member of V'’ by an edge in E.

As the dominating set problem relies on finding a certain set of nodes in a graph,
then, unsurprisingly, our reduction algorithm, Algorithm 3, takes space S, an ob-
servation set O, feasibility predicate feas, and numbers «, 8 and returns graph Go
based on these arguments.

We now present an example to illustrate the relationship between a dominating
set of size k in Gp and a k-sized simple («, 3) explanation for @. The following
example illustrates the relationship between a k-SEP problem and DomSet.

EXAMPLE 4.2. Consider the serial killer scenario in Example 2.4, pictured in
Figure 2 (right). Suppose we want to solve this problem as an instance of k-SEP
by a reduction to DomSet. We want to find a 1-sized simple (a, 3) explanation
(safe-house) for O (the set of crime scenes, {01,02}). Suppose that after running an
algorithm such as STRAIGHFORWARD-SEP, we find that {p1,p2,ps} are elements
of S that are feasible. {p1,p2} are all within a distance of a, 8 from o1 and {p2, ps}
are all within a distance of a, 3 from oo. We run KSEP-TO-DOMSET which creates
graph, Go. Refer to Figure 8 for the graph. We can see that {p2} is a 1-sized
dominating sets for Go, hence a 1-sized explanation for O.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.

12 . Paulo Shakarian et al.

”
P,

1X]
X]

P/ — 2%

Py

Py

Fig. 3. Results of KSEP-TO-DOMSET based on data seen in Figure 2 (right). Note that
{p1,p2,p},ph} form a complete graph and {p2,ps,ps,p5} also form a complete graph. Note
that {p2} is a dominating set of size 1. Hence, {p2} is a 1-sized simple («, 3) explanation for O,
as depicted in Figure 2 (right).

We notice that the inner loop of KSEP-TO-DOMSET is bounded by O(A) op-
erations and the outer loop will iterate |O| times. Thus, the complexity of KSEP-
TO-DOMSET is O(A - |O)).

PROPOSITION 4.5. The complezity of KSEP-TO-DOMSET is O(A - |O)).

Example 4.2 should give us some intuition into why the reduction to DomSet
works. We provide the formal proof in the Appendix.

THEOREM 4.2. k-SEP is polynomially reducible to DomSet.

The straightforward approximation scheme for DomSet is to view the problem
as an instance of Set-Cover and apply a greedy algorithm. The reduction would
view the set of vertices in Gp as the elements, and the family of sets as each
vertex and its neighbors. This results in both a greater complexity and a worse
approximation ratio when compared with the reduction directly to Set-Cover.

ProPOSITION 4.6. Solving k-SEP by a reduction to DomSet using a straight-
forward greedy approach has time-complezity O(A® - f -|O|?) and an approzvimation
ratio bounded by O(1 +1n(2- f - A)).

There are other algorithms to approximate DomSet [Jia et al. 2002; Kuhn and
Wattenhofer 2003]. By leveraging Jia et al. [2002], we can obtain an improved
complexity while retaining the same approximation ratio as the gree