
Progress In Electromagnetics Research B, Vol. 46, 1–22, 2013

WILOCSIM: SIMULATION TESTBED FOR WLAN LOCA-
TION FINGERPRINTING SYSTEMS

Chamal Sapumohotti*, Mohamad Y. Alias, and Suwei Tan

Faculty of Engineering, Multimedia University, Cyberjaya, Malaysia

Abstract—This paper introduces a novel simulation testbed for
investigating WLAN indoor localization systems. This testbed referred
to as WiLocSim consists of a novel beacon received signal strength
(RSS) simulator which provides realistic modeling of beacon signal
characteristics such as multipath propagation, measurement noise
and body loss. Each component of the simulator is individually
modeled and verified prior to integration. In addition, the capabilities
of the testbed are demonstrated using two variants of the nearest
neighbor classification based indoor localization algorithm. Unlike
conventional measurement based performance evaluation, the proposed
testbed provides a reproducible environment for accurate evaluation
and analysis of indoor localization systems. More importantly,
it significantly reduces the high labor cost typically required in
measurement based testbed.

1. INTRODUCTION

Availability of accurate location information in indoor environments
adds significant value to mobile device users. Location information
enables navigation in large indoor environments as well as context
aware information delivery [1]. The Global Positioning System
(GPS) [2] technology has become the de-facto standard for outdoor
localization. GPS requires line-of-sight (LOS) between GPS satellites
and client device for accurate localization. Unfortunately, GPS
is impractical for indoor applications as the direct paths between
satellites and the client are obstructed when the client device is located
inside buildings [1, 3, 4]. Recent proliferation of Wireless Local Area
Network (WLAN) devices presents an opportunity to utilize the widely
available WLAN beacon signals as distinctive fingerprints for indoor
location. This method is referred to as location fingerprinting [5].
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Location fingerprinting utilizes periodic beacons broadcast by
WLAN Access Point (AP) to client devices. A typical location
fingerprinting implementation consists of two phases: online phase and
offline phase [5]. In the offline phase, received signal strength (RSS)
data collected at predefined locations (referred to as calibration points)
and the corresponding location information are stored in a database
(referred to as radio map). The calibration points are distributed in
a uniform grid such that the spacing between adjacent calibration
points is constant. Beacon RSS data is processed prior to storage
in the radio map. The types of RSS data stored in the radio map
depend on the localization algorithm. The simplest form is to store
the summary statistics of the beacon RSS such as mean and variance,
while more complex algorithms require the beacon RSS histogram or
the beacon RSS probability distribution. In the online phase, the
beacon RSS measured in real-time by a client device is compared to the
radio map to infer its location. To date, a wide variety of algorithms
have been proposed to infer the user location, such as the nearest
neighbor classification [6], Bayesian filtering [5], Bayesian networks [7]
and neural networks [8].

There is a plethora of design choices for designing a new indoor
localization system. For examples, the number and location of
calibration points, the number and location of APs to be included
in the radio map, the type of beacon statistics to be stored in the
radio map, the localization algorithm to be used and parameters
configuration of the localization algorithm. These choices affect
the deployment cost, localization accuracy, database requirement,
computational complexity and the scalability of the system.

In current literature [5–9], indoor localization algorithms are
typically evaluated in the following manner. First, beacon RSS
at calibration points are collected and processed to create a radio
map of the target area. Afterwards, RSS measurements at some
predefined locations (called test points) are collected and fed into
the algorithm for location prediction. The location accuracy of the
algorithm is evaluated by computing the average error which is the
average Euclidean distance between the location estimates and the
actual locations of the test points.

A measurement based evaluation methodology cannot accurately
and reliably assess an indoor localization system. Specifically, beacon
RSS is affected by several random processes. First, due to multipath
propagation of beacon signals, the RSS may change significantly
even for locations which are very close to each other. Second,
there is temporal variation in the RSS even for the same location.
Consequently, a sufficiently large number of test points that are
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uniformly distributed are needed to more accurately evaluate the
system. However, collecting large amount of data at test points is
both time consuming and labor intensive. Hence existing experimental
study are typically restricted to a small number of test points. For
example, existing indoor localization systems were evaluated against
test points that range from 30 to 107 [5–9]. Such limitation could
result in inaccurate performance estimations. In Section 4.3, a detailed
discussion on the labor cost associated with test point data collection
effort and the accuracy of subsequent performance estimation is given.

Simulation has been proven to be invaluable for the development
and testing of wireless technology applications [24]. It provides in-
depth execution details, a rapid prototyping environment, nonintrusive
debugging, and repeatability while removing the high labor cost
associated with measurement studies [25]. Testbed is an environment
which supports data collection for the purpose of evaluating a system.
This includes the ability to control environment parameters and
scenarios. A testbed provides metrics for evaluation and allows the
experimenter a fine-grained control over test parameters [24, 25]. In
this paper, WiLocSim is presented as a simulation testbed which
combines the advantages of simulation and testbed environment. It
facilitates the design and accurate assessment of location fingerprinting
based indoor localization systems. The designer of location
fingerprinting systems has a wide array of algorithms to choose from
and a variety of operating environments to deal with. This testbed
serves as a tool to evaluate these design options and trade-offs under
different assumptions and scenarios. For instance, WiLocSim can
provide comprehensive methods for evaluating algorithms, generation
of performance indicators, study of algorithm trade-offs. To the
best of our knowledge, this is the first simulation testbed presented
for WLAN location fingerprinting systems. At present, the testbed
supports IEEE 802.11g WLAN technology [10] as it is widely used by
existing mobile devices. The core of the testbed is a WLAN beacon
RSS simulator, which consists of detailed WLAN beacon generation
process and various modules (multipath propagation, body loss and
measurement noise) that affect the beacon RSS.

The rest of this paper is organized as follows. In Section 2,
the beacon RSS generation models are described in detail. The
proposed simulation testbed is presented in Section 3. In Section 4,
the capabilities of the testbed are demonstrated using two variants of
the nearest neighbor classification based indoor localization algorithm.
Section 5 presents some concluding remarks.
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2. PHYSICAL PROCESS MODELS FOR BEACON RSS
SIMULATOR

The most important component of the proposed simulation testbed
is the beacon RSS simulator. There are three main sources which
impact beacon RSS: (i) radio wave propagation characteristics of the
environment, (ii) temporal changes in RSS due measurement noise
and (iii) loss of signal strength due to obstruction by the user. The
proposed beacon RSS simulator models all three sources to provide
a good approximation of RSS behavior in real-world environments.
These three models are presented in this section. The overall RSS
simulator will be presented in Section 3.

2.1. Multipath Propagation Model

A WLAN AP broadcasts periodic beacon frames to advertise
its availability and operating parameters. For instance, typical
deployment uses a period of 100 ms [16]. In addition, start of the
beacon frame includes two preambles, referred to as short preamble
and long preamble. The short preamble is used for frequency and
timing synchronization and the long preamble is used for computing
the beacon RSS [17]. Since IEEE 802.11g uses OFDM modulation
with 64 subcarriers the frequency domain representation of the long
preamble is given as

LP (f)={0, 0, 0, 0, 0, 0, 1, 1,−1,−1, 1, 1,−1, 1,−1, 1, 1, 1, 1, 1, 1,−1,−1,

1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 1,−1,−1, 1, 1,−1, 1,−1, 1,−1,−1,

−1,−1,−1, 1, 1,−1,−1, 1,−1, 1,−1, 1, 1, 1, 1, 0, 0, 0, 0, 0} (1)

This frequency domain representation is converted to time domain
representation, LP (t) by performing Inverse Fast Fourier Transform
(IFFT) of length 64 on LP (f) and adding a cyclic prefix which is 1/4
of the IFFT sequence. This time domain signal is then modulated
using the carrier frequency. The transmit OFDM signal of the long
preamble is given as

S0(t) = I(t) + jQ(t) (2)

where I(t) is the in-phase signal and Q(t) the quadrature signal. If only
a single copy of the transmit signal is received at the transmitter, the
RSS calculation would be straightforward. However, due to multipath
propagation, multiple copies of the signal at different power levels are
received at different times.

Multipath propagation refers to the phenomenon that results
in radio signals arriving at the receiver via multiple propagation
paths. The paths could consist of the direct path, reflected paths,
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diffracted paths and scattered paths. In an indoor environment, ray
tracing techniques [11–14] can be used to derive each of the multipath
components. The received power in dBm of the ith path which arrives
at the receiver can be expressed as [11]

Pi = Pap + Gti + Gri −
(
PLi +

∑
Li

)
(3)

where, Pap is the transmit power of the AP in dBm, Gti represents
the transmitter antenna gain at the departure angle of the path, Gri

represents the receiver antenna gain in the direction of arrival of the
path, PLi is the distance dependent path loss and Li represents the
losses at dielectric boundaries (e.g., reflection loss and transmission
loss). The path loss in dB is given by,

PLi = 32.4 + 20 log10(fc) + 20 log10

( ri

1000

)
(4)

where, the path loss is given by the free space path loss for a distance
equal to the total length of the ith path ri given in meters [15]. The
carrier frequency fc is in MHz, and for 802.11g it is around 2.4 GHz.
For precise representation, the operating channel of the WLAN is
required. For example, channel 1 has a center frequency of 2.412GHz
with a channel separation of 5 MHz. The multipath power in dBm can
be expressed as

Pmp = P1 + 10 log10(Pr) (5)

where, P1 is the signal power in the first arrived multipath signal and
Pr the relative power ratio defined as

Pr =
pmp

p1
(6)

In Equation (6), pmp and p1 are the average power of the multipath
signal in watt and power of the first arrived path in watt, respectively.
p1 is given by

p1 =
1
K

∫ ts

t=tcp

|S1(t)|2 dt (7)

where, K is a constant which depends on the antenna and the OFDM
symbol time. The OFDM symbol time is given by ts and the cyclic
prefix length in time given by tcp. S1 is the first arrived multipath
signal and can be expressed as

S1(t) = V1 [S0(t)] (8)

where, V1 is the voltage amplitude of the first received multipath signal.
More generally the ith signal path can be written as

Si(t) = Vi [S0(t− τi)] (9)
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where, Vi is the voltage amplitude of the ith received multipath signal.
Time delay of the path relative to the first arrived path τi is given as

τi =
ri − r1

c
(10)

where, r1 is the length of the first arrived multipath signal and c is the
speed of light.

Now, pmp, which is the average power of the multipath signal in
watt, can be expressed as

pmp =
1
K

∫ ts

t=tcp

∣∣∣∣∣
n∑

i=1

Si(t− τi)

∣∣∣∣∣
2

dt (11)

where, n is the number of significant multipath.
Using the expressions for pmp and p1, the relative power ratio can

be expressed as

Pr =

∑ts
t=tcp

|∑n
i=1 αiS0(t− τi)|2∑ts

t=tcp
|S0(t)|2

(12)

Here the integrations have been replaced by summations and the
normalized voltage factor αi is defined as

αi =
Vi

V1
(13)

Alternatively, αi can be indirectly calculated by considering the power
of each path as

αi =
√

10(RPi)/10 (14)

where, the relative power of the ith path RPi is given by

RPi = Pi − P1 (15)

2.2. Body Loss Model

Human body creates signal attenuation at 2.4 GHz, which is the
operating frequency of IEEE 802.11g system. This user induced loss
is referred to as body loss and it has two main contributing factors.
First, the user grip adds a constant loss provided that the grip and
the orientation of the device are kept constant. Second, if the line-
of-sight (LOS) between the AP and the device is obstructed by the
body, there is additional loss. The body loss parameters depends on
the device used and the user grip [18]. For this research, the body loss
parameters were estimated from experiment using an LG optimus1
P500 mobile device. The impact of user on RSS was studied with the
client and AP 10 m apart for the following cases:



Progress In Electromagnetics Research B, Vol. 46, 2013 7

(i) No user present.
(ii) The user is holding the device and the device is in LOS with the

AP.
(iii) The user is holding the device and the LOS between the device

and the AP is obstructed by user body.

From the results, it was shown that the first case had the highest
average RSS while the second case had a signal strength loss of 4 dB on
average. On the other hand, the third case reported an average signal
strength loss of 10 dB from no user present case. From the experimental
results, the body loss (hand grip) is simulated by adding a constant loss
of 4 dB to the multipath RSS calculated using the multipath model. If
the direct path between the AP and device is obstructed by the user,
an additional 6 dB is added.

2.3. Measurement Noise Model

A situation when the propagation environment and client position is
constant is referred to as a static environment. The measurement noise
is defined as the temporal change of RSS in a static environment. The
main contributors of measurement noise at the AP side are Inphase-
Quadrature (IQ) imbalances, carrier phase noise, spurious signals and
transients, and nonlinearities in the amplifiers [19]. On the client
side, synchronization errors add random noise to the beacon RSS
readings which are mainly contributed by timing errors and frequency
errors [17]. An empirical approach to model the measurement
noise was used because the physical processes which contribute to
measurement noise and the parameters of these processes are too
complex to be modeled deterministically. Therefore a model based
on measurement data has been proposed and verified to be reasonably
accurate by comparing the cumulative distribution function (CDF) of
the data generated by the measurement noise model with the CDF of
experimental data.

In order to isolate effects of beacon measurement noise, it
is necessary to have a static environment to eliminate external
interference at 2.4 GHz from sources such as other wireless APs and
microwave ovens. Hence, the experiment was conducted in Multimedia
University anechoic chamber (see Figure 1) which is able to operate in
the frequency range from 30 MHz to 18 GHz [20]. An anechoic chamber
is able to remove multipath propagation and unwanted interference
from any outside signal sources. A Cisco WAG160N wireless router
operating in 802.11g mode and a TP-Link TL-WR340G wireless router
were used as APs. Also, an LG optimus1 P500 Android phone and a
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Figure 1. Experiment setup inside anechoic chamber.

Table 1. Experiment description.

Experiment ID Active AP Client Device Objective

Experiment 1 Cisco Phone
Impacts of received

signal strength

Experiment 2 TP-Link Phone Impacts of AP type

Experiment 3 Cisco, TP-Link Phone
Impacts of

co-channel interference

Experiment 4 Cisco Laptop
Impacts of

client device

Dell laptop with Intel wireless 3945G card were used as client devices
for the experiment.

The experiment was designed to investigate the effects of
device dependency, received power and co-channel interference on
measurement noise. The received power was controlled indirectly by
varying the distance between the AP and the client device. The
two APs were placed at a distance separation of 6m. The client
device is placed between the APs, and the beacon measurements are
recorded at 1m increments for distance from 1 m to 5 m from the
APs. 150 beacons were captured by client device for each point in
all experiments. More details of the experiment can be found in
our previous work [21]. Altogether, four experiments were conducted
to investigate the behavior of measurement noise. Each experiment
utilized a different combination of AP and client devices. The
description for each experiment is given in Table 1.

From our previous analysis of the collected data, it was found
that the measurement variance is very high when the distance between
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Figure 2. Sample beacon RSS histograms from experiment 1.

the AP and the client device is 1m due to the high power level. The
measurement variance drops to a value in the range of 2 dB when the
distance is greater than or equal to 2 m. The set of histograms for all 4
experiments have similar characteristics and the sample histogram set
for Experiment 1 is presented in Figure 2. From the figure, it is evident
that the beacon histogram at 1 m distance is significantly different from
histograms at other distances due to RSS readings which are spread
over a larger range (−19 dBm to −31 dBm). When the distance is
increased, the histograms have a much narrower range and can be
approximated by a normal distribution. The model for measurement
noise is developed based on these observations.

2.3.1. Proposed Measurement Noise Model

The suggested model is derived from a normal distribution, where
the mean and variance of the model is equal to the sample mean
and variance, respectively. The RSS is a discrete value. In order
to obtain the discrete RSS, the value generated from the continuous
normal distribution is rounded to the nearest integer. The probability
of obtaining a beacon RSS reading X equal to Xi is given as

P (X = Xi) =

Xi+0.5∫

Xi−0.5

N(X)d (16)



10 Sapumohotti et al.

where, the function N(X) is a normal distribution with mean and
variance given by x̄ (sample mean) and s (sample standard deviation).
N(X) is expressed as

N(X) =
1

σ
√

2π
e−0.5(X−x̄

S )2

(17)

2.3.2. Measurement Noise Model Verification

The accuracy of the proposed model for modeling measurement noise is
verified by comparing the CDF of the data generated by the proposed
model with the CDF of the measurement data. A graphical plot of
the distributions [22] is used for this purpose. If the CDFs are similar,
then the model can be implied to be accurate. All the plots showed
that the proposed model is a good approximation for measurement
noise for distance above 1m. A sample plot is shown in Figure 3. In
the figure, the y = x line (solid black line) indicates a high similarity
between the proposed model and the measurement data for all cases
except for 1 m separation. At 1m separation, a significant deviation
from normal distribution was observed in the beacon histograms. This
abnormal behavior could be due to the receiver front end saturation as
a result of high power levels observed when the distance between AP
and client is only 1 m. For the simulation of measurement noise, the
sample average is calculated by the multipath model and the body loss
model. From our previous work [21], it was found that a 2 dB variance
is a good approximation for measurement noise. Thus, a 2 dB variance
is used in the simulation testbed.

Figure 3. Experiment 2 Q-Q plot, proposed distribution vs. measured
distribution.



Progress In Electromagnetics Research B, Vol. 46, 2013 11

3. SIMULATION TESTBED

3.1. Beacon RSS Simulator

The beacon RSS Simulator as shown in Figure 4 serves as the core of
the testbed. The RSS Simulator integrates the three models discussed
in Section 2 to simulate beacon RSS. Scenario information and client
location are required as inputs to the multipath model. Scenario
information includes the description of the environment used by the
ray tracer, location as well as the properties of AP and client radio.
The multipath model calculates the multipath RSS as described in
Section 2.1. The output of the multipath model is the multipath RSS;

Figure 4. Beacon RSS Simulator.

Figure 5. Measurement setup.
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this output is fed into the body loss model. The body loss model
considers the location of the AP as well as the location and orientation
of the user. Next the body loss value is calculated as described in
Section 2.2 and it is added to the multipath RSS. The output of
the body loss model is the location average RSS. This output is fed
into the measurement noise model which creates temporal variation
in the beacon RSS. Measurement noise model adds measurement noise
according to Section 2.3 and outputs the final result which is the beacon
RSS.

A simple scenario was used to verify the applicability of the
simulator in generating RSS data. A measurement experiment was
conducted in wing A of the first floor of Faculty of Engineering in
Multimedia University (MMU), Malaysia (see Figure 5). An AP was
placed at the right end of the corridor. The corridor is 1.8 m in
width and 2.5m in height. The AP used has a transmit power of
17 dBm. Measurements were collected at test points starting 5m away
from the AP until 56 m. Test points were located every 0.6m in the
measurement path and the path is shown in the figure by the dotted
line. At each point, 60 samples were collected.

In order to verify the accuracy of the beacon RSS simulator,
a simulation experiment was conducted using identical setting as
in the measurement experiment. A simple ray tracer was utilized
for calculating the power of reflected waves. Only the first order
reflections from the four walls, ceiling and the floor were considered. In
order to simplify the calculations and since the exact electromagnetic
parameters of the walls were not available to calculate Fresnel reflection
coefficients, a fixed reflection loss is added to each of the reflections.

Figure 6. Comparison between simulation and experiment data.
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Several rounds of simulations with different reflection loss values were
conducted and the reflection loss of 3 dB gives the best similarity
to measurement data. This value of 3 dB reflection loss is used in
subsequent simulations as well. The antennas are assumed to be
dipole antennas. The average RSS of simulation and measurement are
given in Figure 6. From the experiment, RMS error is 5.6 dB and the
mean error is 2.4 dB. Thus, the simulated beacon RSS is a reasonable
approximation.

3.2. Integration of the RSS Simulator into the Testbed

Figure 7 summarizes the overall simulation testbed which can
be used to compare the performance of different types of radio
map construction strategies and localization algorithms for different
environments. Initially the locations of calibration points are
calculated such that the calibration points are distributed uniformly
in the area for which localization is performed. The resolution
of the calibration points which is the distance separation between
adjacent calibration points and the number of samples which are
collected at each calibration point are configurable parameters. Next
the calibration point RSS samples are simulated using the beacon

Figure 7. Simulation testbed.
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RSS simulator and the radio map is constructed. The radio map
construction depends on the algorithm used for localization. A
summary statistic such as the mean of the sample is stored in the radio
map for deterministic localization techniques such as nearest neighbor
classification. For probabilistic localization techniques, the histogram
of the probability distribution of the RSS for each calibration point is
stored in the radio map.

The test points are used to evaluate the performance of the indoor
localization system which is created by the combination of the radio
map and the localization algorithm. Test points should be distributed
uniformly throughout the area in which the location system operates.
This is achieved by using two uniform random variables which generate
x and y coordinates for the test points. The location estimates for the
test points are compared with the actual location of the test points to
compute the localization error. The average error of all the test points
can be used to compare the performance of different indoor localization
systems.

4. SIMULATOR DEMONSTRATION

This section demonstrates the capabilities of the simulation testbed by
analyzing the performance of two variants of nearest neighbor (NN)
classification based indoor localization algorithms: K-nearest Neighbor
(KNN) and Weighted K-nearest Neighbor (WKNN). In literature,
both KNN and WKNN are expected to perform better than NN for
small K where K is the number of neighbors. The optimal K reported
in literature [5, 23] is 3 or 4 and the location error of WKNN is expected
to be less than KNN. Simulation testbed allows us to simulate large
number of test points which is impractical through measurements. The
error performance of the algorithm is analyzed for different number of
test points. The possibility of coming up with wrong conclusions if the
number of test points is not statistically significant is shown.

4.1. Nearest Neighbor Classification

The structure of a radio map designed for NN classification consists of
a set of location labels for calibration points and a set of fingerprints
which are collected at those calibration points. A fingerprint is
represented by a vector with each dimension representing averaged
beacon received RSS from an AP. The set of locations of calibration
points are given by P = {p1, p2, . . . , pn}, where pi = (xi, yi) is the x
and y coordinates of the calibration point. The set of fingerprints is
given by F = {f1, f2, . . . , fn}. For a radio map with M access points,
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A fingerprint fi = 〈aı1, aı2, . . . , aıM 〉 where aı is the averaged beacon
RSS for the jth AP for ith fingerprint. If N samples are collected at
each calibration point, the aι is represented as

aı =
1
N

N∑

t=1

at
ij (18)

In the localization phase, the vector distance between the beacon RSS
vector and all the calibration points in the radio map is computed. The
vector distance between the ith calibration point and the test point is
given as

dist(fi, Ot) = ‖fi −Ot‖ (19)

There are many different methods to calculate the vector distance. For
this simulation, Manhattan norm was used [5]. For NN the location of
the calibration point which has the lowest distance to test point is the
location estimate of the user.

For KNN, the geometric center of the closest K calibration points
in signal space is the location estimate p̂ given by

p̂ =
1
N

K∑

l=1

Pl (20)

For WKNN, a weight wti is assigned to each of the K nearest
calibration points in signal space which is inversely proportional to
the signal space distance. The weight is given by

wti =
1

dist(fi, Ot)
(21)

If the subset of F which has the fingerprints with the largest K weights
is L, a normalization factor, WN is calculated by

WN =
K∑

l=1

Wl (22)

On the other hand, the location estimation for WKNN is given by

p̂ =
1

WN

K∑

l=1

WlPl (23)

4.2. Simulation Setup

The simulation scenario is shown in Figure 8. In this scenario, 4 APs
are located inside a hall with 30m × 50m dimensions which is similar
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Figure 8. Simulation scenario.

to the measurement based testbed found in literature. For example,
HORUS [9] used a testbed of size 26 m × 68m and RADAR [6] used
a testbed of size 23 m × 44m. The number of APs (four APs) was
also chosen to be similar to the values used in literature. For instance,
RADAR utilized 3APs while 5APs were used in [23]. The locations of
the APs were chosen such that it creates significant variation of RSS as
the user moves from one end of the corridor to the other end. The AP
power level was chosen to be 17 dBm, which is the power level of the
Cisco AP that was used in measurement noise experiment. Simulations
assume dipole antennas at both the APs and at the client device since
it is a common antenna pattern in WLAN APs and also because of its
simplicity.

By using the coordinate system shown in Figure 8, the locations
of the APs are as follows: AP1 (15, 1), AP2 (1, 12), AP3 (29, 38),
and AP4 (15, 49), the locations of the AP were chosen arbitrarily.
The calibration points for the radio map are located on the dotted
line. The calibration points start from (15, 2) and end at (15, 48),
while the distance separation between adjacent calibration points is
1m. The test points are located randomly in the area between the two
dashed lines. The top line is given by x = 14 and the bottom line is
given by x = 16. Each calibration point is the mean of 60 samples.
The test point locations were uniformly distributed throughout the
localization area. The RSS for each AP at each test point is simulated
and is used to infer the user location using the radio map. The error
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Figure 9. Average Error vs. K
for WKNN.

Figure 10. Average Error vs. K
for KNN.

is calculated by taking the difference between the location estimation
and the actual location of the test point. To illustrate the concept of
requiring statistical significance in the results, the number of random
locations generated is considered for 10, 100, 1000, and 10000 test
points.

4.3. Results and Discussion

Figure 9 depicts the average error performance for WKNN algorithm,
Figure 10 shows the average error performance of KNN algorithm,
and Figure 11 displays the error performance of KNN and WKNN
when 10000 test points are used for evaluating the performance. From
the simulations, for 10 and 100 test points, it is difficult to come to
a conclusion about the impact of K for the performance of KNN and
WKNN. However, for 1000 and 10000 iterations the average error curve
converges. From Figure 11 it can be concluded that the optimal K for
both KNN and WKNN is 3. The performance degrades as the K
is increased further and the performance of WKNN is slightly better
than KNN. The performance of NN algorithm can be obtained from
both curves by assigning K = 1. Both WKNN and KNN performance
is better than NN for small K. Overall, the simulation results are
consistent with the results found in literature [5, 23].

4.3.1. The Cost of Actually Measuring the Test Points Rather Than
Simulating

The reason for not using a large number of test points in measurement
based testbed is because of the high labor cost. Assume that it takes
30 seconds to collect data at each test point. This duration could be
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Table 2. Data collection effort.

Number of test points Data Collection time (minutes)
10 5
100 50
1000 500
10000 5000

Figure 11. Performance compar-
ison of WKNN and KNN.

Figure 12. Convergence analy-
sis.

much longer if the measurements are not taken in a grid. Table 2
indicates the amount of time it would have taken for data collection
for each experiment. From the table, the data collection for large
number of test points which could add statistical significance to the
results is very tedious.

In comparison, there are costs associated with simulation setup.
For instance, there is labor cost incurred for obtaining body loss
parameters for a specific device and also for deriving reflection
coefficient for a specific environment. However, once these parameters
are determined, many different scenarios (different number of APs,
different number of calibration points, etc.) can be tested without
additional labor cost. If measurement based approach is utilized,
each different scenario would require measurements and repeat of data
collection effort.

4.3.2. Convergence of the Error Curve as the Number of Test Points
is Increased

From Figures 9 and 10, it is observed that the average error curves tend
to converge to the absolute average error of the indoor localization
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system. An understanding of the minimum number of test points
for convergence would help to reduce the computational steps. On
the other hand, it is difficult to come up with a generic value as the
number of optimal test points as it depends on the dimension of the
environment. Therefore, monitoring of the differences between average
error curves as the number of test points is increased is proposed as
a solution for determining the convergence. In this approach a fixed
number of test points are added in to the current pool of test points
at each step. The convergence metric is calculated for the current
number of test points by getting the mean absolute difference between
the average error curve for current pool of test points and error curve
for previous pool prior to the addition of new test points. Figure 12
gives the convergence metric for calculating WKNN as the number
of test point increase. In this simulation, 500 new test points were
added to the test point pool at each step. The graph shows mean
absolute difference between the average error curves for current pool
of test points and previous pool of test points. For instance, in the
graph, the mean absolute difference when the number of test points
is 2000 represents the mean absolute difference between the average
error curve for the 2000 test points and average error curve for 1500
test points. From Figure 12, it is observed that graphs have sufficiently
converged at 2000 test points although there is a small improvement
in convergence as the number of test points is increased to 10000.

5. CONCLUSION AND FUTURE WORK

Existing measurement based indoor localization system evaluation is
limited due to the high labor cost involved. In fact, it requires
data collection at large number of test points in order to provide
a statistically meaningful assessment. In comparison, simulation
offers a reliable and low cost alternative. To address this need, this
paper proposed a simulation testbed for evaluating the algorithm
performance in IEEE 802.11g based indoor localization systems.

This testbed referred to as WiLocSim was built around a
beacon RSS simulator which models the main sources that affect
the signal strength, i.e., multipath propagation, body loss and
measurement noise. In addition, the capabilities of the simulator
were demonstrated by analyzing the established results regarding
nearest neighbor classification based localization algorithms. There
are multiple potential applications for WiLocSim. For instance,
this can be used by system designers to select optimal localization
algorithms, algorithm parameters and radio map design strategies for
a given scenario. Furthermore, researchers can also use the testbed to
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benchmark new algorithms. In addition, the availability of a simulation
testbed can significantly enhance the coherence of results published in
the field of WLAN based indoor localization. This can be achieved
by coming up with a set of benchmark deployment environments and
evaluating the localization algorithm performance for these benchmark
environments.

The Ray Tracer that was used with WiLocSim for these
simulations is limited to rectangular areas. Thus, we had to limit our
studies to corridor environments as navigation in corridors is a very
important aspect in WLAN indoor localization. An obvious future
work is to include a more powerful ray tracer in WiLocSim so that
more complex scenarios can be studied.
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