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Abstract. We consider bounds on the prediction error of classification algorithms based on sample compression.
We refine the notion of a compression scheme to distinguish permutation and repetition invariant and non-
permutation and repetition invariant compression schemes leading to different prediction error bounds. Also, we
extend known results on compression to the case of non-zero empirical risk.

We provide bounds on the prediction error of classifiers returned by mistake-driven online learning algorithms
by interpreting mistake bounds as bounds on the size of the respective compression scheme of the algorithm.
This leads to a bound on the prediction error of perceptron solutions that depends on the margin a support vector
machine would achieve on the same training sample.

Furthermore, using the property of compression we derive bounds on the average prediction error of kernel
classifiers in the PAC-Bayesian framework. These bounds assume a prior measure over the expansion coefficients
in the data-dependent kernel expansion and bound the average prediction error uniformly over subsets of the space
of expansion coefficients.

Keywords: classification, error bounds, sample compression, PAC-Bayes, kernel classifiers

1. Introduction

Generalization error bounds based on sample compression are a great example of the
intimate relationship between information theory and learning theory. The general relation
between compression and prediction has been expressed in different contexts such as
Kolmogorov complexity (Vitànyi & Li, 1997) minimum description length (Rissanen,
1978), and information theory (Wyner et al., 1992). As was first pointed out by Littlestone
and Warmuth (1986) and later by Floyd and Warmuth (1995), the prediction error of a
classifier h can be bounded in terms of the number d of examples to which a training
sample of size m can be compressed while still preserving the information necessary for
the learning algorithm to identify the classifier h. Intuitively speaking, the remaining m – d
examples that are not required for training serve as a test sample on which the classifier is
evaluated. Interestingly, the compression bounds so derived are among the best bounds in
existence in the sense that they return low values even for moderately large training sample
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size. As a consequence, compression arguments have been put forward as a justification for
a number of learning algorithms including the support vector machine (Cortes & Vapnik,
1995) whose solution can be reproduced based on the support vectors, that constitute a
subset of the training sample.

Prediction error bounds based on compression stand in contrast to classical PAC/VC
bounds in the sense that PAC/VC bounds assume the existence of a fixed hypothesis space
H (see Cannon et al., 2002 for a relaxation of this assumption) while compression results
are independent of this assumption and typically work well for algorithms based on a
hypothesis space of infinite VC dimension or even based on a data-dependent hypothesis
space, as is the case, for example, in the support vector machine. We systematically review
the notion of compression as introduced in Littlestone and Warmuth (1986) and Floyd and
Warmuth (1995). In Section 3 we refine the idea of a compression scheme to distinguish
between permutation and repetition invariant and non permutation and repetition invariant
compression schemes, leading to different prediction error bounds. Moreover, we extend
the known compression results for the zero-error training case to the case of non-zero
training error. Note that the results of both Littlestone and Warmuth (1986) and Floyd and
Warmuth (1995) implicitly contained this agnostic bound via the notion of side information.

We then review the relation between batch and online learning, which has been a recur-
rent theme in learning theory (see Littlestone, 1989; Cesa-Bianchi et al., 2002). The results
in Section 4 are based on an interesting relation between online learning and compression:
Mistake-driven online learning algorithms constitute non permutation invariant compres-
sion schemes. We exploit this fact to obtain PAC type bounds on the prediction error of
classifiers resulting from mistake-driven online learning using mistake bounds as bounds
on the size d of compression schemes. In particular, we will reconsider the perceptron algo-
rithm and derive a PAC bound for the resulting classifiers from a mistake bound involving
the margin a support vector machine would achieve on the same training data. This result
went so far largely unnoticed in the study of margin bounds.

Similar to PAC/VC results, recent bounds in the PAC-Bayesian framework (Shawe-
Taylor & Williamson, 1997; McAllester, 1998) assume the existence of a fixed hypothesis
space H. Given a prior measure PH over H the PAC-Bayesian framework then provides
bounds on the average prediction error of classifiers drawn from a posterior PH|Z=z in
terms of the average training error and the KL divergence between prior and posterior
(McAllester, 1999). Interestingly, tight margin bounds for linear classifiers were proven in
the PAC-Bayesian framework in Graepel et al. (2000), Herbrich and Graepel (2002) and
Langford and Shawe-Taylor (2003). Building on ideas from the compression framework,
in Section 5 we prove general PAC-Bayesian results for the case of sparse data-dependent
hypothesis spaces such as the class of kernel classifiers on which the support vector machine
is based. Instead of assuming a prior PH over hypothesis space, we assume a prior PA over
the space of coefficients in the kernel expansion. As a result, we obtain PAC-Bayesian
results on the average prediction error of data-dependent hypotheses.

2. Basic learning task and notation

We consider the problem of binary classification learning, that is, we aim at modeling the
underlying dependency between two sets referred to as input space X and output space Y ,
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which will be jointly referred to as the input-output space Z according to the following
definition:

Definition 1 (Input-output space). We call

1. X the input space,
2. Y := {−1,+1} the output space, and
3. Z := X × Y the joint input-output space

of the binary classification learning problem.

Learning is based on a training sample z of size m defined as follows:

Definition 2 (Training sample). Given an input-output space Z and a probability measure
PZ thereon we call an m-tuple z ∈ Zm drawn IID from PZ := PXY a training sample of
size m. Given z = ((x1, y1), . . . , (xm, ym)) we will call the pairs (xi , yi ) training examples.
Also we use the notation x = (x1, . . . , xm) and similarly y = (y1, . . . , ym).

The hypotheses considered in learning are contained in the hypothesis space.

Definition 3 (Hypothesis and hypothesis space). Given an input space X and an output
space Y we define an hypothesis as a function

h:X → Y ,

and a hypothesis space as a subset

H ⊆ YX .

A hypothesis space is called a data-dependent hypothesis space if the set of hypotheses can
only be defined for a given training sample and may change with varying training samples.

A learning algorithm takes a training sample and returns a hypothesis according to the
following definition:

Definition 4 (Learning algorithm). Given an input space X and an output space Y we call
a mapping1

A:Z (∞) → YX

a learning algorithm.

In order to assess the quality of solutions to the learning problem, we use the zero-one
loss function.



58 T. GRAEPEL, R. HERBRICH AND J. SHAWE-TAYLOR

Definition 5 (Loss function). Given an output space Y we call a function

l:Y × Y → R
+

a loss function on Y and we define the zero-one loss function as

l0–1 (ŷ, y) :=
{

0 for ŷ = y

1 for ŷ �= y
.

Note that this can also be written as l0–1(ŷ, y) = Iŷ �=y , where I is the indicator function.

A useful measure of success of a given hypothesis h based on a given loss function l is
its (true) risk defined as follows:

Definition 6 (True risk). Given a loss function l, a hypothesis space H, and a probability
measure PZ the functional R:H → R

+ given by

R [h] := EXY[l (h (X) , Y)] ,

that is, the expectation of the loss, is called the (true) risk on H. Given a hypothesis h
we also call R[h] its prediction error. For the zero-one loss l0−1 the risk is equal to the
probability of error.

The true risk or its average over a subset of hypotheses will be our main quantity of
interest. A useful estimator for the true risk is its plug-in estimator, the empirical risk.

Definition 7 (Empirical risk). Given a training sample z ∼ PZm , a loss function l:Y×Y →
R, and an hypothesis h ∈ H we call

R̂ [h, z] := 1

|z|
|z|∑

i=1

l (h (xi ) , yi )

the empirical risk of h on z. An hypothesis h with R̂[h, z] = 0 is called consistent with z.

Given these preliminaries we are now in a position to consider bounds on the true risk
of classifiers based on the property of sample compression.

3. PAC compression bounds

In order to relate our new results to the body of existing work, we will review the unpub-
lished work of Littlestone and Warmuth (1986) and the seminal paper Floyd and Warmuth
(1995). In addition to these two papers, our introduction of compression schemes carefully
distinguishes between permutation and repetition invariance since these properties lead
to different bounds on the prediction error. This distinction will become important when
studying online algorithms in Section 4.
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3.1. Compression and reconstruction

In order to be able to bound the prediction error of classifiers in terms of their sample
compression it is necessary to consider particular learning algorithms instead of particular
hypothesis spaces. In contrast to classical results that constitute bounds on the prediction
error which hold uniformly over all hypotheses in H (PAC/VC framework) or which
hold uniformly over all subsets of H (PAC-Bayesian framework) we are in the following
concerned with bounds on the prediction error which hold only for those classifiers that
result from particular learning algorithms (see Definition 4). Let us decompose a learning
algorithm A into a compression scheme as follows (Littlestone & Warmuth, 1986).

Definition 8 (Compression scheme). We define the set,

Id,m := {1, . . . , m}d ,

of all index vectors of size d ∈ N. Given a training sample z ∈ Zm and an index vector
i ∈ Id,m let zi be the subsequence indexed by i,

zi := (
zi1 , . . . , zid

)
.

We call an algorithm A:Z (∞) → H a compression scheme if and only if there exists a pair
(C,R) of functionsC:Z (∞) → ⋃∞

m=1

⋃m
d=1 Id,m (compression function) andR:Z (∞) → H

(reconstruction function) such that we have for all training samples z,

A (z) = R
(
zC(z)

)
.

We call the compression scheme permutation and repetition invariant if and only if the
reconstruction functionR is invariant under permutation and repetition of training examples
in any training sample z. The quantity |C(z)| is called the size of the compression scheme.

The definition of a compression scheme is easily illustrated by three well-known algo-
rithms: the perceptron, the support vector machine (SVM), and the K-nearest-neighbors
(KNN) classifier, which can all be viewed as being based on the data-dependent hypothesis
space of kernel classifiers.

Definition 9 (Kernel classifiers). Given a training sample z ∈ (X × Y)m and a kernel
function k:X × X → R we define the data-dependent hypothesis Hk(x) by

Hk(x) :=
{

x �→ sign

(
m∑

i=1

αi k(xi , x)

)∣∣∣∣∣ α ∈ R
m

}
. (1)

1. The (kernel) perceptron algorithm (Rosenblatt, 1962) is a compression scheme that
is not permutation and repetition invariant. Rerunning the perceptron algorithm on a



60 T. GRAEPEL, R. HERBRICH AND J. SHAWE-TAYLOR

training sample that consists only of those training examples that caused an update
in the previous run leads to the same classifier as before. Permuting the order of the
examples or omitting repeated examples, however, may lead to a different classifier.

2. The support vector machine (Cortes & Vapnik, 1995) is a permutation and repetition
invariant compression scheme. Rerunning the SVM only on the support vectors leads
to the same classifier regardless of their order because the expansion coefficients in
the optimal solution of the other training examples are zero and the objective function
is invariant under permutation of the training examples. Soft margin SVMs are still
permutation invariant but not repetition invariant because each point violating the margin
constraints is accounted for by a slack variable in the objective function.

3. The K-nearest-neighbors classifier (Cover & Hart, 1967) can be viewed as a limiting
case of kernel classifiers and can be viewed as a permutation and repetition invariant
compression scheme as well: Delete those training examples that do not change the
majority on any conceivable test input x ∈ X (consider figure 1 for an illustration for
the case of K = 1).

Note that mere sparsity in the expansion coefficients αi in (1) is not sufficient for an
algorithm to qualify as a compression scheme, but it is necessary that the hypothesis found
can be reconstructed from the compression sample. The relevance vector machine algorithm
presented in Tipping (2001) is an example of an algorithm that does provide solutions sparse
in the expansion coefficients αi without constituting a compression scheme. Based on the
concept of compression let us consider PAC-style bounds on the prediction error of learning
algorithms as described above.

Figure. 1 Illustration of the convergence of the kernel classifier based on class-conditional Parzen window
density estimation to the nearest neighbor classifier in X = [−1,+1]2 ⊂ R

2. For σ = 5 the decision surface
(thin line) is almost linear, for σ = 0.4 the curved line (medium line) results, and for very small σ = 0.02 the
piecewise linear decision surface (thick line) of nearest neighbor results. For nearest neighbor only the circled
points contribute to the decision surface and form the compression sample.



PAC-BAYESIAN COMPRESSION BOUNDS ON THE PREDICTION ERROR 61

3.2. The realizable case

Let us first consider the realizable learning scenario, i.e., for every training sample z there
exists a classifier h such that R̂[h, z] = 0. Then we have the following compression bound
(note that (2) was already proven in Littlestone and Warmuth (1986) but will be repeated
here for comparison).

Theorem 1 (PAC compression bound). Let A : Z (∞) → H be a compression scheme.
For any probability measure PZ, any m ∈ N, and any δ ∈ (0, 1], with probability at
least 1 − δ over the random draw of the training sample z ∈ Zm, if R̂[A(z), z] = 0 and
d := |C(z)| then

R [A (z)] ≤ 1

m − d

(
log(md ) + log (m) + log

(
1

δ

))
,

and, if A is a permutation and repetition invariant compression scheme, then

R [A (z)] ≤ 1

m − d

(
log

(
m

d

)
+ log (m) + log

(
1

δ

))
. (2)

Proof. First we bound the probability

PZm (R̂[A(Z), Z] = 0 ∧ R[A(Z)] > ε ∧ |C(Z)| = d)

≤ PZm (∃i ∈ Id,m : (R̂[R(Zi), Z] = 0 ∧ R[R(Zi)] > ε))

≤
∑

i∈Id,m

PZm (R̂[R(Zi), Z] = 0 ∧ R[R(Zi)] > ε). (3)

The second line follows from the property A(z) = R(zC(z)) and the fact that the event in
the second line is implied by the event in the first line. The third line follows from the union
bound, Lemma 1 in Appendix A. Each summand in (3)—being a product measure—is
further bounded by

EZd

[
PZm−d |Zd=zi.(R̂[R(zi), Z] = 0 ∧ R[R(zi)]ε)

]
(4)

where we used the fact that correct classification of the whole training sample z implies
correct classification of any subset z̃ ⊆ z of it. Since the m −d remaining training examples
are drawn IID from PZ we can apply the binomial tail bound, Theorem 6 in Appendix A,
thus bounding the probability in (4) by exp(−(m − d)ε). The number of different index
vectors i ∈ Id,m is given by md = |Id,m | for the case that R is not permutation and
repetition invariant and ( m

d ) in the case that R is permutation and repetition invariant. As a
result, the probability in (3) is strictly less than md exp(−(m −d)ε) or ( m

d ) exp(−(m −d)ε),
respectively.
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We have with probability at least 1 − δ over the random draw of the training sample
z ∈ Zm that the proposition ϒd (z, δ) defined by

R̂ [A (z) , z] = 0 ∧ |C (z)| = d ⇒ R [A (z)] ≤ log(md ) + log
(

1
δ

)
m − d

holds true (with md replaced by ( m
d ) for the permutation and repetition invariant case).

Finally, we apply the stratification lemma, Lemma 1 in Appendix A, to the sequence of
propositions ϒd with PD(d) = 1

m for all d ∈ {1, . . . , m}.

The bound (2) in Theorem 1 is easily interpreted if we consider the bound on the binomial
coefficient, ( m

d ) < ( em
d )d , thus obtaining2

R [A (z)] ≤ 2

m

(
d log

(em

d

)
+ log (m) + log

(
1

δ

))
. (5)

This result should be compared to the simple VC bound (see, e.g., Cristianini & Shawe-
Taylor, 2000),

ε (m, dVC, δ) = 2

m

(
dVC log2

(
2em

dVC

)
+ log2

(
2

δ

))
. (6)

Ignoring constants that are worse in the VC bound, these two bounds almost look alike.
The (data-dependent) number d of examples needed by the compression scheme replaces
the VC dimension dVC := VCdim(H) of the underlying hypothesis space. Compression
bounds can thus provide bounds on the prediction error of classifiers even if the classifier
is chosen from an hypothesis space H of infinite VC dimension. The relation between VC
bounds and compression schemes—motivated by equations such as (5) and (6)—is still not
fully explored (see Floyd & Warmuth, 1995 and recently Warmuth, 2003). We observe an
interesting analogy between the ghost sample argument in VC theory (see Herbrich, 2001
for an overview) and the use of the remaining m − d examples from the sample. While the
uniform convergence requirement in VC theory forces us to assume an extra ghost sample
to be able to bound the true risk, the m − d training examples serve the same purpose in
the compression framework: To measure an empirical risk used for bounding the true risk.

The second interesting observation about Theorem 1 is that the bound for a permutation
and repetition invariant compression scheme is slightly better than its counterpart without
this invariance. This difference can be understood from a coding point of view: It requires
more bits to encode a sequence of indices (where order and repetition matter) as compared
to a set of indices (where order does not matter and there are no repetitions).

In the proof of the PAC compression bound, Theorem 1, the stratification over the
number d of training examples used was carried out using a uniform (prior) measure
PD(1) = · · · = PD(m) = 1

m indicating complete ignorance about the sparseness to be
expected. In a PAC-Bayesian spirit, however, we may choose a more “natural” prior that
expresses our prior belief about the sparseness to be achieved. To this end we assume that
given a training sample z ∈ Zm the probability p that any given example zi ∈ z will be in
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the compression sample zC(z) is constant and independent of z. This induces a distribution
over d = |C(z)| given for all d ∈ {1, . . . , m} by

PD (d) =
(

m

d

)
pd (1 − p)m−d ,

for which we have
∑m

i=1 PD(i) ≤ 1 as required for the stratification lemma, Lemma 1 in
Appendix A. The value p thus serves as an a-priori belief about the value of the observed
compression coefficient p̂ := d

m . This alternative sequence leads to the following bound
for permutation and repetition invariant compression schemes,

R [A (z)] ≤ 2 ·
(

p̂ log

(
1

p

)
+ (1 − p̂) log

(
1

1 − p

)
+ 1

m
log

(
1

δ

))
. (7)

Note that the term p̂ log( 1
p ) + (1 − p̂) log( 1

1−p ) can be interpreted as the cross entropy
between two random variables that are Bernoulli-distributed with success probabilities p
and p̂, respectively. For an illustration of how a suitably chosen value p of the expected
compression ratio can decrease the bound value for a given value p̂ of the compression
ratio consider figure 2.

3.3. The unrealizable case

The previous compression bound indicates an interesting relation between PAC/VC theory
and data compression. Of course, data compression schemes come in two flavors, lossy and

Figure. 2 Dependency of the PAC-Bayesian compression bound (7) on the expected value p and the observed
value p̂ of the compression coefficient. For increasing values p̂ := d

m the optimal choice of the expected
compression ratio p increases as indicated by the shifted minima of the family of curves (m = 1000, δ = 0.05).
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non-lossy. Thus it comes as no surprise that we can derive bounds on the prediction error of
compression schemes also for the unrealisable case with non-zero empirical risk (Graepel
et al., 2000) Note that these results are implicitly contained in Floyd and Warmuth (1995)
where the authors consider the more general scenario that the reconstruction function R
also gets r bits of side-information.

Theorem 2 (Lossy compression bound). Let A : Z (∞) → H be a compression scheme.
For any probability measure PZ, any m ∈ N, and any δ ∈ (0, 1], with probability at least
1 − δ over the random draw of the training sample z ∈ Zm, if d = |C(z)| the prediction
error of A(z) is bounded from above by

R [A (z)] ≤ m

m − d
R̂ [A (z) , z] +

√
log(md ) + 2 log (m) + log

(
1
δ

)
2 (m − d)

,

and, if A is a permutation and repetition invariant compression scheme, then by

R [A (z)] ≤ m

m − d
R̂ [A (z) , z] +

√
log

(m
d

) + 2 log (m) + log
(

1
δ

)
2 (m − d)

.

Proof. Fixing the number of training errors q ∈ {1, . . . , m} and |C(z)| we bound—in
analogy to the proof of Theorem 1—the probability

PZm

(
R̂[A(Z), Z] ≤ q

m
∧ R[A(Z)] > ε ∧ |C(Z)| = d

)

≤
∑

i∈Id,m

PZm

(
R̂[R(Zi), Z] ≤ q

m
∧ R[R(Zi)] > ε

)
. (8)

We have that m · R̂[A(z), z] ≤ q implies (m − d) · R̂[A(z), z í] ≤ q for all i ∈ Im,d and
í := {1, . . . , m} \ i leading to an upper bound,

EZd

[
PZm−d |Zd=zi

(
R̂[R (zi) , Z] ≤ q

m − d
∧ R [R (zi)] > ε

)]
, (9)

on the probability in (3). From Hoeffding’s inequality, Theorem 7 in Appendix A, we know
for a given sample zi that the probability in (9) is bounded by

exp

(
−2 (m − d)

(
ε − q

m − d

)2
)

.

The number of different index vectors i ∈ Id,m is again given by md for the case that R
is not permutation and repetition invariant and ( m

d ) in the case that R is permutation and
repetition invariant.
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Thus we have with probability at least 1− δ over the random draw of the training sample
z ∈ Zm for all compression schemes A and maximal number of training errors q that the
proposition ϒd,q (z, δ) given by

R̂ [A (z) , z] ≤ q

m
∧ |C (z)| = d

⇒
R [A (z)] ≤ q

m − d
+

√
log(md ) + log

(
1
δ

)
2 (m − d)

holds true (with md replaced by ( m
d ) for the permutation invariant case). Finally, we apply

the stratification lemma, Lemma 1 in Appendix A, to the sequence of propositions ϒd,q

with PDQ((d, q)) = m−2 for all (d, q) ∈ {1, . . . , m}2.

The above theorem is proved using a simple combination of Hoeffding’s inequality and
a double stratification about the number d of non-zero coefficients and the number of
empirical errors, q. From an information theoretic point of view the first term of the right
hand side of the inequalities represents the number of bits required to explicitly transfer the
labels of the misclassified examples—this establishes the link to the more general results
of Floyd and Warmuth (1995). Note also that Marchand and Shawe-Taylor (2001) prove
a similar result to Theorem 2, avoiding the square root in the bound at the cost of a less
straight-forward argument and worse constants.

4. PAC bounds for online learning

In this section we will review the relation between PAC bounds and mistake bounds for
online learning algorithms. This relation has been studied before and Theorem 3 is a direct
consequence of Theorem 3 in Floyd and Warmuth (1995).

In light of the relationship, we will reconsider the perceptron algorithm and derive
a PAC bound for the resulting classifiers from a mistake bound involving the margin a
support vector machine would achieve on the same training data. We will argue that a
large potential margin is sufficient to obtain good bounds on the prediction error of all the
classifiers found by the perceptron on permuted training sequences zj. Although this result
is a straightforward application of Theorem 3 it went unnoticed and is, so far, missing in
any comparative study of margin bounds—which form the theoretical basis of all margin
based algorithms including the support vector machine algorithm.

4.1. Online-learning and mistake bounds

In order to be able to discuss the perceptron convergence theorem and the relation between
mistake bounds and PAC bounds in more depth let us introduce formally the notion of an
online algorithm (Littlestone, 1988).
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Definition 10 (Online learning algorithm). Consider an update function U :Z ×H → H
and an initial hypothesis h0 ∈ H. An online learning algorithm is a function A:Z (∞) ×⋃∞

m=1{1, . . . , m}(∞) × H → H that takes a training sample z ∈ Zm , a training sequence
j ∈ ⋃∞

m=1{1, . . . , m}(∞), and an initial hypothesis h0 ∈ H, and produces the final hypothesis
AU (z) := h|j| of the |j|-fold recursion of the update function U ,

hi := U
(
z ji , hi−1

)
.

Mistake-driven learning algorithms are a particular class of online algorithms that only
change their current hypothesis if it causes an error on the current training example.

Definition 11 (Mistake-driven learning algorithm). An online algorithm AU is called
mistake-driven if the update function satisfies for all x ∈ X , for all y ∈ Y , and for all
h ∈ H that

y = h (x) ⇒ U ((x, y) , h) = h .

In the PAC framework we focus on the error of the final hypothesis A(z) an algorithm
produces after considering the whole training sample z. In the analysis of online-algorithms
one takes a slightly different view: The number of updates until convergence is considered
the quantity of interest.

Definition 12 (Mistake bound). Consider an hypothesis spaceH, a training sample z ∈ Zm

labeled by an hypothesis h ∈ H and a sequence j ∈ {1, . . . , m}(∞). Denote by j̃ ⊆ j the
sequence of mistakes, i.e., the subsequence of j containing the indices ji ∈ {1, . . . , m} for
which hi−1 �= hi . We call a function MU : Z (∞) → N a mistake bound for the online
algorithm AU if it bounds the number |j̃| of mistakes AU makes on z ∈ Zm ,

|j̃| ≤ MU ,

for any ordering j ∈ {1, . . . , m}(∞).

In a sense, this is a very practical measure of error assuming that a learning machine is
training “on the job”.

4.2. From online to batch learning

Interestingly, we can relate any mistake bound for a mistake-driven algorithm to a PAC
style bound on the prediction error:

Theorem 3 (Mistake bound to PAC bound). Consider a mistake-driven online learning
algorithm AU for H with a mistake bound MU : Z (∞) → N. For any probability measure
PZ, any m ∈ N, and any δ ∈ (0, 1], with probability at least 1 − δ over the random draw of
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the training sample z ∈ Zm we have that the true risk R[AU (z)] of the hypothesis AU (z) is
bounded from above by

R [AU (z)] ≤ 2

m

(
(MU (z) + 1) log (m) + log

(
1

δ

))
. (10)

Proof. The proof is based on the fact that a mistake-driven algorithm constitutes a (non
permutation and repetition invariant) compression scheme. Assume we run AU twice on the
same training sample z and training sequence j. From the first run we obtain the sequence
of mistakes j̃. Thus we have for the compression function C,

C(zj) := j̃ .

Running AU only on z j̃ then leads to the same hypothesis as before,

AU (z, j) = AU (z, j̃)

showing that the reconstruction function R is given by the algorithm AU itself. The com-
pression scheme is in general not permutation and repetition invariant because AU and
hence R is not. We can thus apply Theorem 1, where we bound d from above by MU and
use 1

m−d ≤ 2
m for all d ≤ m

2 .

Let us consider two examples for the application of this theorem. The first example
illustrates the relation between PAC/VC theory and the mistake bound framework:

Example 1 (Halving algorithm). For finite hypothesis spaces H, |H| < ∞, the so-called
halving algorithm A1/2 (Littlestone, 1988) achieves a minimal mistake bound of

M1/2 (z) = ⌈
log2 (|H|)⌉ .

The algorithm proceeds as follows:

1. Initialize the set V0 := H and t = 0.
2. For a given input xi ∈ X predict the class ŷi ∈ Y that receives the majority of votes

from classifiers h ∈ Vt ,

ŷi = argmax
y∈Y

|{h ∈ Vt : h (xi ) = y}| . (11)

3. If a mistake occurs, that is yi �= ŷi , all classifiers h ∈ Vt that are inconsistent with xi are
removed,

Vt+1 := Vt \ {h ∈ Vt : h (xi ) �= yi } .
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4. If no more mistakes occur, return the final set Vt and let A1/2 classify according to
equation (11); otherwise goto 2.

Plugging the value M1/2 (z) into the bound (10) gives

R
[
A1/2 (z)

] ≤ 2

m

(
(log2 (|H|)� + 1) log (m) + log

(
1

δ

))
,

which holds uniformly over version space VM and up to a factor of 2 log(m) recovers what
is known as the cardinality bound in PAC/VC theory.

The second example provides a surprising way of proving bounds for linear classifiers
based on the well-known margin γ by a combination of mistake bounds and compression
bounds:

Example 2 (Perceptron algorithm). The perceptron algorithm Aperc is possibly the best-
known mistake-driven online algorithm (Rosenblatt, 1962). The perceptron convergence
theorem provides a mistake bound for the perceptron algorithm given by

Mperc (z) =
(

ς (x)

γ ∗ (z)

)2

,

with ς2(x) := maxxi ∈x ‖xi‖ being the data radius and

γ ∗ (z) := max
w

min
(xi ,yi )∈z

yi 〈xi , w〉 / ‖w‖ ,

being the maximum margin that can be achieved on z. Plugging the value Mperc(z) into the
bound (10) gives

R[Aperc (z)] ≤ 2

m

(((
ς (x)

γ ∗ (z)

)2

+ 1

)
log (m) + log

(
1

δ

))
.

This result bounds the prediction error of any solution found by the perceptron algorithm
in terms of the quantity ς (x)/γ ∗(z), that is, in terms of the margin γ ∗(z) a support vector
machine (SVM) would achieve on the same data sample z. Remarkably, the above bound
gives lower values than typical margin bounds (Vapnik, 1998; Bartlett & Shawe-Taylor,
1998; Shawe-Taylor et al., 1998) for classifiers w in terms of their individual margins
γ (w, z) that have been put forward as justifications of large margin algorithms. As a
consequence, whenever the SVM appears to be theoretically justified by a large observed
margin γ ∗(z), every solution found by the perceptron algorithm has a small guaranteed
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prediction error—mostly bounded more tightly than current bounds on the prediction error
of SVMs.

5. PAC-Bayesian compression bounds

In the proofs of the compression results, Theorems 1 and 2, we made use of the fact that
m − d of the m training examples had not been used for constructing the classifier and
could thus be used to bound the true risk with high probability. In this section, we will
make use of similar arguments in order to deal with data-dependent hypothesis spaces such
as those parameterized by the vector α of coefficients in kernel classifiers. This function
class constitutes the basis of support vector machines, Bayes point machines, and other
kernel classifiers (see Herbrich, 2001 for an overview). Note that our results neither rely
on the kernel function k to be positive definite or even symmetric nor is it relevant which
algorithm is used to construct the final kernel classifiers. For example, these bounds also
apply to kernel classifiers learned with the relevance vector machine. Obviously, typical
VC results cannot be applied to this type of data-dependent hypothesis class, because the
hypothesis class is not fixed in advance. Hence, its complexity cannot be determined before
learning.3 In this section we will proceed similarly to McAllester (1998): First we prove a
PAC-Bayesian “folk” theorem, then we proceed with a PAC-Bayesian subset bound.

5.1. The PAC-Bayesian folk theorem for data-dependent hypotheses

Suppose instead of a PAC-Bayesian prior PH over a fixed hypothesis space we define a
prior PA over the sequence α of expansion coefficients αi in (1). Relying on a sparse
representation with ‖α‖0 < m we can then prove the following theorem:

Theorem 4 (PAC-Bayesian bound for single data-dependent classifiers). For any prior
probability distribution PA on a countable subset A ⊂ R

m satisfying PA(α) > 0 for all
α ∈ A, for any probability measure PZ, any m ∈ N, and for all δ ∈ (0, 1] we have with
probability at least 1 − δ over the random draw of the training sample z ∈ Zm that for any
hypothesis h(α,x) ∈ Hk(x) the prediction error R[h(α,x)] is bounded by

R
[
h(α,x)

] ≤ 1

m − ‖α‖0

(
log

(
1

PA (α)

)
+ log

(
1

δ

))
.

Proof. First we show that the proposition ϒα(z, ‖α‖0, δ),

ϒα (z, ‖α‖0 , δ) :=
(

R̂
[
h(α,x), z

] = 0 ⇒ R
[
h(α,x)

] ≤ log
(

1
δ

)
m − ‖α‖0

)
, (12)

holds for all α ∈ A with probability at least 1 − δ over the random draw of z ∈ Zm . Let
i ∈ Id,m, d := ‖α‖0, be the index vector with entries at which αi �= 0. Then we have for
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all α ∈ A that

PZm

(
R̂

[
h(α,X), Z

] = 0 ∧ R
[
h(α,X)

]
> ε

)
≤ PZm

(
R̂

[
h(α,Xi), Z

] = 0 ∧ R
[
h(α,Xi)

]
> ε

)
≤ EZd

[
PZm−d |Zd=zi

(
R̂

[
h(α,xi), Z

] = 0 ∧ R
[
h(α,xi)

]
> ε

) ]
< (1 − ε)m−d ≤ exp (−ε (m − d)) .

The key is that the classifier h(α,x) does not change over the random draw of the m − d
examples not used in its expansion. Finally, apply the stratification lemma, Lemma 1 in
Appendix A, to the proposition ϒα(z, ‖α‖0, δ) with PA(α).

Obviously, replacing the binomial tail bound with Hoeffding’s inequality, Theorem 7,
allows us to derive a result for the unrealisable case with non-zero empirical risk. This
bound then reads

R
[
h(α,x)

] ≤ m

m − ‖α‖0
R̂

[
h(α,x)

] +
√

log
(

1
PA(α)

) + log
(

m
δ

)
2 (m − ‖α‖0)

.

Remark 1. Note that both these results are not direct consequences of Theorems 1 and 2
since in these new results the bound depends on both the sparsity ‖α‖0 and the prior PA(α) of
the particular hypothesis h(α,x) as opposed to only the sparsity d of the compression scheme
that produced h in Theorems 1 and 2. Note that any prior PA over a finite subset of α’s is
effectively encoding a prior over infinitely many hypotheses {h(α,x) | x ∈ Xm, PA(α) > 0}.
It is not possible to incorporate such a prior into both Theorems 1 or 2 using the union
bound.

Example 3 (1-norm soft margin perceptron). Suppose we run the (kernel) perceptron
algorithm with box-constraints 0 ≤ αi ≤ C (see, e.g., Herbrich, 2001) and obtain a
classifier h(α,x) with d non-zero coefficients αi . For a prior

PA (α) := 1

m
( m
‖α‖0

)
(2C + 1)‖α‖0

(13)

over the set {α ∈ R
m | α ∈ {−C, . . . , 0, . . . , C}m} we get the bound

R
[
h(α,x)

] ≤ m

m − d
R̂

[
h(α,x)

] +
√

log
(m

d

) + d log (2C + 1) + log
(

m2

δ

)
2 (m − d)

,

which yields lower values than the compression bound, Theorem 2, for non-permutation
and repetition invariant compression schemes if (2C+1) < d. This can be seen by bounding
log(d!) by d log(d) in Theorem 2 using Stirling’s formula, Theorem 9 in Appendix A.
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5.2. The PAC-Bayesian subset bound for data-dependent hypotheses

Let us now consider a PAC-Bayesian subset bound for the data-dependent hypothesis space
of kernel classifiers (1). In order to make the result more digestible we consider it for a
fixed number d of non-zero coefficients.

Theorem 5 (PAC-Bayesian bound for subsets of data-dependent classifiers). For any
prior probability distribution PA, for any probability measure PZ, for any m ∈ N, for
any d ∈ {1, . . . , m}, and for all δ ∈ (0, 1] we have with probability at least 1 − δ over
the random draw of the training sample z ∈ Zm that for any subset A, PA(A) > 0, with
constant sparsity d and zero empirical risk, ∀α ∈ A : ‖α‖0 = d ∧ R̂[h(α,x)(z)] = 0, the
average prediction error EA|A∈A[R[h(A,x)]] is bounded by

EA|A∈A
[
R

[
h(A,x)

]] ≤
log

(
1

PA(A)

) + 2 log (m) + log
(

1
δ

) + 1

m − d
.

Proof. Using the fact that the loss function l0−1 is bounded from above by 1, we decompose
the expectation at some point ε ∈ R by

EA|A∈A
[
R

[
h(A,x)

]]
≤ ε · PA|A∈A

(
R

[
h(A,x)

] ≤ ε
) + 1 · PA|A∈A

(
R

[
h(A,x)

]
> ε

)
. (14)

As in the proof of Theorem 4 we have that for all α ∈ A and for all δ ∈ (0, 1],

PZm |A=α (ϒα (Z, d, δ)) ≥ 1 − δ ,

where the proposition ϒα(z, d, δ) is given by (12). By the quantifier reversal lemma,
Lemma 2 in Appendix A, this implies that for all β ∈ (0, 1) with probability at least 1 − δ

over the random draw of the training sample z ∈ Zm for all γ ∈ (0, 1],

PA|Zm=z

(
¬ϒA

(
z, d, (γβδ)

1
1−β

))
< γ

PA|Zm=z
(
R̂

[
h(A,x), z

] = 0 ∧ R
[
h(A,x)

]
> ε (γ, β)

)
< γ

with

ε (γ, β) :=
log

(
1

δγβ

)
(1 − β) (m − d)

.
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Since the distribution over α is by assumption a prior and thus independent of the data, we
have PA|Zm=z = PA and hence

PA|A∈A
[
R

[
h(A,x)

]
> ε (γ, β)

] = PA
(
A ∈ A ∧ R

[
h(A,x)

]
> ε (γ, β)

)
PA (A)

≤ γ

PA (A)
,

because by assumption α ∈ A implies R̂[h(α,x), z] = 0. Now choosing γ = PA(A)
m and

β = 1
m we obtain from (14)

EA|A∈A
[
R

[
h(A,x)

]] ≤ ε (γ, β) ·
(

1 − γ

PA (A)

)
+ γ

PA (A)

=
log

(
1

PA(A)

) + 2 log (m) + log
(

1
δ

)
m − d

+ 1

m
.

Exploiting that 1
m ≤ 1

m−d completes the proof.

Again, replacing the binomial tail bound with Hoeffding’s inequality, Theorem 7, allows
us to derive a result for the unrealisable case with non-zero empirical risk.

Example 4 (1-norm soft margin permutational perceptron sampling). Continuing the
discussion of Example 3 with the same prior distribution (13) consider the following
procedure: Learn a 1-norm soft margin perceptron with box constraints 0 ≤ αi ≤ C for
all i ∈ {1, . . . , m} and assume linear separability. Permute the compression sample zisv

and retrain to obtain an ensemble A := {α1, . . . ,αN } of N different coefficient vectors α j .
Then the PAC-Bayesian subset bound for data dependent hypotheses, Theorem 5, bounds
the average prediction error of the ensemble of classifiers {h(α,x)| α ∈ A} corresponding to
the ensemble A of coefficient vectors.

6. Conclusions

We derived various bounds on the prediction error of sparse classifiers based on the idea of
sample compression. Essentially, the results rely on the fact that a classifier h(α,x) resulting
from a compression scheme (of size d) is independent of the random draw of m −d training
examples, which—if classified with low or zero empirical risk by h(α,x)—serve to ensure a
low prediction error with high probability.

Our results in Section 4 relied on an interpretation of mistake-driven online learning
algorithms as compression schemes. The mistake bound was then used as an upper bound on
the size of the compression sample and thus lead to bounds on the prediction error of the final
hypothesis returned by the algorithm. This procedure emphasizes the conceptual difference
between our results and typical PAC/VC results: PAC/VC theory makes statements about
uniform convergence within particular hypothesis classes H. In contrast, compression
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results rely on assumptions about particular learning algorithms A. This idea (which is
carried further in Herbrich & Williamson, 2002) is promising in that it leads to bounds on
the prediction error that are closer to the observed values and that take into account the
actual learning algorithm used.

We extended the PAC-Bayesian results of McAllester (1998) to data-dependent hypothe-
ses that are represented as linear expansions in terms of training inputs. The theorems are
thus applicable to the class of kernel classifiers as defined in Definition 9, ranging from
support vector to K-nearest-neighbors classifiers. Empirically, the bounds given yield rather
low bound values and have low constants in comparison to VC bounds or bounds based on
the observed margin. In summary, they are widely applicable and rather tight. The formula-
tion of a prior over expansion coefficients α that parameterize data-dependent hypotheses
appears rather unusual. No contradiction, however, arises because the prior cannot be used
to “cheat” by adjusting it in such a way as to manipulate the bound values. The reason is
that the expansion (1) does not contain the labels yi . Instead the prior serves to incorporate
a-priori knowledge about the representation of classifiers in terms of training inputs. Of
course, there exist many non-sparse classifiers with a low prediction error as well. It remains
a challenging open question how we can formulate and prove PAC-Bayesian bounds for
data-dependent hypotheses that are dense, i.e., that have few or no non-zero coefficients.
Note that the PAC-Bayesian results in Langford and Shawe-Taylor (2003) only apply to
a fixed hypothesis space by the assumption of a positive definite and symmetric kernel
ensuring a fixed feature space.

Appendix

A. Basic results

As a service to the reader we provide some basic results in the appendix for reference.
Proofs using a rigorous and unified notation consistent with this paper can be found in
Herbrich (2001).

A.1. Tail bounds

At several points we require bounds on the probability mass in the tails of distributions.
Assuming the zero-one loss, the simplest such bound is the binomial tail bound.

Theorem 6 (Binomial tail bound). Let X1, . . . , Xn be independent random variables
distributed Bernoulli(µ). Then we have that

PXn

(
n∑

i=1

Xi = 0

)
= (1 − µ)n ≤ exp (−nµ) .

For the case of non-zero empirical risk, we use Hoeffding’s inequality (Hoeffding, 1963)
that bounds the deviation between mean and expectation for bounded IID random variables.
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Theorem 7 (Hoeffding’s inequality). Given n independent bounded random variables
X1, . . . , Xn such that for all i PXi (Xi ∈ [a, b]) = 1, then we have for all ε > 0

PXn

(
1

n

n∑
i=1

Xi − EX[X] > ε

)
< exp

(
− 2nε2

(b − a)2

)
.

A.2. Binomial coefficient and factorial

For bounding combinatorial quantities the following two results are useful.

Theorem 8 (Bound on binomial coefficient). For all m, d ∈ N with m ≥ d we have

log

(
m

d

)
≤ d log

(em

d

)

Theorem 9 (Simple Stirling’s approximation). For all n ∈ N we have

n (log (n) − 1) < log (n!) < n log (n)

A.3. Stratification

In order to be able to make probabilistic statements uniformly over a given set we use
a generalization of the so-called union bound, which we refer to as the stratification or
multiple testing lemma.

Lemma 1 (Stratification). Suppose we are given a set {ϒ1, . . . , ϒs} of s measurable
logic formulae ϒ : Z (m) × (0, 1] → {true, false} and a discrete probability measure PI

over the sample space {1, . . . , s}. Let us assume that

∀i ∈ {1, . . . , s} : ∀m ∈ N : ∀δ ∈ (0, 1] : PZm (ϒi (Z, δ)) ≥ 1 − δ .

Then, for all m ∈ N and δ ∈ (0, 1],

PZm

(
s∧

i=1

ϒi (Z, δPI (1))

)
≥ 1 − δ .

A.4. Quantifier reversal

The quantifier reversal lemma is an important building block for some PAC-Bayesian
theorems (McAllester, 1998).
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Lemma 2 (Quantifier reversal). Let X and Y be random variables with associated
probability spaces (X ,X, PX) and (Y,Y, PY), respectively, and let δ ∈ (0, 1]. Let ϒ :X ×
Y × (0, 1] → {true, false} be any measurable formula such that for any x and y we have

{δ ∈ (0, 1] | ϒ (x, y, δ) } = (0, δmax]

for some δmax ∈ (0, 1]. If

∀x ∈ X : ∀δ ∈ (0, 1] : PY|X=x (ϒ (x, Y, δ)) ≥ 1 − δ ,

then for any β ∈ (0, 1) we have ∀δ ∈ (0, 1] that

PY

(
∀α ∈ (0, 1] : PX|Y=y

(
ϒ

(
X, y, (αβδ)

1
1−β

))
≥ 1 − α

)
≥ 1 − δ .
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Notes

1. Throughout the paper we use the shorthand notation A(i) := ∪i
j=1 A j .

2. Note that the bound is trivially true for d > m
2 ; otherwise 1

m−d ≤ 2
m .

3. A fixed hypothesis space is a pre-requisite in the VC analysis because it appeals to the union bound over all
hypotheses which are distinguishable by their predictions on a double sample (see Herbrich, 2001 for more
details).
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