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There are many applications where we observe various phenomena in space (e.g. locations of

victims of a serial killer), and where we want to infer “partner” locations (e.g. the location where

the killer lives) that are geospatially related to the observed phenomena. In this paper, we define
geospatial abduction problems (GAPs for short). We analyze the complexity of GAPs, develop

exact and approximate algorithms (often with approximation guarantees) for these problems to-

gether with analyses of these algorithms, and develop a prototype implementation of our GAP
framework. We demonstrate accuracy of our algorithms on a real world data set consisting of

insurgent IED (improvised explosive device) attacks against US forces in Iraq (the observations

were the locations of the attacks, while the “partner” locations we were trying to infer were the
locations of IED weapons caches).

Categories and Subject Descriptors: I.2.3 [Artificial Intelligence]: Deduction and Theorem

Proving—Nonmonotonic reasoning and belief revision; I.2.3 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search—Heuristic methods; I.2.1 [Artificial Intelligence]: Ap-

plications and Expert Systems—Cartography
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1. INTRODUCTION

There are numerous applications where we wish to draw geospatial inferences from
observations. For example, criminologists [Rossmo and Rombouts 2008; Branting-
ham and Brantingham 2008] have found that there are spatial relationships between
a serial killer’s house (the geospatial inference we wish to make), and locations
where the crimes were committed (the observations). A marine archaeologist who
finds parts of a wrecked ship or its cargo at various locations (the observations) is
interested in determining where the main portion of the wreck lies (the geospatial
inference). Wildlife experts might find droppings of an endangered species such as
the Malayan sun bear (observations) and might want to determine where the bear’s
den is (the geospatial inference to be made). In all these cases, we are trying to
find a single location that best explains the observations (or the k locations that best
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explain the observations). There are two common elements in such applications.
First, there is a set O of observations of the phenomena under study. For the sake

of simplicity, we assume that these observations are points where the phenomenon
being studied was known to have been present. Second, there is some domain
knowledge D specifying known relationships between the geospatial location we are
trying to find and the observations. For instance, in the serial killer application,
the domain knowledge might tell us that serial killers usually select locations for
their crimes that are at least 1.2 km from their homes and at most 3 km from their
homes. In the case of the sun bear, the domain knowledge might state that the sun
bear usually prefers to have a den in a cave, while in the case of the wreck, it might
be usually within a radius of 10 miles of the artifacts that have been found.

The geospatial abduction problem (GAP for short) is the problem of finding the
most likely set of locations that is compatible with the domain knowledge D and
that best “explains” the observations in O. To see why we look for a set of locations,
we note that the serial killer might be using both his home and his office as launch-
ing pads for his attacks. In this case, no single location may best account for the
observations. In this paper, we show that many natural problems associated with
geospatial abduction are NP-Complete, which cause us to resort to approximation
techniques. We then show that certain geospatial abduction problems reduce to
several well-studied combinatorial problems that have viable approximation algo-
rithms. We implement some of the more viable approaches with heuristics suitable
for geospatial abduction, and test them on a real-world data-set. The organization
and main contributions of this paper are as follows.

—Section 2 formally defines geospatial abduction problems (GAPs for short) and
Section 3 analyzes their complexity.

—Section 4 develops a “naive” algorithm for a basic geospatial abduction problem
called k-SEP and shows reductions to set-covering, dominating set, and linear-
integer programming that allow well-known algorithms for these problems to be
applied to GAPs.

—Section 5 describes two greedy algorithms for k-SEP and compares them to a
reduction to the set-covering problem.

—Section 6 describes our implementation and shows that our greedy algorithms
outperform the set-covering reduction in a real-world application on identifying
weapons caches associated with Improvised Explosive Device (IED) attacks on
US troops in Iraq. We show that even if we simplify k-SEP to only cases where
k-means classification algorithms work, our algorithms outperform those.

—Section 7 compares our approach with related work.

2. GEOSPATIAL ABDUCTION PROBLEM (GAP) DEFINITION

Throughout this paper, we assume the existence of a finite, 2-dimensional M ×
N space S1 for some integers M,N ≥ 1 called the geospatial universe (or just
universe). Each point p ∈ S is of the form (x, y) where x, y are integers and
0 ≤ x ≤M and 0 ≤ y ≤ N . We assume that all observations we make occur within

1We use integer coordinates as most real world geospatial information systems (GIS) systems use

discrete spatial representations.
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Fig. 1. A space. Red dots denote observations. Yellow squares denote infeasible locations. Green

stars show one (0,3) explanation, while pink triangles show another (0,3) explanation.

space S. We use the space shown in Figure 1 throughout this paper to illustrate
the concepts we introduce. We assume that S has an associated distance function
d which assigns a non-negative distance to any two points and satisfies the usual
distance axioms.2

Definition 2.1 observation. An observation O is any finite subset of S.

Consider the geospatial universe shown in Figure 1. In the serial killer application,
the red dots would indicate the locations of the murders, while in the ship-wreck
example, they would indicate the locations where artifacts were found. We wish to
identify the killer’s location (or the sunken ship or the sun bear’s den).

As mentioned earlier, there are many constraints that govern where such locations
might be. For instance, it is unlikely that the sun-bear’s den (or the killer’s house
or office) is in the water, while the sunken ship is unlikely to be on land.

Definition 2.2 feasibility predicate. A feasibility predicate feas is a func-
tion from S to {TRUE,FALSE}.
Thus, feas(p) = TRUE means that point p is feasible and must be considered in the
search. Figure 1, denotes infeasible places via a yellow square. Throughout this
paper, we assume that feas is an arbitrary, but fixed predicate.3 Further, as feas
is defined as a function over {TRUE,FALSE}, it can allow for user input based on
analytical processes currently in place. For instance, in the military, analysts often
create “MCOO” overlays where “restricted terrain” is deemed infeasible [US Army
1994]. We can also easily express feasibility predicates in a Prolog-style language –
we can easily state (in the serial killer example) that point p is considered feasible
if p is within R units of distance from some observation and p is not in the water.
Likewise, in the case of the sun bear example, the same language might state that p
is considered feasible if p is within R1 units of distance from marks on trees, within
R2 units of scat, and if p has some landcover that would allow the bear to hide.
A Prolog-style language that can express such notions of feasibility is the hybrid
knowledge base paradigm [Lu et al. 1996] in which Prolog style rules can directly
invoke a GIS system.

2d(x, x) = 0; d(x, y) = d(y, x); d(x, y) + d(y, z) ≥ d(x, z).
3We also assume throughout the paper that feas is computable in constant time. This is a realistic
assumption, as for most applications, we assume feas to be user-defined. Hence, we can leverage

a data-structure indexed with the coordinates of S to allow for constant-time computation.
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Definition 2.3 (α, β) explanation. Suppose O is a finite set of observations,
E is a finite set of points in S, and α ≥ 0, β > 0 are some real numbers. E is said
to be an (α, β) explanation of O iff:

—p ∈ E implies that feas(p) = TRUE, i.e. all points in E are feasible and

—(∀o ∈ O)(∃p ∈ E) α ≤ d(p, o) ≤ β, i.e. every observation is neither too close nor
too far from some point in E.

Thus, an (α, β) explanation is a set of points (e.g. denoting the possible locations
of the home/office of the serial killer or the possible locations of the bear’s den).
Each point must be feasible and every observation must have an analogous point
in the explanation which is neither too close nor too far.

Given an (α, β) explanation E , there may be an observation o ∈ O such that
there are two (or more) points p1, p2 ∈ E satisfying the conditions of the second
bullet above. If E is an explanation for O, a partnering function ℘E is a function
from O to E such that for all o ∈ O, α ≤ d(℘E(o), o) ≤ β. ℘E(o) is said to be o’s
partner according to the partnering function ℘E . We now present a simple example
of (α, β) explanations.

Example 2.1. Consider the observations in Figure 1 and suppose α = 0, β = 3.
Then the two green stars denote an (α, β) explanation, i.e. the set {(6, 6), (12, 8)} is
a (0, 3) explanation. So is the set of three pink triangles, i.e. the set {(5, 6), (10, 6),
(13, 9)} is also an (0, 3) explanation.

The basic problem that we wish to solve in this paper is the following.

The Simple (α, β) Explanation Problem (SEP).
INPUT: Space S, a set O of observations, a feasibility predicate feas, and numbers
α ≥ 0, β > 0.
OUTPUT: “Yes” if there exists an (α, β) explanation for O — “no” otherwise.

A variant of this problem is the k-SEP problem which requires, in addition, that
E contains k elements or less, for k < |O|. Yet another variant of the problem tries
to find an explanation E that is “best” according to some cost function.

Definition 2.4 cost function χ. A cost function χ is a mapping from expla-
nations to non-negative reals.

We will assume that cost functions are designed so that the smaller the value they
return, the more desirable an explanation is. Some example cost functions are
given below. The simple one below merely looks at the mean distances between
observations and their partners.

Example 2.2 Mean-distance. Suppose S,O, feas, α, β are all given and sup-
pose E is an (α, β) explanation for O and ℘E is a partnering function. We could
initially set the cost of an explanation E (with respect to this partnering function)
to be:

χ℘E (E) =
Σo∈O d(o, ℘E(o))

|O|
.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Fig. 2. Left: Points {o1, o2, o3} indicate locations of evidence of the Malayan sun bear (we shall

refer to these as set O). Points {p1, p2, . . . , p8} indicate feasible dwellings for the bear. The

concentric rings around each element of O indicate the distance α = 1.7km and β = 3.7km.
Right: Points {p1, p2, p3} are feasible for crime-scenes {o1, o2}. {p1, p2} are safe-houses within

a distance of [1, 2] km. from crime scene o1 and {p2, p3} are safe-houses within a distance of [1, 2]

km. from crime scene o2.

Suppose ptn(E) is the set of all partner functions for E in the above setting. Then
we can set the cost of E as:

χmean(E) = inf{χ℘E (E) | ℘E ∈ ptn(E)}.

The above definition removes reliance on a single partnering function as there may
be several partnering functions associated with a single explanation. We illustrate
this definition using our sun bear example.

Example 2.3. Wildlife experts have found droppings and other evidence of the
Malayan sun bear in a given space, S, depicted in Figure 2. Points {o1, o2, o3}
indicate locations of evidence of the Malayan sun bear (we shall refer to these as set
O). Points {p1, p2, . . . , p8} indicate feasible dwellings for the bear. The concentric
rings around each element of O indicate the distance α = 1.7km and β = 3.7km.
The set {p3, p6} is a valid (1.7, 3.7) explanation for the set of evidence, O. However,
we note that observation o2 can be partnered with either point. If we are looking to
minimize distance, we notice that d(o2, p3) = 3km and d(o2, p6) = 3.6km, hence p3

is the partner for o2 such that the distance is minimized.

We now define an “optimal” explanation as one that minimizes cost.

Definition 2.5. Suppose O is a finite set of observations, E is a finite set of
points in S, α ≥ 0, β > 0 are some real numbers, and χ is a cost function. E is
said to be an optimal (α, β) explanation iff E is an (α, β) explanation for O and
there is no other (α, β) explanation E ′ for O such that χ(E ′) < χ(E).

We present an example of optimal (α, β) explanations below.

Example 2.4. Consider the sun bear from Example 2.3 whose behavior is de-
picted in Figure 2 (left). While {p3, p6} is a valid solution for the k-SEP problem

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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(k = 2), it does not optimize mean distance. In this case the mean distance would
be 3km. However, the solution {p3, p7} provides a mean-distance of 2.8km.

Suppose we are tracking a serial killer who has struck at locations O = {o1, o2}.
The points {p1, p2, p3} are feasible locations as safe-houses for the killer (partners).
This is depicted in Figure 2 (right). Based on historical data, we know that serial
killers strikes are at least 1km away from a safe-house and at most 2km from the
safe house (α = 1, β = 2). Thus, for k = 2, any valid explanation of size 2 provides
an optimal solution wrt mean-distance as every feasible location for a safe-house is
within 2km of a crime scene.

We are now ready to define the cost-based explanation problem.
The Cost-based (α, β) Explanation Problem.
INPUT: Space S, a set O of observations, a feasibility predicate feas, numbers
α ≥ 0, β > 0, a cost function χ and a real number v > 0.
OUTPUT: “Yes” if there exists an (α, β) explanation E for O such that χ(E) ≤ v
— “no” otherwise.

It is easy to see that standard classification problems like k-means 4 can be
captured within our framework by simply assuming that α = 0, β > max(M,N)2

and that all points are feasible. In contrast, standard classification algorithms
cannot take feasibility into account - and this is essential for the above types of
applications.

3. COMPLEXITY OF GAP PROBLEMS

SEP can be easily solved in PTIME. Given a set O of observations, for each o ∈ O,
let Po = {p ∈ S | feas(p) = TRUE ∧ α ≤ d(p, o) ≤ β}. If Po 6= ∅ for each
o, we return “yes”. We call this algorithm STRAIGHTFORWARD-SEP. Another
algorithm would merely find the set F of all feasible points and return “yes” iff for
every observation o, there is at least one point p ∈ F such that α ≤ d(p, o) ≤ β. In
this case, F is the explanation produced - but it is a very poor explanation. In the
serial killer example, F merely tells the police to search all feasible locations without
trying to do anything intelligent. k-SEP allows the user to constrain the size of the
explanation so that “short and sweet” explanations that are truly meaningful are
produced. The following result states that k-SEP is NP-Complete - the proof is a
reduction from Geometric Covering by Discs (GCD) [Johnson 1982].

Theorem 3.1. k-SEP is NP-Complete.

In the associated optimization problem with k-SEP, we wish to produce an ex-
planation of minimum cardinality. Note that minimum cardinality is a common
criterion for parsimony in abduction problems [Reggia and Peng 1990]. We shall
refer to this problem as MINSEP. This problem is obviously NP-hard by Theo-
rem 3.1. We can adjust STRAIGHTFORWARD-SEP to find a solution to MINSEP
by finding the minimum hitting set of the Po’s.

Example 3.1. Consider the serial killer scenario in Example 2.4 and Figure 2
(right). Crime scene (observation) o1 can be partnered with two possible safe-houses

4See [Alpaydin 2010] for a survey on classification work.
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{p1, p2} and crime scene o2 can be partnered with {p2, p3}. We immediately see that
the potential safe house located at p2 is in both sets. Therefore, p2 is an explanation
for both crime scenes. As this is the only such point, we conclude that {p2} is the
minimum-sized solution for the SEP problem. However, while it is possible for
STRAIGHTFORWARD-SEP to return this set, there are no assurances it does. As
we saw in Example 2.4, E = {p1, p2} is a solution to SEP, although a solution with
lower cardinality ({p2}) exists. This is why we introduce the MINSEP problem.

With the complexity of k-SEP, the following corollary tells us the complexity
class of the Cost-based Explanation problem. We show this reduction by simply
setting the cost function χ(E) = |E|.

Corollary 3.1. Cost-based Explanation is NP-Complete.

As described earlier, MINSEP has the feel of a set-covering problem. Although
the generalized cost-based explanation cannot be directly viewed with a similar
intuition (as the cost maps explanations to reals – not elements of S), there is an
important variant of the Cost-based problem that does. We introduce weighted
SEP, or WT-SEP below.

Weighted Spatial Explanation. (WT-SEP)
INPUT: A space S, a set O of observations, a feasibility predicate feas, numbers
α ≥ 0, β > 0, a weight function c : S → <, and a real number v > 0.
OUTPUT: “Yes” if there exists an (α, β) explanation E forO such that

∑
p∈E c(p) ≤

v — “no” otherwise.

In this case, we can easily show NP-Completeness by reduction from k-SEP, we
simply set the weight for each element of S to be one, causing

∑
p∈E c(p) to equal

the cardinality of E .

Corollary 3.2. WT-SEP is NP-Complete.

Cost-based explanation problems presented in this section are very general. While
the complexity results hold for an arbitrary function in a general case, we also con-
sider specific functions as well. Below we present the total-distance minimization
explanation problem (TD-SEP). This is a problem where we seek to minimize the
sum of distances between observations and their closest partners while imposing a
restriction on cardinality.

Total Distance Minimization Explanation Problem. (TD-SEP)
For space S, let d : S × S → < be the Euclidean distance between two points in S.
INPUT: A space S, a set O of observations, a feasibility predicate feas, numbers
α ≥ 0, β > 0, positive integer k < |O|, and real number v > 0.
OUTPUT: “Yes” if there exists an (α, β) explanation E for O such that |E| = k
and

∑
oi∈Ominpj∈E d(oi, pj) ≤ v — “no” otherwise.

Theorem 3.2. TD-SEP is NP-Complete.

The NP-hardness of the TD-SEP is based on a reduction from the k-Median
Problem [Papadimitriou 1981]. This particular reduction (details in the appendix)

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Algorithm 1 (NAIVE-KSEP-EXACT)
INPUT: Space S, a set O of observations, a feasibility predicate feas, real numbers
α ≥ 0, β > 0, and natural number k > 0
OUTPUT: Set E ⊆ S of size k (or less) that explains O
(1) Let M be a matrix array of pointers to binary string {0, 1}|O|. M is of the same

dimensions as S. Each element in M is initialized to NULL. For a given p ∈ S, M [p]
is the place in the array.

(2) Let L be a list of pointers to binary strings. L is initialized as null.

(3) For each oi ∈ O do the following
(a) Determine all points p ∈ S such that α ≤ d(o, p) ≤ β such that feas(p) = TRUE.
(b) For each of these points, p, if M [p] = NULL then initialize a new array where

only bit i is set to 1. Then add a pointer to M [p] in L.
(c) Otherwise, set bit i of the existing array to 1.

(4) For any k elements of L (actually the k elements pointed to by elements of L), we
shall designate `1, . . . , `j , . . . `k as the elements. We will refer to the ith bit of element
`j as `j(i).

(5) Exhaustively generate all possible combinations of k elements of L until one such

combination is found where ∀i ∈ [1, |O|],
∑k

j=1
(`j(i)) > 0

(6) If no such combination is found, return NO. Otherwise, return the first combination
that was found.

also illustrates how the k-median problem is a special case of GAPs, but k-median
problems cannot handle arbitrary feasibility predicates of the kind that occur in
real-life geospatial reasoning. The same argument applies to k-means classifiers as
well.

4. EXACT ALGORITHM FOR GAP PROBLEMS

This section presents four exact approaches to solve k-SEP and WT-SEP. First,
we provide an enumerative approach that exhaustively searches for an explanation.
Then, we show that the problem reduces to set-cover, dominating set, and linear-
integer programming. Existing algorithms for these problems can hence be used
directly. Throughout this section, we shall use the symbols ∆ to represent the
bound on the number of partners that can be associated with a single observation
and f to represent the bound on the number of observations supported by a single
partner. Note that both values are bounded by π(β2 − α2), however they can be
much less in practice – specifically f is normally much smaller than ∆.

4.1 Naive Exact Algorithm

We now show correctness of NAIVE-KSEP-EXACT. This algorithm provides an exact
solution to k-SEP but takes exponential time (in k). The algorithm first identifies
a set L of all elements of S that could be possible partners for O. Then, it considers
all subsets of L of size less than or equal to k. It does this until it identifies one
such subset as an explanation.

Proposition 4.1. If there is a k-sized simple (α, β) explanation for O, then
NAIVE-KSEP-EXACT returns an explanation. Otherwise, it returns NO.
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Finally, we have the complexity of the algorithm.

Proposition 4.2. The complexity of NAIVE-KSEP-EXACT is O( 1
(k−1)! (π(β2 −

α2)|O|)(k+1)).

An exact algorithm for the cost-based explanation problems follows trivially from
the NAIVE-KSEP-EXACT algorithm by adding the step of computing the value for
χ for each combination. Provided this computation takes constant time, this does
not affect the O( 1

(k−1)! (π(β2 − α2)|O|)(k+1)) run time of that algorithm.

4.2 An Exact Set-Cover Based Approach

We now show that k-SEP polynomially reduces to an instance of the popular set-
covering problem [Karp 1972] which allows us to directly apply the well-known
greedy algorithm reviewed in Paschos [1997]. Set-Cover is defined as follows.

The Set-Cover Problem. (Set-Cover)
INPUT: Set of elements, E and a family of subsets of E, F ≡ {S1, . . . , Smax}, and
positive integer k.
OUTPUT: “Yes” if there exists a k-sized subset of F , Fk, such that

⋃k
i=1{Si ∈

Fk} ≡ E.

Through a simple modification of NAIVE-KSEP-EXACT, we can take an instance
of k-SEP and produce an instance of Set-Cover. We run the first four steps,
which only takes O(∆ · |O|) time by the proof of Proposition 4.2.

Theorem 4.1. k-SEP polynomially reduces to Set-Cover.

Example 4.1. Consider the serial killer scenario in Example 2.4 and Figure 2
(right). Suppose we want to solve this problem as an instance of k-SEP by a
reduction to set-cover. We consider the set of crime-scene locations, O ≡ {o1, o2}
as the set we wish to cover. We obtain our covers from the first four steps of
NAIVE-KSEP-EXACT. Let us call the result list L. Hence, we can view the values of
the elements in L as the following sets S1 ≡ {o1}, S2 ≡ {o1, o2}, S3 ≡ {o2}. These
correspond with points p1, p2, p3 respectively. As S2 covers O, p2 is an explanation.

The traditional approach for approximation of set-cover has a time complexity
of O(|E| · |F | · size), where size is the cardinality of the largest set in the family
F (i.e. size = maxi≤|F | |Si|). This approach obtains an approximation ratio of 1 +
ln(size) [Paschos 1997]. As f is the quantity of the largest number of observations
supported by a single partner, the approximation ratio for k-SEP using a greedy-
scheme after a reduction from set-cover is 1+ln(f). The NAIVE-KSEP-SC algorithm
below leverages the above reduction to solve the k-SEP problem.

Proposition 4.3. NAIVE-KSEP-SC has a complexity of O(∆ · f · |O|2) and an
approximation ratio of 1 + ln(f).

Proposition 4.4. A solution E to NAIVE-KSEP-SC provides a partner to every
observation in O if a partner exists – otherwise, it returns IMPOSSIBLE.

The algorithm NAIVE-KSEP-SC is a naive, straight-forward application of the
O(|E| · |F | · size) greedy approach for set-cover as presented in Paschos [1997].

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Algorithm 2 (NAIVE-KSEP-SC)
INPUT: Space S, a set O of observations, a feasibility predicate feas, and real
numbers α ≥ 0, β > 0
OUTPUT: Set E ⊆ S that explains O
(1) Initialize list E to null

(2) Let M be a matrix array of the same dimensions as S of lists of pointers initialized
to null. For a given p ∈ S, M [p] is the place in the array.

(3) Let L be a list of pointers to lists in M , L is initialized to null.

(4) Let O′ be an array of Booleans of length |O|. ∀i ∈ [1, |O|], initialize O′[i] = TRUE.
For some element o ∈ O, O′[o] is the corresponding space in the array.

(5) Let numObs = |O|
(6) For each element o ∈ O, do the following.

(a) Determine all elements p ∈ S such that feas(p) = TRUE and d(o, p) ∈ [α, β]
(b) If there does not exist a p ∈ S meeting the above criteria, then terminate the

program and return IMPOSSIBLE.
(c) If M [p] = null then add a pointer to M [p] to L
(d) Add a pointer to o to the list M [p].

(7) While numObs > 0 loop
(a) Initialize pointer cur ptr to null
(b) Initialize integer cur size to 0
(c) For each ptr ∈ L, do the following:

i. Initialize integer this size to 0
ii. Let M [p] be the element of M pointed to by ptr
iii. For each obs ptr in the list M [p], do the following

A. Let i be the corresponding location in array O′ to obs ptr
B. If O′[i] = TRUE, increment this size by 1

iv. If this size > cur size, set cur size = this size and have cur ptr point to
M [p]

(d) Add p to E
(e) For every obs ptr in the list pointed to by cur ptr, do the following:

i. Let i be the corresponding location in array O′ to obs ptr
ii. If O′[i], then set it to FALSE and decrement numObs by 1

(f) Add the location in space S pointed to by cur ptr to E
(8) Return E

We note that it is possible to implement a heap to reduce the time-complexity to
O(∆ ·f · |O| · lg(∆ · |O|)) - avoiding the cost of iterating through all possible partners
in the inner-loop.

In addition to the straightforward greedy algorithm for set-covering, there are
several other algorithms that provide different time complexity/approximation ratio
combinations. However, with a reduction to the set-covering problem we must
consider the result of Lund and Yannakakis [1994] which states that set-cover cannot
be approximated within a ratio c · log(n) for any c < 0.25 (where n is the number
of subsets in the family F ) unless NP ⊆ DTIME[npoly log n].

A reduction to set-covering has the advantage of being straightforward. It also al-
lows us to leverage the wealth of approaches developed for this well-known problem.
In the next section, we show that k-SEP reduces to the dominating set problem as
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Algorithm 3 (KSEP-TO-DOMSET)
INPUT: Space S, a set O of observations, a feasibility predicate feas, and real
numbers α ≥ 0, β > 0
OUTPUT: Graph GO for use in an instance of a DomSet problem

(1) Let GO = (VO, EO) be a graph. Set VO = S and EO = ∅.
(2) Let S be a mapping defined as S : S → VO. In words, S takes elements of the space

and returns nodes from GO as defined in the first step. This mapping does not change
during the course of the algorithm.

(3) For each oi ∈ O do the following
(a) Determine all points p ∈ S that are such that α ≤ d(o, p) ≤ β. Call this set Pi

(b) For all p ∈ Pi calculate feas(p). If feas(p) = FALSE, remove p from Pi.
(c) Let Vi = {v ∈ VO|∃p ∈ Pi such that S(p) = v}.
(d) Add |Pi| new nodes to VO. Add these nodes to Vi as well.
(e) For every pair of nodes v1, v2 ∈ Vi, add edge (v1, v2) to EO.

(4) Remove all v ∈ VO where there does not exist an v′ such that (v, v′) ∈ EO
(5) If any Pi ≡ ∅ return IMPOSSIBLE. Otherwise return GO.

well. We then explore alternate approximation techniques based on this reduction.

4.3 An Exact Dominating Set Based Approach

We show below that k-SEP also reduces to the well known dominating set prob-
lem (DomSet) [Garey and Johnson 1979] allowing us to potentially leverage fast
algorithms such as the randomized-distributed approximation scheme in Jia et al.
[2002]. DomSet is defined as follows.

Dominating Set. (DomSet)
INPUT: Graph G = (V,E) and positive integer K ≤ |V |.
OUTPUT: “Yes” if there is a subset V ′ ⊂ V such that |V ′| ≤ K and such that
every vertex v ∈ V − V ′ is joined to at least one member of V ′ by an edge in E.

As the dominating set problem relies on finding a certain set of nodes in a graph,
then, unsurprisingly, our reduction algorithm, Algorithm 3, takes space S, an ob-
servation set O, feasibility predicate feas, and numbers α, β and returns graph GO
based on these arguments.

We now present an example to illustrate the relationship between a dominating
set of size k in GO and a k-sized simple (α, β) explanation for O. The following
example illustrates the relationship between a k-SEP problem and DomSet.

Example 4.2. Consider the serial killer scenario in Example 2.4, pictured in
Figure 2 (right). Suppose we want to solve this problem as an instance of k-SEP
by a reduction to DomSet. We want to find a 1-sized simple (α, β) explanation
(safe-house) for O (the set of crime scenes, {o1, o2}). Suppose that after running an
algorithm such as STRAIGHFORWARD-SEP, we find that {p1, p2, p3} are elements
of S that are feasible. {p1, p2} are all within a distance of α, β from o1 and {p2, p3}
are all within a distance of α, β from o2. We run KSEP-TO-DOMSET which creates
graph, GO. Refer to Figure 3 for the graph. We can see that {p2} is a 1-sized
dominating sets for GO, hence a 1-sized explanation for O.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Fig. 3. Results of KSEP-TO-DOMSET based on data seen in Figure 2 (right). Note that
{p1, p2, p′1, p

′
2} form a complete graph and {p2, p3, p′′2 , p

′
3} also form a complete graph. Note

that {p2} is a dominating set of size 1. Hence, {p2} is a 1-sized simple (α, β) explanation for O,

as depicted in Figure 2 (right).

We notice that the inner loop of KSEP-TO-DOMSET is bounded by O(∆) op-
erations and the outer loop will iterate |O| times. Thus, the complexity of KSEP-
TO-DOMSET is O(∆ · |O|).

Proposition 4.5. The complexity of KSEP-TO-DOMSET is O(∆ · |O|).
Example 4.2 should give us some intuition into why the reduction to DomSet

works. We provide the formal proof in the Appendix.

Theorem 4.2. k-SEP is polynomially reducible to DomSet.

The straightforward approximation scheme for DomSet is to view the problem
as an instance of Set-Cover and apply a greedy algorithm. The reduction would
view the set of vertices in GO as the elements, and the family of sets as each
vertex and its neighbors. This results in both a greater complexity and a worse
approximation ratio when compared with the reduction directly to Set-Cover.

Proposition 4.6. Solving k-SEP by a reduction to DomSet using a straight-
forward greedy approach has time-complexity O(∆3 · f · |O|2) and an approximation
ratio bounded by O(1 + ln(2 · f ·∆)).

There are other algorithms to approximate DomSet [Jia et al. 2002; Kuhn and
Wattenhofer 2003]. By leveraging Jia et al. [2002], we can obtain an improved
complexity while retaining the same approximation ratio as the greedy approach.

Proposition 4.7. Solving k-SEP by a reduction to DomSet using the dis-
tributed, randomized algorithm presented in Jia et al. [2002] has a time complexity
O(∆ · |O|+ ln(2 ·∆ · |O|) · ln(2 ·∆ · f)) with high probability and approximation ratio
of O(1 + ln(2 · f ·∆)).

Hence, although a reduction to dominating set generally gives us a worse approxi-
mation guarantee, we can (theoretically) outperform set-cover with the randomized
algorithm for dominating set in terms of complexity.

4.4 An Exact Integer Linear Programming based Approach

Given an instance of k-SEP, we show how to create a set of integer constraints
that if solved, will yield a solution to the problem.

Definition 4.1 OPT-KSEP-IPC. The k-SEP integer programming constraints
(OPT-KSEP-IPC) require the following information, obtained in O(|O| · π(β2 − α2)
time:
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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—Let L be the set of all possible partners generated in the first four steps of NAIVE-
KSEP-EXACT.

—For each p ∈ L, let str(p) be the string of |O| bits, where bit str(p)i is 1 if p is
a partner of the ith observation (this is also generated in the first four steps of
NAIVE-KSEP-EXACT).

For each pj ∈ L, let xj ∈ {0, 1}. xj = 1 iff pj is in E.
Then KSEP-IPC consists of the following:
Minimize

∑
pj∈L xj subject to

(1 ) ∀oi ∈ O,
∑
pj∈L xj · str(pj)i ≥ 1

(2 ) ∀pj ∈ L, xj ∈ {0, 1} (for the relaxed linear program: xj ≤ 1)

Proposition 4.8. OPT-KSEP-IPC consists of O(|O|π(β2 − α2)) variables and
O(|O| · π(β2 − α2)) constraints.

Proposition 4.9. For a given instance of the optimization version k-SEP, if
OPT-KSEP-IPC is solved, then

⋃
pj∈Lxj=1

pj is an optimal solution to k-SEP.

Example 4.3. Consider the serial killer scenario in Example 2.4, pictured in
Figure 2 (right). Suppose we want to solve this problem as an instance of MINSEP.
We would set up the constraints as follows:
Minimize x1+x2+x3 subject to 1·x1+1·x2+0·x3 ≥ 1 and 0·x1+1·x2+1·x3 ≥ 1,
where x1, x2, x3 ∈ {0, 1}
Obviously, setting x1 = 0, x2 = 1, x3 = 0 provides an optimal solution. Hence, as
x2 is the only non-zero variable, p2 is the explanation for the crime-scenes.

A solution to the constraints OPT-KSEP-IPC can be approximated using the
well-known “rounding” technique [Hochbaum 1982; Vazirani 2004] that relaxes con-
straints. We present an OPT-KSEP-IPC using rounding.

Algorithm 4 (NAIVE-KSEP-ROUND)
INPUT: Space S, a set O of observations, a feasibility predicate feas, and real
numbers α ≥ 0, β > 0
OUTPUT: Set E ⊆ S that explains O

(1) Run the first four steps of NAIVE-KSEP-EXACT

(2) Solve the relaxation of OPT-KSEP-IPC

(3) For the o ∈ O with the most possible partners, let ∆ be the number of possible
partners associated with o. This can be done in line 1

(4) Return all pj ∈ L where xj ≥ 1
∆

Proposition 4.10. NAIVE-KSEP-ROUND returns an explanation for O that is
within a factor ∆ from optimal, where ∆ is the maximum number of possible part-
ners associated with any observation.

ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Algorithm 5 (GREEDY-KSEP-OPT1)
INPUT: Space S, a set O of observations, a feasibility predicate feas, and real
numbers α ≥ 0, β > 0
OUTPUT: Set E ⊆ S that explains O
(1) Run lines 1-5 of NAIVE-KSEP-SC

(2) Let OBS be an array, size |O| of lists to pointers in M . For some observation o, let
OBS[o] be the corresponding list in the array.

(3) Run the loop in line 6 of NAIVE-KSEP-SC but when partner p of observation o is con-
sidered, add a pointer to M [p] in the list OBS[o]. The list L need not be maintained.

(4) While numObs > 0 loop
(a) Randomly select an element o ∈ O such that O′[o] = TRUE
(b) Run the greedy-selection loop of line 7 of NAIVE-KSEP-SC, but consider the list

OBS[o] instead of L

(5) Return E

There are several things to note about this approach. First, it can be easily
adapted to many of the weighted variants - such as WT-SEP. Second, we note
that the rounding algorithm is not a randomized rounding algorithm – which often
produces a solution that satisfies all of the constraints in the linear-integer program.
The above algorithm guarantees that all of the observations will be covered (if an
explanation exists). Finally, this approach allows us to leverage numerous software
packages for solving linear and linear-integer programs.

5. GREEDY HEURISTICS FOR GAP PROBLEMS

5.1 A Linear Time Greedy Approximation Scheme

In this section, we introduce a greedy approximation scheme for the optimization
version of k-SEP that has a lower time-complexity than NAIVE-KSEP-SC but still
maintains the same approximation ratio. Our GREEDY-KSEP-OPT1 algorithm runs
in linear time w.r.t. O. The key intuition is that NAIVE-KSEP-SC iterates through
O(∆ · |O|) possible partners in line 7. Our algorithm first randomly picks an ob-
servation and then greedily selects a partner for it. This results in the greedy step
iterating through only O(∆) partners.

Example 5.1. Consider the sun bear from Example 2.3 and Figure 2. After
initializing the necessary data structures in lines 1-3, GREEDY-KSEP-OPT1 iterates
through the observations in O where the associated position in O′ is TRUE. Suppose
the algorithm picks o1 first. It now accesses the list pointed to from OBS[o1]. This
gives us a set of pointers to the following elements of S: {p1, p2, p3, p4}. Following
the greedy selection outlined in line 7 of NAIVE-KSEP-SC, the algorithm iterates
through these points, visiting the list of observations associated with each one in the
matrix array M .

First, the algorithm accesses the list pointed to by M [p1]. Figure 4 (left) shows
the observations considered when p1 is selected. As there is only one observation in
list M [p1] whose associated Boolean in O′ is TRUE, the variable cur size is set to
1 (see line 7(c)iv of NAIVE-KSEP-SC). cur ptr is then set to M [p1].

Now we consider the next element, p2. Figure 4 (right) shows the list pointed to
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Fig. 4. Left: GREEDY-KSEP-OPT1 accesses the list pointed to by M [p1] thus considering all

observations available to p1. Right: GREEDY-KSEP-OPT1 accesses the list pointed to by M [p2]

and finds it has more active observations than it found in the list pointed to by M [p1].

Fig. 5. GREEDY-KSEP-OPT1 considers the observations available to p7. The X’s on o1 and o2
signify that OBS[o1] and OBS[o2] are set to FALSE.

by M [p2]. As M [p2] points to more observations whose associated O′ Boolean is
TRUE, we update cur size to 2 and cur ptr to M [p2].

The algorithm then iterates through p3 and p4, but finds they do not offer more
observations than p2. Hence, p2 is added to the solution set (E). The algorithm
updates the array of Booleans, O′ and sets O′[o1] and O′[o2] to FALSE (depicted by
X’s over those observations in subsequent figures). numObs is decremented by 2.

Now, we enter the second iteration of line 4. The only element for the algorithm
to pick at this point is o3, as only O′[o3] is TRUE. The list OBS[o3] points to the po-
sitions {p6, p7, p8}. In Figure 5 we look at what happens as the algorithm considers
the p7. As OBS[o2] = FALSE, it only considers o3 when computing this size.

When the algorithm finishes its consideration of all the elements pointed to by
OBS[o3], it will return the first element of that set (p6) as neither p7 nor p8 were
partners to more available observations than p6 (in our implementation of this
algorithm, we use a coin-flip to break ties among partners with the same number of
observations). GREEDY-KSEP-OPT1 then adds p6 to E and terminates. The final
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solution returned, {p2, p6}, is a valid (and in this case, optimal) explanation.

Proposition 5.1 Complexity of GREEDY-KSEP-OPT1. GREEDY-KSEP-
OPT1 has a complexity of O(∆ · f · |O|) and an approximation ratio of 1 + ln(f).

Proposition 5.2. GREEDY-KSEP-OPT1 returns a |E|-sized (α, β) explanation
for O.
GREEDY-KSEP-OPT1 returns IMPOSSIBLE if there is no explanation for O.

We can bound the approximation ratio for GREEDY-KSEP-OPT1 by O(1+ln(f)),
as it is still essentially a greedy algorithm for a covering problem. The main differ-
ence between GREEDY-KSEP-OPT1 is the way it greedily chooses covers (partners).
This algorithm randomly picks an uncovered observation in each loop and then
greedily chooses a cover that covers that observation. Improving the accuracy of
this algorithm (in practice) is tied directly to the selection criteria used to pick ob-
servations, which is random in GREEDY-KSEP-OPT1. In Section 5.2 we develop an
algorithm that “smartly” picks observations with a dynamic ranking scheme while
maintaining a time complexity lower than the standard set-covering approach.

5.2 Greedy Observation Selection

GREEDY-KSEP-OPT1 randomly selects observations although subsequent partner
selection was greedy. It is easy to implement an a-priori ranking of observations
based on something like the maximum number of other observations which share
a partner with it. Such a ranking could be implemented at the start of GREEDY-
KSEP-OPT1 with no effect on complexity, but the ranking would be static and may
lose its meaning after several iterations of the algorithm. We could also implement
a dynamic ranking. We present a version of GREEDY-KSEP-OPT1 that we call
GREEDY-KSEP-OPT2 that picks the observations based on dynamic ranking, runs
in time O(∆ · f2 · |O| + |O| · ln(|O|)), and maintains the usual approximation ra-
tio of 1 + ln(f) for greedy algorithms. Our key intuition was to use a Fibonacci
heap [Fredman and Tarjan 1987]. With such a data structure, we can update the
rankings of observations at constant amortized cost per observation being updated.
The most expensive operation is to remove an observation from the heap - which
costs an amortized O(ln(|O|)), however as we can never remove more than |O|
items from the heap, this cost is most likely dominated by the cost of the rest of
the algorithm, which is more expensive than GREEDY-KSEP-OPT1 by a factor of
f . Recall that f is the bound on the number of observations supported by a single
partner - and is often very small in practice.

In order to leverage the Fibonacci heap, there are some restrictions on how the
ranking can be implemented. First, the heap puts an element with the minimal
key on top, and can only decrease the key of elements - an element in the heap can
never have its key increased. Additionally, there is a need for some auxiliary data
structures as searching for an element in the heap is very expensive. Fortunately,
the k-SEP problem is amenable to these type of data structures.

We based the key (ranking) on a simple heuristic for each observation. The key
for a given observation o is the number of unique observations that share a partner
with o. As we are extracting the minimum-keyed observation, we are taking the
observation that has the “least in common” with the other observations. The
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Algorithm 6 GREEDY-KSEP-OPT2

INPUT: Space S, a set O of observations, a feasibility predicate feas, and real
numbers α ≥ 0, β > 0
OUTPUT: Set E ⊆ S that explains O
(1) Run lines 1-3 of GREEDY-KSEP-OPT1.

(2) Let key1, . . . key|O| be natural numbers associated with each observation. Initially,
they are set to 0. For some o ∈ O let keyo be the associated number.

(3) Let REL OBS be an array of lists of pointers to elements of O. The size of the array
is O. For element o ∈ O, let REL OBS[o] be the corresponding space in the array.

(4) For each o ∈ O, do the following:
(a) For each element p ∈ OBS[o], do the following.

i. For each element obs ptr of the list pointed to by M [p], do the following
A. If obs ptr points to an element of O not pointed to in the list

REL OBS[o], then add obs ptr to REL OBS[o] and increment keyo by
1.

(5) Let OBS HEAP be a Fibonacci heap. Let QUICK LOOK be an array (size O) of
pointers to elements of the heap. For each o ∈ O, add the tuple 〈o, keyo〉 to the heap,
along with a pointer to the tuple to QUICK LOOK[o]. Note we are using keyo as the
key for each element in the heap.

(6) While OBS HEAP is not empty, loop
(a) Take the minimum element of OBS HEAP, let o be the associated observation

with this element.
(b) Greedily select an element of OBS[o] as done in the loop at line 4 of GREEDY-

KSEP-OPT1. We shall call this element p.
(c) For every o′ ∈ O pointed to by a pointer in M [p], such that O′[o′] = TRUE, do

the following.
i. Set O′[o′] = FALSE
ii. Remove the element pointed to by QUICK LOOK[o′] from OBS HEAP
iii. For every element o′′ ∈ O pointed to by an element of REL OBS[o′] where
O′[o′′] = TRUE do the following.
A. Decrease the keyo′′ by 1.

(7) Return E

intuition of choosing an observation with “less in common” with other observations
ensures that outliers get covered with larger covers. Meanwhile, elements with a
higher rank in this scheme are covered last, which may lead to a more efficient
cover. In Section 6 we show experimentally that this heuristic was viable for the
data-set we considered - providing more accurate results than the reduction from
set-covering.

Example 5.2. The basic intuition behind GREEDY-KSEP-OPT2 is similar to
GREEDY-KSEP-OPT1 in that it iterates through the observations and greedily chooses
a partner. The main difference is that it ranks the observations instead of just ran-
domly selecting them. Consider the sun bear from Example 2.3 whose behavior is
depicted in Figure 2. In Example 5.1, we used GREEDY-KSEP-OPT1 to solve the
associated k-SEP problem for this situation. We shall discuss how GREEDY-KSEP-
OPT2 differs.
The first main difference is that the algorithm assigns a rank to each observation
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Observation keyi REL OBS[oi]

o1 2 {o1, o2}
o2 2 {o1, o2}
o3 2 {o2, o3}

Table I. key values and related observations for observations in the sun bear scenario introduced

in Example 2.3.

Fig. 6. Left: GREEDY-KESP-OPT2 considers all observations that can be partnered with p2.

Notice that in this figure by each observation we show a box that represents the key of the
observation in the Fibonacci heap. Right: GREEDY-KSEP-OPT2 removes o1 from the heap, and

iterates through the elements in REL OBS[o1], causing it to decrease the key of o2.

oi, called keyi, which is also the key used in the Fibonacci heap. This is done in the
loop at line 4. It not only calculates keyi for each observation, but it also records the
elements “related” to it in the array REL OBS. Note that a “related” observation
needs only to share a partner with a given observation. Not all related observations
need to have the same partner. For the sun bear scenario, we show the keys and
related observations in Table I.

As the key values are the same for all elements of O, let’s assume the algo-
rithm first considers o1 as in Example 5.1. As written, we would take the minimum
element in the Fibonacci heap (a constant time operation). We would then con-
sider the partners for o1 which would result in the greedy selection of p2, (just as
in GREEDY-KSEP-OPT1 and NAIVE-KSEP-SC. Also notice we retain the array of
Booleans, O′ as well as the array of lists, M to help us with these operations.).

Now the issue arises that we must update the keys for the remaining observations,
as well as remove observations covered by p2. As we maintain REL OBS and O′, the
procedure quickly iterates through the elements covered by p2: o1 and o2. Figure 6
shows the status of the observations at this point.

We remove o1 from the heap, and set O′[o1] to FALSE. This prevents us from
considering it in the future. We now iterate through each o′′ in the list pointed to
by REL OBS[o1] where O′[o′′] is TRUE and decrease the key of each by one. As per
table I, REL OBS[o1] = {o1, o2}. As O′[o1] = FALSE we do nothing. As O′[o2] =
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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TRUE, we decrease the key of the associated node in the Fibonacci heap. The array
QUICK LOOK ensures we can access that element in constant time. Figure 6 (left)
graphically depicts this action.

Next, we consider the other element covered by partner p2: o2. After removing
this element from the heap and setting O′[o2] to FALSE, we can easily see that
there does not exist any o′′ ∈ REL OBS[o2] where O′[o′′] = TRUE. Hence, we can
proceed to pick a new minimum observation from the heap - which is o3 in this case.
The greedy selection proceeds (resulting in the choice of p6), followed by the update
procedure (which simply removes the node associated with o3 from the heap and sets
O′[o3] = FALSE). As there are no more elements in the heap, GREEDY-KSEP-OPT2
returns the solution {p2, p6}.

Theorem 5.1 Complexity of GREEDY-KSEP-OPT2. GREEDY-KSEP-OPT2
has a complexity of O(∆ · f2 · |O| + |O| · ln(|O|)) and an approximation ratio of
1 + ln(f).

Proposition 5.3. GREEDY-KSEP-OPT2 returns a |E|-sized (α, β) explanation
for O.
GREEDY-KSEP-OPT2 returns IMPOSSIBLE if there is no explanation for O.

6. IMPLEMENTATION AND EXPERIMENTS

In this section, we show that our geospatial abduction framework and algorithms
are viable in solving real-world geospatial abduction problems. Using a real-world
data set consisting of counter-insurgency information from Iraq, we were able to
accurately locate insurgent weapons cache sites (partners) given previous attacks
(observations) and some additional data (used for feas and α, β). This validates
our primary research goal for the experiments - to show that geospatial abduction
can be used to solve problems in the real-world.

We considered the naive set-covering approach along with GREEDY-KSEP-OPT1
and GREEDY-KSEP-OPT2, which according to our analytical results, had the best
approximation ratios and time-complexities. We implemented these algorithms in
4000 lines of Java code, running on a Lenovo T400 ThinkPad laptop running Vista
with an Intel Core 2 Duo T9400 2.53 GHz processor and 4.0 GB of RAM. Our
SCARE (Social-Cultural Abductive Reasoning Engine) system [Shakarian et al.
2009] enabled us to carry out tests on real-world data. This data includes 21
months of Improvised Explosive Device or IED attacks in Baghdad5 (a 25x27 km
region) – these constitute our observations. It also included information on locations
of caches associated with those attacks discovered by US forces. The locations
of the caches constitute the (α, β) explanation we want to learn. We used data
from the International Medical Corps to define feasibility predicates which took the
following factors into account: (i) the ethnic makeup of neighborhoods in Baghdad
- specifically, Sunni locations were deemed infeasible for cache locations, (ii) the
locations of US bases in Baghdad were also considered infeasible and (iii) bodies of
water were also deemed infeasible. We also separately ran tests on that part of the
above data focused on Sadr City (a 7x7 km district in Baghdad) alone. On both

5Attack and cache location data was provided by the Institute for the Study of War
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Algorithm 7 (FIND-BOUNDS)
INPUT: Historical, time-stamped observations Oh, historical, time-stamped part-
ners, Eh, real number (distance threshold) βmax
OUTPUT: Real numbers α, β

(1) Set α = 0 and β = βmax

(2) Set Boolean variable flag to TRUE

(3) For each o ∈ Oh, do the following:
(a) For each p ∈ Eh that occurs after o, do the following.

i. Let d be the Euclidean distance function.
ii. If flag, and d(o, p) ≤ βmax then set α = d(o, p) and β = d(o, p)
iii. If not flag, then do the following:

A. If d(o, p) < α then set α = d(o, p)
B. If d(o, p) > β and d(o, p) ≤ βmax then set β = d(o, p)

(4) Return reals α, β

Area Algorithm Sample Mean Sample Mean

Solution Size Number of Partners
≤ 0.5 km
to actual cache

Baghdad

NAIVE-KSEP-SC 14.53 8.13

GREEDY-KSEP-OPT1 15.02 7.89
GREEDY-KSEP-OPT2 14.00 7.49

Sadr City
NAIVE-KSEP-SC 8.00 3.00
GREEDY-KSEP-OPT1 6.61 4.44

GREEDY-KSEP-OPT2 6.00 5.28

Table II. k-SEP Algorithm Results - Solution Size

these regions, we overlaid a grid whose cells were 100m x 100m each — about the
size of a standard US city block. All timings were averaged over 100 runs.

We split the data into 2 parts — the first 7 months of data was used as a “training”
set and the next 14 months of data was used for experimental evaluation. We
used the following simple algorithm, FIND-BOUNDS, to determine the α, β values.
We set βmax to 2.5 km. We leave more advanced procedures for learning these
parameters to future work. Such parameters could also come from an expert.
Accuracy. Our primary goal in the experiments was to determine if the geospatial
abduction framework and algorithms could provide viable results in a real-world
setting. “Accuracy” in this section refers to two aspects - size of the solution, and
the distance to the nearest actual cache site. The distance to nearest cache site was
measured by taking the straight-line Euclidean distance to the nearest cache site
that was found after the first attack supported by the projected cache site. We used
the raw coordinate for the actual cache in the data set - not the position closest to
the nearest point in the 100 m resolution grid that we overlaid on the areas. The
accuracy results are summarized in Tables II-III.

Overall, GREEDY-KSEP-OPT2 consistently found the smallest solution - of car-
dinality 14 for Baghdad and 6 for Sadr City - on all 100 trials. For Baghdad, the
other two algorithms both found a solution of size 14, but both averaged a higher
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Area Algorithm Sample Mean Sample Std Dev Sample Mean
Avg Dist to of Avg Dist to Std Dev of Dist to

actual cache actual cache actual cache

Baghdad

NAIVE-KSEP-SC 0.79 km 0.02 0.64

GREEDY-KSEP-OPT1 0.76 km 0.07 0.60
GREEDY-KSEP-OPT2 0.72 km 0.03 0.63

Sadr City
NAIVE-KSEP-SC 0.72 km 0.03 0.46
GREEDY-KSEP-OPT1 0.45 km 0.03 0.46

GREEDY-KSEP-OPT2 0.35 km 0.03 0.47

Table III. k-SEP Algorithm Results - Distances to Actual Cache Sites

solution. For Sadr City, GREEDY-KSEP-OPT1 often did find a solution of 6 caches
while NAIVE-KSEP-SC only found solutions of size 8. Additionally, in both tests,
the solution sizes for GREEDY-KSEP-OPT1 varied more than the other two algo-
rithms. Moreover, the HSD for both Baghdad and Sadr City indicated significant
difference between all pairs of algorithms wrt solution size.

Of the partners in a given solution, we also recorded the number of partners less
than 0.5 km away from an actual cache. For Baghdad, NAIVE-KSEP-SC performed
best in this regard - averaging 8.13 partners less than 0.5 km from an actual cache
site. Although this result for Baghdad is significant based on an analysis of variance
(ANOVA) and honest significant differences (HSD) (p-value of 2.3 · 10−9), we also
note that the greatest difference among averages was still less than one partner.
This same result for Sadr City, however, tells a different story. For this test, NAIVE-
KSEP-SC performed poorly with regard to the other two algorithms - only finding
3 partners meeting these criteria for each of the 100 trials. GREEDY-KSEP-OPT2
performed very well in this aspect (for Sadr City). It averaged over 5 partners
less than 0.5 km from an actual cache. Further, for Sadr City, all partners found
by GREEDY-KSEP-OPT2 were within 600 m of an actual cache site. The ANOVA
(p-value of 2.2 · 10−16) and HSD of partners less than 0.5 km from an actual cache
for the Sadr City trials indicate that these results are significant.

Our primary metric of accuracy was average distance to actual cache. In this
regard, GREEDY-KSEP-OPT2 performed the best. It obtained an average distance
of 0.72 km for Baghdad and 0.35 km for Sadr City. This number was 40 m less
for Baghdad and 100 m less for Sadr City when compared to GREEDY-KSEP-
OPT1, whose average distance varied widely among the trials. With regard to this
metric, NAIVE-KSEP-SC performed the worst - particularly in Sadr City, where it
predicted caches over twice as far from actual caches as GREEDY-KSEP-OPT2 (on
average). For both Baghdad and Sadr City, the simple ANOVA yielded a p-value of
2.2 · 10−16, which suggests with a 99% probability that there is a difference among
the algorithms. Also, for both areas, Tukey’s HSD indicates significant difference
between each pair-wise comparison of algorithms.
Algorithm run times. Table IV shows the run-times of our algorithms. In
order to validate the findings suggested by Table IV statistically, we ran analysis of
variance (ANOVA) and Tukey’s Honest Significant Difference test (HSD) for pair-
wise comparisons [Freedman et al. 2007]. An ANOVA for the Baghdad run-times
gave a p-value of 2.2 · 10−16, which suggests with well over 99% probability that
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Area Algorithm Sample Mean Run-Time Sample Run-Time
Standard Deviation

Baghdad
NAIVE-KSEP-SC 354.75 ms 12.86
GREEDY-KSEP-OPT1 162.08 ms 40.83

GREEDY-KSEP-OPT2 201.40 ms 36.44

Sadr City

NAIVE-KSEP-SC 28.85 ms 10.52

GREEDY-KSEP-OPT1 25.44 ms 9.33
GREEDY-KSEP-OPT2 24.64 ms 8.95

Table IV. k-SEP Algorithm Performance Results

GREEDY-KSEP-OPT1 is statistically faster than GREEDY-KSEP-OPT2. The HSD
for Baghdad indicates that, with regard to run-times, all pair-wise-comparison of
the three algorithms are significantly different. For Sadr City, the ANOVA gave a p-
value of 4.9 ·10−3, which suggests with a 99% probability that the algorithms differ
in run-times. However, the HSD indicates, with an 82% probability, that there is
no difference among GREEDY-KSEP-OPT1 and GREEDY-KSEP-OPT2, while both
differ significantly from NAIVE-KSEP-SC.

6.1 A Simple Heuristic to Improve Accuracy

In our implementation of all three algorithms, “ties” in greedy selection of partners
were determined by a “coin toss.” Specifically, we are considering the case where
this size = cur size in line 7(c)iv of NAIVE-KSEP-SC in Section 4.2. Let us re-
phrase the situation as follows. Let O be the entire set of observations and O′ ⊆ O
be the set of observations currently not assigned a partner. Let p be the current
partner that best meets the criteria for greedy selection and p′ be the partner we
are considering. We define P and P ′ as subsets of O that are the observations
associated with p and p′ respectively. Hence, if |P ′ ∩ O′| > |P ∩ O′|, we pick p′.
As implemented, if |P ′ ∩ O′| = |P ∩ O′|, we flip a coin. We add a simple heuristic
that simply states that “partners that cover more observations are preferred.” We
change the criteria as follows:

—If |P ′ ∩ O′| = |P ∩ O′|, then do the following:
—If |P ′| > |P |, pick p′

—If |P | > |P ′|, pick p
—If |P | = |P ′|, flip a coin

We shall refer to this as the “tie-breaker” heuristic. The result is that the solution
set of partners covers more observations and hence provides a more “dense” solution.

We added this heuristic to our existing code for all three algorithms and ran each
one 100 times for both the Baghdad and Sadr City areas. Unsurprisingly, as this is a
constant-time operation, run-times were not affected. However, accuracy improved
in all cases. As GREEDY-KSEP-OPT2 still provided the most accurate results, the
following exposition shall focus on how the heuristics affected the solution size and
accuracy for this algorithm.

Because the tie-breaker heuristic only adjusts how two partners are chosen -
both of which can be paired with the same uncovered observations - the size of
the solution was unaffected in both the Baghdad and Sadr City trials. However,
the number of predicted cache sites less than 500 m from an actual site increased
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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Area Tie-Breaker Sample Mean Sample Mean
Heuristic Solution Size Number of Partners

≤ 0.5 km

to actual cache

Baghdad
No 14.00 7.49
Yes 14.00 7.87

Sadr City
No 6.00 5.28
Yes 6.00 6.00

Table V. The Tie-Breaker heuristic on GREEDY-KSEP-OPT2 - Solution Size

Area Tie-Breaker Sample Mean Sample Std Dev Sample Mean
Heuristic Avg Dist to of Avg Dist to Std Dev of Dist to

actual cache actual cache actual cache

Baghdad
No 0.72 km 0.03 0.63

Yes 0.69 km 0.02 0.64

Sadr City
No 0.35 km 0.03 0.47
Yes 0.28 km 0.02 0.11

Table VI. The Tie-Breaker heuristic on GREEDY-KSEP-OPT2 - Distances to Actual Cache Sites

for both the Baghdad and Sadr City tests. For Baghdad, more trials returned
solutions with 8 predictions less than 500 m from an actual site than returned 7
- the opposite being the case without the tie-breaker heuristic. For Sadr City, all
elements of every solution set returned was less than 500 m from an actual cache
site. Using the well known T-Test [Freedman et al. 2007], we showed that these
results are statistically significant as this test returned a p-value of 6.2 · 10−8 for
Baghdad and 2.2 · 10−16 for Sadr City.
Summary. The above experiments demonstrate statistically that GREEDY-KSEP-
OPT2 provides a viable solution - consistently producing the smaller solution sets
which were closer to actual cache sites faster than the basic set-covering approach,
at times approaching the faster, although less-accurate GREEDY-KSEP-OPT1. The
proximity of the elements of the solution set to actual cache sites is encouraging
for real-world use. The results are strong enough that two US Army units used
SCARE to aide in locating IED caches.

7. RELATED WORK

In this section we present related work of three different varieties. We compare
GAPs to other forms of abduction, facility location, k-means clustering, and con-
strained clustering. As an aside, readers interested in a discussion of the SCARE
software from the perspective of military analysis or social science can refer to
[Shakarian et al. 2009] where the software package was introduced. However, that
work does not include any formal technical details on the framework of geospatial
abduction, complexity results, or algorithm analysis.
GAPs and other forms of Abduction. Abduction [Peirce 1955] has been ex-
tensively studied in medicine [Reggia and Peng 1990; Peng and Reggia 1986], fault
diagnosis [Console et al. ], belief revision [Pagnucco 1996], database updates [Kakas
and Mancarella 1990; Console et al. 1995] and AI planning [do Lago Pereira and
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de Barros 2004]. Two major existing theories of abduction include logic-based ab-
duction [Eiter and Gottlob 1995] and set-covering abduction [Bylander et al. 1991].
Though none of the above papers deals with spatial inference, Shanahan [1996]
presents a logical formalism dealing with objects’ spatial occupancy, while Santos
and Shanahan [2002] describe the construction of a qualitative spatial reasoning
system based on sensor data from a mobile robot. In Santos and Shanahan [2002],
sensor data are explained by hypothesizing the existence of physical objects along
with the dynamic relationships that hold between them, all with respect to a (pos-
sibly moving) viewpoint. This approach combines both space and time. Kuipers
[1996] describes the Spatial Semantic Hierarchy which formalizes, the spatial con-
text in which a robot moves. In the hierarchy, the topological level defines a map
which describes the environment as a collection of places, paths, and regions, linked
by topological relations such as connectivity, order, containment, boundary, and ab-
straction. Places (i.e., zero-dimensional points), paths (i.e., one dimensional sub-
spaces, denoting for example a street in a city, possibly represented as an ordering
relation on the places they contain), and boundary regions (i.e., two-dimensional
subspaces of the robot environment) are created from experience represented as a
sequence of views and actions. They are created by abduction, positing the mini-
mal additional set of places, paths, and regions required to explain the sequence of
observed views and actions.

Set-covering abduction [Bylander et al. 1991] assumes the existence of a function
determining the observable effects of a set of hypotheses, and is based on inverting
such function. Given a set of hypotheses H and a set of observations O, the do-
main knowledge is represented by a function e that takes as an argument a set of
hypotheses and gives as a result the corresponding set of observations. Thus, for
every subset of the hypotheses H ′ ⊆ H, their effects are known to be e(H ′). In
this case, abduction finds a set H ′ ⊆ H such that O ⊆ e(H ′), that is, it finds a
set of hypotheses H ′ whose effects e(H ′) include all observations in O. A common
assumption is that the effects of the hypotheses are independent, that is, for every
H ′ ⊆ H, it holds that e(H ′) =

⋃
h∈H′ e({h}). If this condition is met, abduction

can be seen as a form of set-covering. No spatial reasoning is done here.

Comparison with facility location. There are several important ways in which
GAPs differ from facility location problems.

—Although it is possible to specify a distance-based cost function, in a GAP prob-
lem, the distances between observations and partners are constraints (α and β in
this paper) whereas facility location problems usually attempt to minimize the
distance between producers and consumers.

—In this paper, GAP problems have a minimum distance between observations and
partners that must be exceeded. In many respects, this requirement makes GAP
problems more difficult than facility location and other computational geometry
problems as the set of possible partners that cover a given observation is a non-
convex ring. Further, the feasibility function (feas) adds non-uniform holes to
such a ring. [Maass 1986] addresses the complexity of non-convex covering and
highlights issues with problems such as this.

—The feasibility predicate, feas is not part of a facility location problem. This gives
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us the ability to restrict certain locations that can be partners.
—In general, the relation between observations and partners can be viewed to be

a set of constraints. In this paper, we only used α, β,and feas. However, in the
future, we could add additional constraints. Further, as our formalism represents
space as a set of discrete points (also not typically done with facility location),
we can easily specify certain properties of these points to apply such constraints
(such as feas).

Comparsion with k-means clustering. A well-known and studied problem in
clustering location is the k-means problem [MacQueen 1967]. This problem can be
expressed as follows:
k-means:
INPUT: Coordinates on a plane C and natural number k
OUTPUT: k disjoint sets of C, C ′1, . . . , C

′
k such that for each Ci, all the mean Eu-

clidean distance among all c ∈ Ci is minimized.

Clustering problems group points into clusters, associating each cluster with a
center. At first glance, one may think that the points are equivalent to observations
and the “centers are equivalent to partners. However, this is not so. Most versions of
the clustering problem seek only to arrange points in groups – with “centers” being
a side-effect of the algorithm. Geospatial abduction problem seeks to find partners
that support observations and places constraints on the location of the partners -
this is a key difference from “centers” in clustering problems. Clustering algorithms
cannot handle the generality of our feasibility predicate or the (α, β) constraints.

In addition to these obvious differences, we experimentally compared an imple-
mentation of k-means with GREEDY-KSEP-OPT2 on the Sadr City data. Even
when we ignore the obvious value of α, β and the feasibility predicate, GREEDY-
KSEP-OPT2 outperforms the SimpleKMeans solver in WEKA version 3.7.0 [WEKA
2009]. Note that the exclusion of these parameters makes GREEDY-KSEP-OPT2
perform worse than it performs with these parameters – yet, it performed better
than k-means in terms of accuracy. Our experiment was set-up as follows:

—We used the same area for the Sadr City tests, as the α value was 0 in these
tests and there were virtually no non-feasible points near the observations. This
allowed us to use WEKA’s k-means implementation “out-of-the-box” as we did
not have to implement any extra infrastructure to deal with feasibility and α = 0.

—We set k = 6, the number of partners consistently found by GREEDY-KSEP-
OPT2. Normally, we would rather have the algorithm determine this size. Note
that supplying the algorithm with a size already determined by GREEDY-KSEP-
OPT2 (and, also the smallest size of any explanation for Sadr City we found in
our trials) gives an advantage to k-means. Hence, we did not compare solution
sizes.

—We clustered the observations with k-means and considered the “center” of each
cluster the cache location for the cluster.

—We did not compare timing results, as we ran WEKA in its GUI environment.

We ran 500 iterations of the SimpleKMeans and worked with the average centers
for the clusters as reported by WEKA. Multiple runs of the 500 iterations yielded
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the same centers.

Average Distance Using WEKA, we obtained an average accuracy of 0.38 km, which
is worse than GREEDY-KSEP-OPT2 (average over 100 trials, 0.28 km).

Worst-Case Distance WEKA’s SimpleKMeans returned 2 of the 6 points with a
distance of greater than 600 meters from a cache site. Without the “tie-breaking”
heuristic, GREEDY-KSEP-OPT2 never reported a prediction over 600 meters from
a cache site (all reported partners over 100 trials). With the heuristic, GREEDY-
KSEP-OPT2 never reported a prediction over 500 meters from a cache site.

Best-Case Distance The closest partners ever returned by GREEDY-KSEP-OPT2
(either with our without the heuristic) were 200 m away from an actual cache site
(on average, the closest partner per explanation was 220 m away). WEKA’s Sim-
pleKMeans did return two partners less than 200 m - each only 100 m away from
an actual cache site.

These results suggest that k-means may not be the optimal method for GAP
problems. Further, it does not support feasibility and α. The results do hold some
promise for some variants of cost-based spatial explanation problems that require a
k input from one of our greedy-approaches. However, even in this case, there would
be modification required of the k-means algorithm to support feasibility and α.

Comparison with Constrained clustering. Constrained clustering [Wagstaff
et al. 2001] studies clustering where, in addition to the points to be clustered, there
are constraints that either force two points in the same cluster (must-link) or force
two points to be in different clusters (cannot-link). Later work on constrained
clustering has focused on distance constraints between elements of C or distance
constraints between clusters [Davidson and Ravi 2005]. Much of the work in this
area is summarized in [Basu et al. 2008].

At first glance, it may appear that spatial abduction can be expressed as a cannot-
link constrained clustering problem as follows: For each o, o′ ∈ O if 6 ∃p ∈ S s.t.
d(o, p) ∈ [α, β], d(o′, p) ∈ [α, β], and feas(p), then create a cannot-link constraint
for o, o′.

However, such a mapping cannot be guaranteed to provide a correct result. For
example, take o1, o2, o3 and p12, p23, p13. Suppose o1 and o2 share just partner p12,
o2 and o3 share just partner p23 and o1, o3 share just partner p13. This is entirely
possible given the generality of feas. In such a case, all three observations could be
incorrectly grouped into a single cluster - although it is obvious there is no single
partner that supports all of them. Hence, such a mapping would not be trivial.
Further, most clustering algorithms are not seeking to constructively find centers
that are constrained. We leave the study of constrained clustering to solve GAP
problems (i.e. an adaption of the k-means algorithm) to future work. However,
it is also worth noting that solving constrained clustering problems given cannot-
link constraints is NP-complete, so the application of clustering techniques to this
problem does not imply a more tractable version of geospatial abduction, but rather
ACM Transactions on Intelligent Systems and Technology, Vol. , No. , 20.
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an alternative heuristic.

8. CONCLUSIONS

There are a wide variety of problems where we can make geo-located observations
“on the ground” and where we want to infer a partner location. In this paper, we
have presented four examples of such problems — one dealing with serial killers,
another dealing with wildlife studies, and a third (perhaps more fun) application
dealing with finding sunken ships. A fourth real world application we have looked
at is that of finding weapons caches associated with Improvised Explosive Device
(IED) attacks in Iraq where we were able to use real world, open source data. It is
clear that many other applications exist as well. For example, a bizarre (but real
world) combination of two of our examples involves frequent attacks by man-eating
leopards on children in certain parts of greater Bombay in India. This situation
is analogous to the serial killer scenario where the leopard is the serial killer. We
want to find the leopard’s favorite “hang outs”, capture it, and solve the problem.

In this paper, we have made an attempt to formally define a class of geospatial
abduction problems (GAPs for short). We specifically made the following contribu-
tions.

—We developed formal mathematical definitions of geospatial abduction problems,
including several variants of the above problems. We conducted a detailed anal-
ysis of the complexity of these problems.

—We developed exact algorithms for many of the problems, including a straight-
forward enumeration approach (NAIVE-KSEP-EXACT), by showing and leverag-
ing reductions to both the set-covering and dominating set problems, and by
articulating these geospatial abduction problems via integer linear programs.

—As the complexity of most of the problems we have studied is NP-hard, we
developed two greedy approximation schemes for the k-SEP problem (other than
set-covering) and illustrated a scheme to quickly find a solution using randomized
approaches to the dominating set problem.

—We have implemented these algorithms and conducted experimental comparisons
of the reduction to set-covering and two other greedy approaches - GREEDY-
KSEP-OPT1 and GREEDY-KSEP-OPT2. Both of these algorithms outperformed
the set-covering reduction in an experiment on the Understanding War Special
Groups data set. We also implemented a “tie-breaker” heuristic that further
improved the accuracy of the algorithms.

—We have also developed approximation schemes using relaxations of the linear-
integer program for k-SEP and the cost-based variant WT-SEP.

There are many interesting directions for future work. For example, spatial ab-
duction in dimensions greater than two might be explored. A probabilistic variant
might replace the feasibility predicate with a probability distribution function, or
express the relationship between observations and partners as a PDF based on
distance rather than rely on α, β. Also, the use of randomization in the approxima-
tion algorithms may improve results for both the greedy and linear programming
approaches presented in this paper.
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One aspect to explore in future work is the relationship between observations
and partners. k-SEP and its cost based variants only rely on α, β. However, many
applications may have other constraints. Perhaps there is a direction associated
with each observation (as in identifying where an artillery round originated from),
which would limit the locations of the partner. Another possibility is to add geo-
graphic constraints. Perhaps the observation cannot have a partner across a body
of water, or beyond the edge of a cliff.
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Algorithm 8 (GCD-TO-KSEP)
INPUT: Instance of GCD 〈S, P, b, k〉
OUTPUT: Instance of k-SEP 〈S,O, feas, α, β, k′〉

(1) Set S to be a set of lattice points in the Euclidean plane that include all points
in P

(2) Set O = P

(3) Let feas(x) = TRUE iff x ∈ P
(4) Set α = 0
(5) Set β = b/2
(6) Set k′ = k

A. PROOFS

A.1 Proof of Theorem 3.1

k-SEP is NP-Complete.

Proof. Geometric Covering by Discs. (GCD)
INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integers
b > 0 and k < |P |.
OUTPUT: “Yes” if there exist k discs of diameter b centered on points in P such
that there is a disc covering each point in P — “no” otherwise.
CLAIM 1: k-SEP is in the complexity class NP.
Suppose a non-deterministic algorithm can guess a set E that is a k-sized simple
(α, β) explanation for O. We can check the feasibility of every element in E in
O(|E|) time and compare every element of E to every element of O in O(|O|2) time.
Hence, k-SEP is in the complexity class NP as we can check the solution in poly-
nomial time.

CLAIM 2: k-SEP is NP-Hard.
We use the polynomial algorithm GCD-TO-KSEP to take an instance of GCD and
create an instance of k-SEP.

CLAIM 2.1: If there is a k′-sized simple (α, β) explanation for O, then there are k
discs, each centered on a point in P of diameter b that cover all points in P .
Let E be the k′-sized simple (α, β) explanation for O. Suppose by way of con-
tradiction, that there are not k discs, each centered on a point in P of diameter
b that cover all points in P . As k′ = k, and all elements of E must be in P by
the definition of feas, let us consider the k discs of diameter b centered on each
element of E . So, for these discs to not cover all elements of P , there must exist
an element of P , that is not covered by a disc. As P ≡ O, then there must exist
an element of O outside of one of the discs. Note that all elements of O are within
a distance β of an element of E by the definition of a k′-sized simple (α, β) expla-
nation (as α = 0). As β = b/2, each element of O falls inside a disc of diameter
b centered on an element of E , thus falling within a disc and we have a contradiction.
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CLAIM 2.2: If there are k discs, each centered on a point in P of diameter b that
cover all points in P then there is a k′-sized simple (α, β) explanation for O.
Let set E be the set of points that are centers of the k discs. We note that E ⊆ P .
Assume by way of contradiction, that there is no k′-sized simple (α, β) explanation
for O. Let us consider if E is a k′-sized simple (α, β) explanation for O. As k = k′,
α = 0, and all points of E are feasible, there must be some o ∈ O such that ∀e ∈ E,
d(e, o) > β. As O ≡ P , we know that all points in O fall in a disc centered on a
point in E, hence each o ∈ O must be a distance of b/2 or less from a point in E.
As β = b/2, we have a contradiction.

A.2 Proof of Corollary 3.1

Cost-based Explanation is NP-Complete.

Proof. CLAIM 1: Cost-based Explanation is in the complexity class NP.
This follows directly from Theorem 3.1, instead of checking the size of E , we only
need to apply the function χ to the E produced by the non-deterministic algorithm
to ensure that χ(E) ≤ v.

CLAIM 2: Cost-based Explanation is NP-Hard.
We show k-SEP≤p CBE. Given an instance of k-SEP, we transform it into an
instance of CBE in polynomial time where χ(E) = |E| and v = k.

CLAIM 2.1: If there is a set E such that χ(E) ≤ v then |E| ≤ k.
Straightforward.

CLAIM 2.2: If there is a set E of size k or less then χ(E) ≤ v
Straightforward.

A.3 Proof of Corollary 3.2

WT-SEP is NP-Complete.

Proof. Membership in the complexity class NP follows directly from Theo-
rem 3.1, instead of checking the size of E , we check if

∑
p∈E c(p) ≤ v. We also note

that the construction for cost-based explanation in Theorem 3.1 is also an instance
of WT-SEP, hence NP-hardness follows immediately.

A.4 Proof of Theroem 3.2

TD-SEP is NP-Complete.

Proof. CLAIM 1: TD-SEP is in the complexity class NP.
Given a set E , we can easily determine in polynomial time that it meets the stan-
dards of the output specified in the problem statement.

CLAIM 2: TD-SEP is NP-hard.
Consider Euclidean k-Median Problem, as presented and shown to be NP-Complete
in Papadimitriou [1981], defined as follows:
INPUT: A set P of integer-coordinate points in a Euclidean plane, positive integer
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k′ < |P |, real number v′ > 0.
OUTPUT: “Yes” if there is a set of points, S ⊆ P such that |S| = k′ and∑
xi∈X minsj∈S d(xi, sj) ≤ v′ — “no” otherwise.

Given an instance of the Euclidean k-Median Problem, we create an instance of
TD-SEP as follows:

—Set S to be a set of lattice points in the Euclidean plane that include all points
in P

—Set O = P

—Let feas(x) = TRUE iff x ∈ P
—Set α = 0
—Set β greater than the diagonal of S ′

—Set k = k′

—Set v = v′

CLAIM 2.1: If there is E , a k-sized explanation for O such that∑
oi∈Ominpj∈E d(oi, pj) ≤ v, then there is a set S ⊆ P such that |S| = k′ and∑
xi∈P minsj∈S d(xi, sj) ≤ v′.

Because of how we set feas and O, E ⊆ P . As α and β do not affect E , the only real
restrictions on E is that its cardinality is k and that

∑
oi∈Ominpj∈E d(oi, pj) ≤ v.

Because of how we set k and v, we can see that E meets all the conditions to be a
solution to the Euclidean k-Median problem, hence the claim follows.

CLAIM 2.2: If there is set S ⊆ P such that |S| = k′ and
∑
xi∈P minsj∈S d(xi, sj) ≤

v′, then there is set E , a k-sized explanation forO such that
∑
oi∈Ominpj∈E d(oi, pj) ≤

v.
In the construction, the arguments α, β and feas allow any element of a solution to
the k-Median problem to be a partner for any observation in O. By how we set k
and v, we can easily see that S is a valid solution to TD-SEP. The claim follows.

The statement of the theorem follows directly from claims 1-2.

A.5 Proof of Proposition 4.1

If there is a k-sized simple (α, β) explanation for O, then NAIVE-KSEP-EXACT
returns an explanation. Otherwise, it returns NO.

Proof. CLAIM 1: If there is a k-sized simple (α, β) explanation for O, then
NAIVE-KSEP-EXACT returns an explantion.
Suppose, by way of contradiction, that there is a k-sized simple (α, β) explanation
for O and NAIVE-KSEP-EXACT returns NO. Then there does not exist k bit strings
such that for all oi,

∑k
j=1(`j(i)) ≥ 1. As each bit string is associated with a point

in S, then by the construction of the bit strings, there are not k points in S such
that each point is feasible and falls no closer than α and no further than β distance
away from each point in O. This is a contradiction.

CLAIM 2: If there is no k-sized simple (α, β) explanation for O, then NAIVE-KSEP-
EXACT returns NO.
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Suppose, by way of contradiction, that there is no k-sized simple (α, β) explanation
for O and NAIVE-KSEP-EXACT returns an explanation. Then there must exist k
bit strings such that

∨k
j=1(`j(i)) = 1. As each bit string is associated with a point

in S, then by the construction of the bit strings, there must exist k points in S such
that each point is feasible and falls no closer than α and no further than β distance
away from each point in O. This is a contradiction.

A.6 Proof of Proposition 4.2

The complexity of NAIVE-KSEP-EXACT is O( 1
(k−1)! (π(β2 − α2)|O|)(k+1)).

Proof. Note that as all pointers in M are initially null, thus there is no need
to iterate through every element in M - rather lists in M can only be initialized as
needed. Hence, the cost to set-up M in O(1) and not the size of the matrix.
As each o ∈ O has, at most π(β2 − α2) partners, the total complexity of the inner
loop is π(β2 − α2)|O|.
As we have, at most, π(β2 − α2)|O| elements in L (recall that L is the subset of S
that can be partnered with elements in O), then there are

(
π(β2−α2)|O|

k

)
iterations

taking place in step 5. Each iteration costs k · |O| as we must compare the |O| bits
of each k bit string. So, (

π(β2 − α2)|O|
k

)
· k · |O|

=
(π(β2 − α2)|O|) · (π(β2 − α2)|O| − 1) · . . . · (π(β2 − α2)|O| − (k − 1))

k!
· k · |O|

< O(
1

(k − 1)!
(π(β2 − α2)|O|)(k+1))

As this term dominates the complexity of the inner loop, the statement follows.

A.7 Proof of Theorem 4.1

k-SEP≤p Set-Cover

Proof. We employ the first four steps of NAIVE-KSEP-EXACT. We view the
bit-strings in list L as subsets of O where if the ith bit of the string is 1, oi of O is
in the set.

CLAIM 1: If there are k subsets of L that cover O, then there is a k-sized simple
(α, β) explanation for O.
Suppose, by way of contradiction, that there are k subsets of L that cover O and
there is no k-sized simple (α, β) explanation for O. Then, by Proposition 4.1, for
every combination of k bit strings, there is some bit i such that

∨k
j=1(`j(i)) = 1

does not hold. Hence, by the reduction, a set cover with k sets from L would be
impossible. This is a contradiction.
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CLAIM 2: If there there is a k-sized simple (α, β) explanation for O, then there
are k subsets of L that cover O.
Suppose, by way of contradiction, there is a k-sized simple (α, β) explanation for
O and there are not k subsets of L that cover O. Then, for any combination of
k subsets of L, there is at least one element of O not included. Hence, for any
bit-string representation of an element in L, for some bit i,

∨k
j=1(`j(i)) = 1 does

not hold. However, by Proposition 4.1, this must hold or there is no k-sized simple
(α, β) explanation for O. This is a contradiction.

A.8 Proof of Proposition 4.3

NAIVE-KSEP-SC has a complexity of O(∆ · f · |O|2) and an approximation ratio of
1 + ln(f).

Proof. CLAIM 1: NAIVE-KSEP-SC has a complexity of O(∆ · f · |O|2).
The loop at line 6, which reduces the problem to set-covering, takes O(∆ · |O|) time.
The loop at line 7 iterates, at most, |O| times.
The first nested loop at line 7c iterates, at most, ∆ · |O| times.
The second nested loop at line 7(c)iii iterates, at most, f times.
The updating procedure at line 7e, which is still inside the loop at line 7, iterates,
at most, f times.
Hence, by the above statements, the total complexity of NAIVE-KSEP-SC is O(|O| ·
(∆ · |O| · f + f) + ∆ · |O|), hence the statement follows.
CLAIM 2: NAIVE-KSEP-SC has an approximation ratio of 1 + ln(f).
Viewing list L as a family of subsets, each subset is the set of observations as-
sociated with a potential partner, hence the size of the subsets is bounded by f .
The approximation ratio follows directly from the analysis of the set-covering prob-
lem.

A.9 Proof of Proposition 4.4

A solution E to NAIVE-KSEP-SC provides a partner to every observation in O if a
partner exists.

Proof. Follows directly from Theorem 4.1.

A.10 Proof of Proposition 4.5

The complexity of KSEP-TO-DOMSET is O(∆ · |O|).

Proof. Notice that the number of points in S considered for each o ∈ O exam-
ined in the inner loop is bounded by O(∆). As the outer loop is bounded by the
size of O, the complexity of KSEP-TO-DOMSET is O(|O|).

A.11 Proof of Theorem 4.2

k-SEP≤p DomSet.

Proof. We can run KSEP-TO-DOMSET that creates graph GO = (VO, EO)
based on the set of observations. We show that GO has a dominating set of size k
iff there is a k-sized simple (α, β) explanation for O.
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Item Quantity

Number of elements to be covered 2 ·∆ · |O|
(number of nodes in GO)

Number of subsets 2 ·∆ · |O|
(number of nodes in GO)

Number of elements per subset 2 ·∆ · f
(Maximum degree of nodes in GO
determined by the produce of partners per observation
and observations per partner

Table VII. Quantities for the Greedy-Approach in the DomSet reduction.

CLAIM 1: If GO has a dominating set of size k or less, then there is a k-sized (or
less) simple (α, β) explanation for O.
Suppose, by way of contradiction, that GO has a dominating set of size k and there
is not a k-sized simple (α, β) explanation for O. Then, there has to be at least one
element oi ∈ O such that there is no feasible p ∈ S where α ≤ d(oi, p) ≤ β. Consider
the nodes Vi from the inner loop of KSEP-TO-DOMSET that are associated with oi.
Note that these nodes form a complete subgraph. As each node in Vi is associated
with oi, no node in Vi can be in the dominating set of GO (if one were, then we
would have a contradiction). However, note that half of the nodes in Vi only have
edges to other nodes in Vi, so there must be an element of Vi in the dominating
set. This is a contradiction.
CLAIM 2: If there is a k-sized simple (α, β) explanation for O, then GO has a
dominating set of size k or less.
Suppose, by way of contradiction, that there is a k-sized simple (α, β) explanation
for O, and GO has does not have a dominating set of size k or less. Let E be a
k-sized simple (α, β) explanation for O. Let this also be a subset of the nodes in
GO. By the KSEP-TO-DOMSET, in each set of nodes Vi, there must be at least
one element of E . As each set of vertices Vi is a complete graph, then we have a
dominating set of size k. Hence, a contradiction.

A.12 Proof of Proposition 4.6

Solving k-SEP by a reduction to DomSet utilizing a straight-forward greedy ap-
proach has time-complexity O(∆3 · f · |O|2) and an approximation ratio bounded
by O(1 + ln(2 · f ·∆)).

Proof. This is done by a well-known reduction of an instance of DomSet into
an instance of Set-Cover. In the reduction, each node is an element, and the
subsets are formed by each node and its neighbors. The Table VII shows the
quantities:

Hence, the total time complexity of the algorithm is O(8 ·∆3 · f · |O|2) and the
complexity part of the statement follows. As the maximum number of elements
per subset, the approximation ratio O(1 + ln(2 · f ·∆)) follows by the well-known
analysis of the greedy set-covering algorithm.
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A.13 Proof of Proposition 4.7

Solving k-SEP by a reduction to DomSet utilizing the distributed, randomized
algorithm presented in [Jia et al. 2002] has a time complexity O(∆ · |O|+ ln(2 ·∆ ·
|O|)·ln(2·∆·f)) with high probability and approximation ratio of O(1+ln(2·f ·∆)).

Proof. By Proposition 4.5, the complexity of KSEP-TO-DOMSET is O(∆·|O|)).
The graph GO has O(2 ·∆ · |O|) nodes, and the maximum degree of each node is
bounded 2 · ∆ · f as per Proposition 4.6. As the algorithm in [Jia et al. 2002]
has a complexity of O(lg(n) · lg(d)) (with high probability) where n is the number
of nodes and d is the maximum degree, the complexity of this approach requires
O(∆ · |O|+ ln(2 ·∆ · |O|) · ln(2 ·∆ ·f)) with high probability (the statement follows).

As the approach in [Jia et al. 2002] is greedy, it maintains the O(1 + ln(2 · f ·∆))
(Proposition 4.6) (the approximation ratio in this case being a factor of the optimal
in expectation).

A.14 Proof of Proposition 4.8

OPT-KSEP-IPC consists of O(|O|π(β2 − α2)) variables and 1 + |O| constraints.

Proof. Follows directly from Definition 4.1.

A.15 Proof of Proposition 4.9

For a given instance of the optimization version k-SEP, if OPT-KSEP-IPC is solved,
then

⋃
pj∈Lxj=1

pj is an optimal solution to k-SEP.

Proof. Suppose, by way of contradiction, that
⋃
pj∈Lxj=1

pj is not an optimal

solution to k-SEP. By the constraint, ∀oi ∈ O,
∑
pj∈L xj · str(pj)i ≥ 0, we are

ensured that for each observation, there is a partner pj such that xj = 1. Fur-
ther, if we associate xj with the selected parter pj for any solution E to k-SEP,
then this constraint must hold. Hence,

⋃
pj∈Lxj=1

pj is a valid explanation. There-

fore, the optimal solution to the instance of k-SEP, we shall call EOPT , must be
smaller than

⋃
pj∈Lxj=1

pj . As the minimization of
∑
pj∈L xj ensures that the car-

dinality of
⋃
pj∈Lxj=1

pj is minimized. Therefore, |EOPT | cannot be smaller than

|
⋃
pj∈Lxj=1

pj |, as the constraint ∀oi ∈ O,
∑
pj∈L xj · str(pj)i ≥ 0 holds for any

solution to k-SEP. This is a contradiction.

A.16 Proof of Proposition 4.10

NAIVE-KSEP-ROUND returns an explanation for O that is within a factor f of
optimal, where f is the maximum number of possible partners associated with any
observation.

Proof. [Hochbaum 1982] shows that the solution to the relaxation of the integer
program representation of set-cover approximates the optimal solution within a
factor of f , which is the greatest number of sets an element can be found in. For
k-SEP, this would be the greatest number of partners for any given observation,
which is bounded by O(π(β2−α2)), but may be much lower in practice - particularly
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if the ≡O heuristic is employed. As OPT-KSEP-IPC employs this technique, the
statement follows directly.

A.17 Proof of Proposition 5.1

GREEDY-KSEP-OPT1 has a complexity of O(∆ ·f · |O|) and an approximation ratio
of 1 + ln(f).

Proof. CLAIM 1: GREEDY-KSEP-OPT1 has a complexity of O(∆ · f · |O|).
This follows the same analysis of NAIVE-KSEP-SC in Proposition 4.3, except that
line 4 iterates only ∆ times rather than ∆ · |O| times. Hence, the total complexity
is O(|O| · (∆ · f + f) + ∆ · |O|) and the statement follows.

CLAIM 2: GREEDY-KSEP-OPT1 has an approximation ratio of 1 + ln(f).
The proof of this claim resembles the approximation proof of the standard greedy
algorithm for set-cover (i.e. see [Cormen et al. 2001] page 1036).

Let p1, . . . , pi, . . . , pn be the elements of E , the solution to GREEDY-KSEP-OPT1,
numbered by the order in which they were selected. For each iteration, let set COVi
be the subset of observations that are partnered for the first time with point pi.
Note that each element of O is in exactly one COVi. For each oj ∈ O, we define
costj to be 1

|COVi| where oj ∈ COVi.

CLAIM 2.1:
∑
pi∈E∗

∑
oj∈Opi,oj are partners costj ≥ |E|

By the definition of costj , exactly one unit of cost is assigned every time a point is
picked for the solution E . Hence,

COST (E) = |E| =
∑
oj∈O

costj

The statement of the claim follows.

CLAIM 2.2: For some point p ∈ L,
∑
oj∈Op,oj are partners costj ≤ 1 + ln(f).

Let P be the subset of O that can be partners with p. At each iteration i of the
algorithm, let uncovi be the number of elements in P that do not have a partner.
Let last be the smallest number such that uncovlast = 0. Let EP = {pi ∈ E|(i ≤
last) ∧ (COVi ∩ P 6≡ ∅)}. From here on, we shall renumber each element in EP
as p1, . . . , p|EP | by the order they are picked in the algorithm (i.e. if an element is
picked that cannot partner with anything in P , we ignore it and continue number-
ing with the next available number, we will use this new numbering for COVi and
the iterations of the algorithm as well, but do not re-define the set based on the
new numbering).

We note that for each iteration i, the number of items in P that are partnered is
equal to uncovi−1 − uncovi. Hence,∑

oj∈O
p,oj are partners

costj =
last∑
i=1

uncovi−1 − uncovi
|COVi|
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At each iteration of the algorithm, let PCOVi be the subset of observations that are
covered for the first time if point p is picked instead of point pi. We note, that for
all iterations in 1, . . . , last, the point p is considered by the algorithm as one of its
options for greedy selection. Therefore, as p is not chosen, we know that |COVi| ≥
|PCOVi|. Also, by the definition of ucovi, we know that |PCOVi| = ucovi−1. This
gives us: ∑

oj∈O
p,oj are partners

costj ≤
last∑
i=1

uncovi−1 − uncovi
ucovi−1

Using the algebraic manipulations of [Cormen et al. 2001] (page 1037), we get the
following: ∑

oj∈O
p,oj are partners

costj ≤ H|P |

Where Hj is the jth harmonic number. By definition of the symbol f (maximum
number of observations supported by a single partner), we obtain the statement of
the claim.

(Proof of claim 2): Combining claims 1-2, we get |E| ≤
∑
pi∈E∗(1 + ln(f)), which

gives us the claim.

A.18 Proof of Proposition 5.2

GREEDY-KSEP-OPT1 returns a |E|-sized (α, β) explanation for O.
GREEDY-KSEP-OPT1 returns IMPOSSIBLE if there is no explanation for O.

Proof. Suppose by way of contradiction that there exists and element o ∈ O
such that there is no in E . We note that set O′ contains all elements of O and the
only way for an element to be removed from O′ is if a partner for that element is
added to E . Hence, if the program returns a set E , we are guaranteed that each
o ∈ O has a partner in E .

Suppose by way of contradiction that GREEDY-KSEP-OPT1 returns IMPOSSI-
BLE and there exists a set E that is a valid (α, β) explanation for O. Then, for
every element of O, there exists a valid partner. However, this contradicts line 6b
of NAIVE-KSEP-SC (called by line 4b of GREEDY-KSEP-OPT1) which causes the
program to return IMPOSSIBLE only if an element of O is found without any
possible partner.

A.19 Proof of Theorem 5.1

GREEDY-KSEP-OPT2 has a complexity of O(∆ · f2 · |O| + |O| · ln(|O|)) and an
approximation ratio of 1 + ln(f).

Proof. CLAIM 1: GREEDY-KSEP-OPT2 has a complexity of O(∆ · f2 · |O| +
|O| · ln(|O|)).
Line 1 takes O(∆ · |O|) time.
The loop starting at line 4 iterates |O| times.
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The nested loop at line 4a iterates ∆ times.
The second nested loop at line 4(a)i iterates f times. The inner body of this loop
can be accomplished in constant time.
In line 5, initializing the Fibonacci heap takes constant time, as does inserting
elements, hence this line takes only O(|O|) time.
The loop at line 6 iterates, at most, |O| times.
Viewing the minimum of a Fibonacci heap, as in line 6a can be done in constant
time.
As per the analysis of GREEDY-KSEP-OPT1, line 6b takes ∆ · f iterations. The
updating procedure starts with line 6c which iterates f times.
The removal of an elements in line 6(c)ii from a Fibonacci heap costs O(ln(|O)
amortized time. However, we perform this operation no more than |O| times,
hence we can add |O| · ln(|O|)) to the complexity.
Note that the size of a list pointed to by REL OBS[o′] is bounded by ∆ · f - f
observations associated with each of ∆ partners - hence line 6(c)iii iterates, at
most, ∆ · f times.
We note that decreasing the key of an item in the Fibonacci heap (in line 6(c)iii)
takes constant time (amortized).
Therefore, by the above statements, the complexity of GREEDY-KSEP-OPT2 is
O(|O| · (∆ ·f +∆ ·f2)+ |O| · ln(|O|)+∆ ·f · |O|+∆ · |O|) and the statement follows.
CLAIM 2: GREEDY-KSEP-OPT2 has an approximation ratio of 1 + ln(f).
Follows directly from Proposition 5.1.

A.20 Proof of Proposition 5.3

GREEDY-KSEP-OPT2 returns a |E|-sized (α, β) explanation for O.
GREEDY-KSEP-OPT2 returns a IMPOSSIBLE if there is no explanation for O.

Proof. Mirrors that of Proposition 5.2.
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