
Designing with Parametric CAD: Classification and
comparison of construction techniques

Jami J. Shah

Dept. of Mechanical & Aero. Engineering, Arizona State University, Tempe AZ85287, USA

Key words: CAD, Parametrics, Geometric constraints

ABSTRACT
This paper gives an overview of the rapid evolution of parametrics, from somewhat slow

beginnings in academic labs to mainstream commercial CAD. Although not recognized by the

user community, parametric CAD is not a single technique but a set of techniques, each with

its own advantages and limitations. Each is supported by different technologies. Most CAD

systems allow one to mix and match different parametric approaches for creating part

geometry. One objective of this article is to establish a clear terminology of parametric

paradigms. An enumeration of parametric capabilities for model creation in current

commercial CAD systems is reviewed. The influence of model history and constraint solving

techniques on parametric modeling is also examined. Limitations exist in feature validation,

unexpected model behavior due to topology changes, and solving coupled constraints at full
3D variational level. The idea of "assembly features" has not yet been exploited in

commercial CAD. The discussion in this paper is a generalization of parametric capabilities of
commercial systems; prototypes in academic research labs are not discussed.

1. BACKGROUND

When solid modeling based CAD was introduced, it met with resistance
from designers because of difficulty of use. It was not until the introduction
of parametric based CAD that this resistance began to melt away. There are
three claimed benefits of parametrics:
• Automatic change propagation
• Geometry re-use
• Embedding ofdesign/ manufacturing knowledge with geometry

F. Kimura (ed.), Geometric Modelling
© Springer Science+Business Media New York 2001

Parametric technology is not a single technique but a set of
techniques. Each technique has some capabilities and limitations. Not all of
the techniques provide all of the above benefits. Also, the last benefit has
yet to be exploited fully in commercial systems. Common to all parametric
techniques is associativity that allows changes to propagate automatically.
Parametrization may be done a priori, such as in design by features or
modeling of part families; a posteriori, as in feature recognition, or
concurrently, as in constraint based design. Most CAD systems provide
many alternative methods to create and modify part geometry.

2. HISTORY OF PARAMETRIC CAD

Initial work on form features was related to automatic recognition and
extraction from CAD models. Since this paper is not about feature
recognition, we do not discuss this line of development. Table I shows three
aspects of parametrics development. In the first column we have listed
implementations of constraint based and feature based systems. As shown in
Table 1, the concept of design by features was first proposed by Pratt and
Wilson (1986) in a CAM-I project. Prototype feature-based modeling
systems began appearing in the mid-1980s, mostly in university research
labs. Among them were Dixon et al.' s system at University of
Massachusetts (Cunningham and Dixon, 1988), Turner and Anderson's
QTC at Purdue (Turner and Anderson, 1988), and Shah et al's ASU
Features Testbed (Shah et al., 1988). Commercial implementations of
feature-based modeling became available around 1990, but features were
only construction macros. 2D constraint based sketching were developed
independently, initially to support tolerances in CAD (Hillyard & Braid 78,
Light & Gossard 82). This was followed by application of constraints for
positioning parts in assemblies. In the mid 1990s most major vendors
supported constraint and feature-based CAD systems.

The underlying technology for parametrics is constraint solving. In the
context of geometric modeling, constraints result in non-linear simultaneous
algebraic equations. Work in constraint solving has been done both in
conjunction with CAD and also unrelated to it. In general, a parametric
problem can be described in terms of a list of variable entities, parameters
describing the entities, constraints between the entities and the allowable
range for each parameter. The second column in Table 1 shows the entities
and constraints used in parametric systems over the years.

The third column shows the solution techniques used in parametric CAD.
Simultaneous algebraic equations were solved numerically in early 2D
systems. Constraint programming (Borning, 1979) was also developed early.

54

It involves using graphs; each constraint is associated with a subroutine for
determining the unknown variable from the known variables.

T bl 1 P a e t. CAD t h I ararne nc ec no og1es: L" fd I meso eve opmen t
Parametric Constraints Solving Techniques
desh~n

1978 2D constraints on !Numerical Constraint
vertex positions (Hillyard&Braid, Programming

fLight&Gossard) (Homing)
1985 Concept of DBF User-equations Bipartite graph

(Pratt& Wilson) (Serrano)
1\.cademic
systems; (Shah,
!Anderson,
Dixon)
Commercial 2D constraints on
system points, lines and
CIMPLEX circles

1990 Commercial Rule-based
System: Pro-E (Aldefeld, Suzuki,

Shimizu)
Constraint based 3D construct. Procedural Constraint
2D sketching procedures (Roller, Solano, ~raph (Owen)

3D constraints on vanEmmerik)
point, line, plane
3D constraints on ~ommercial
assemblies rroolkit

(DCM2D)
Constraint based Kinematic
assembly ~OF methods
modeling (Kramer)

Symbolic algebra
(Buchanan/
de Pennington)

1995 Most
commercial
CAD support
feature macros

Propagational 3DDCM
(Bouma,
MiintyHi)

Serrano & Gossard (1987) proposed Bipartite graph algonthms to find
maximal matchings of equations to variables so that each equation is used to
solve for one variable. However, these algorithms have difficulty with
strongly connected components (or cycles in the graph) and resort to
numerical methods (Serrano, 1991). Commercial solvers based on Bipartite
Graphs, such as DCM-2D, became available in early 1990. Rule based

55

approaches can be divided into degree-of-freedom analysis and pattern
matching. Degree-of-freedom methods are faster than pattern matching
(Kramer, 1992). The pattern matching methods search for combinations of
one free geometric entity, several fixed geometric entities and constraints
between them which match a pattern in a rule-base (Aldefeld, 1988; Suzuki
et al., 1990; and Shimizu et al., 1991). Symbolic solvers based on
Buchberger's algorithm for finding Grabner bases were developed by
Davenport et al. (1993), and Buchanan and de Pennington (1993). Methods
that act directly on geometric entities are divided into algorithmic (graph
constructive) and rule-based. Algorithmic approaches operate on constraint
graphs, either by decomposing them (Owen, 1991) or constructing them
(Bouma et al., 1995). Differences between geometric constraint solvers
occur in the types of geometric primitives that can be handled, how multiple
solutions are treated, whether over/underconstrained systems are allowed,
the combinations of constraints that can be handled and the speed of
solution. We will see in later sections of the paper that the lack of effective
means to get the user desired solution and combining of 2D constraint
solving with history based model changes create many problems for users of
parametric systems today.

3. CLASSIFICATION OF CONSTRUCTION MODES

Figure 1 shows that there are basically two modes in which one can
create/modify the geometry of parts and assemblies in CAD systems:
traditional (non-parametric) and parametric. These are further classified into
seven distinct model construction approaches, as discussed below.

-[
No construction history

with construction history
-[

on - Parametric . . .

MODEL . . .
CONSTRUCTION 2D constraint with 3D history

MODE Parametric 3D variational

Figure 1

56

Parametric family catalog

Feature macros
Persistent features

3.1 Non-parametric mode

Non-parametric modes may be implemented with or without construction
history. In the traditional method, one creates unconstrained 2D sketches
from low level entities, then sweeps or lofts them into 3D objects, and/or
uses primitive solids and Booleans. Positioning of objects for Boolean
operations or assembly must be done in global coordinates. This makes it
tedious to construct objects. It is also difficult to make changes to the
geometry, particularly if construction history is not supported. For example,
if there was a groove on a hole and we want to change the hole's diameter
without changing the groove depth, or to move the hole with the groove,
there is no easy way to do it. Some limited editing is possible in history­
based non-parametric CAD. Allowable changes are those related to
primitive dimensions and positions. Some 3D construction parameters, such
as sweep distance, sweep direction, and Boolean operation may also be
changed. The model is rolled back to the point of change; the changed
primitive is re-created with the new size or position and the rest of the
history is rolled back. There is still no associativity between parameters of
different primitives or entities of 2D sketches used. In pure solid models, the
data stored is at a low level and cannot be directly used in knowledge based
applications. The design intent is hard to encode in such models.

3.2 2D constraints with 3D history

·we classify parametric methods into 5 distinct classes, shown in Figure
1. There are or two versions of constraint based modeling. The more
common approach found in commercial systems involves constraints
solving only at the 2D level; 3D construction parameters are edited via the
construction history. In this approach, the user-defines a planar topology
and specifies dimensional, geometric and algebraic constraints relating the
points, lines, arcs of the 2D sketch. The sketch plane can be positioned
anywhere in space, or even on one of the existing faces of the solid. If the
sketch is under-constrained, the default scale on the screen is used for the
unspecified dimensions. The constraint equations are solved in 2D for
either point positions or parameters of the geometric entities involved.
These 2D sketches are typically used as sections for sweep or lofting
operations. When changes are made, the model is rolled back to the 3D
operation that involves the change. In many modelers, solids resulting from
3D operations are loosely termed "features". If the change involves
parameters in a 3D operation, the construction command is repeated with
the new parameters. If the change involves parameters in a 2D sketch, 2D

57

constraints are solved again, a new sketch is generated, and then the history
is replayed. This gives the user the illusion of editing at the 3D level.

Some systems use terms like "smart" or "intelligent" shapes to imply 2D
shapes that can be dragged and dropped on another sketch. In case of
intersections between the curves of the existing sketch and the dropped
sketch, trimming is automatically done at the first intersection. In such cases,
outer and inner loops of both sketches are concatenated separately. An
example is shown in Figure 2. In (a) we see a sketch (lower figure) and a
predefined shape. In (b) we see the predefined shape dragged and dropped
on the main sketch. The result, shown in (c) is somewhat like a 2D Boolean
operation. This type of capability may be regarded as a hybrid between
constraint based and feature based design since it uses a pre-defined sketch
from a library of shapes.

~

(a)

' N

v

(b)

(c)

Figure 2

In complex models, users can be overwhelmed by conflicting constraints
or under constrained situations. Some hints from the system are helpful. The
user needs to know not only whether the sketch is under or over constrained
but also which degrees of freedom are available, or which constraints are in
conflict. Pure numerical solvers cannot provide this information. Symbolic
solvers are useful for this type of functionality.

In 2D constraint based modeling, the construction sequence and
parameterization must be carefully thought out prior to modeling because
this will restrict the user to what can be edited after the model is built.
Constraints cannot be applied or solved at the 3D level. The dependence on
history creates many unexpected results, particularly when the reference
entity, such as an edge, is split, merged or deleted. An example of such
occurrence is shown in Figure 3. When the slot is shrunk away from the
front edge, one cannot predict what will happen when the two edges on
either side of the slot are merged. One is chamfered, the other is not. In this
case the chamfer is applied to the entire edge. In addition, there are the usual

58

problems with constraints solving such as multiple solutions. Each modeler
users its own set to offer heuristic rules. Some recent work has been done in
separating constraints into active (used in solving), and passive (used in
selecting between multiple solutions (Bettig 2001). For example, the
solution that affects the least number of entities is preferred by some solvers.
Some constraint solvers solve the equations sequentially, while others solve
simultaneously. This can also result in different solutions and different
capabilities.

Figure 3

3.3 3D variational design

By 30 variational design we imply the application and solution of
constraints on models at the 30 level. However, there is no standard
approach for 3D variational design, per se. Part positioning in assembly
design, and application of constraints between the dimensions of two parts
in an assembly, are special cases of 30 constraint based design. The former
problem uses fewer degrees of freedom, only those related to position of
parts not to their shape or size. The latter can easily be solved procedurally.

Some implementations limit 30 constraints to only entities obtained
from linear sweep. Figure 4(a) shows a slot created by linear sweep on a
face of a polyhedron obtained by a separate linear sweep. No constraints
were used initially. 3D constraints were applied directly to the solid: the
side faces of the slot and the bottom were made parallel to the sides and
bottom of the outside body (Figure 4.b). Of course, this functionality does
not require 30 constraint solving because parallel/perpendicular faces can
be mapped to parallel/perpendicular lines in 20 sketches and the constraints
solved in 20.

Figure 5 shows a more sophisticated 30 case. The same part of Figure
4(a) was used but an additional sweep (protrusion) was created on a
different face and in a different direction than the slot (Figure 5a). The top
face of the protrusion was then made parallel and coplanar with the bottom

59

of the slot, as shown in Figure 5.b. Even this could be implemented by
embedding special procedures and without solving 3D constraints.

(a) (b)

Figure 4

(a) (b)

Figure 5

A truly 3D variational system needs a 3D constraint solver; going from
2D to 3D solving has proved to be challenging. Robust solvers are still not
available. Thus, CAD systems that support the 3D variational approach are
still not commercial. Many vendors have come to the conclusion that it is
very difficult for most users to create 3D models directly with this approach.
However, the real merit of this approach is in modifying solids that may
have been created with or without parametrics.

3.4 Parametric family catalogs

Parametric part family catalogs allow one to pre-define a part shape
driven by some key dimensions. An example part family is shown in Figure
6. Using this approach requires a two phase process. First, a parametric
model is created by any of the other parametric methods and constrained. A
table of standard variants is created using only driving dimensions - the rest
are either calculated from these or are fixed. After a catalog is archived,

60

users can quickly create variants by specifying only the key dimensions or
use one of the standard variants. Obviously, the domain of such modeling is
very limited.

MX-1 TP-27 PC-42

Part no. Hole dia Hub dia. Outer-dia Rim-thck. Rim-width
MX-1 2.0 4.0 8.0 0.25 1.0
MX-6
TP-27 1.5 2.5 6.0 0.5 2.0
TP-45
PC-42 1.0 3.0 5.0 0.40 4.5

Figure 6

3.5 Feature based design

Form features may be thought of as stereotypical shapes that may be
encountered frequently in certain problem domains. Therefore, features can
be predefined and stored in feature libraries. A features definition may
include some or all of the following: topology, topological relations,
geometry, geometric relations, dimensional parameters, algebraic relations
between parameters, and parametric construction history. A definition
containing both the declarative and constructive specifications would be
redundant. Usually one or the other is used.

Features could be implemented as persistent objects or as construction
macros. Features that are persistent must maintain all topological, geometric,
and parametric conditions. For example, a through hole must always remain
through. Features implemented as macros are intended only for initial
geometry construction and can be modified in any way after construction.
Instancing a feature onto an existing part incorporates its corresponding
constraint graph and construction history into the existing model, saving
design time. However, the feature does not maintain a separate identity;
users can modify them in any way, as if the feature had been built piecemeal
rather than as a unit. For example, a hole can be converted to a boss by
changing the Boolean operation and the sweep direction. Therefore, we say

61

that such construction macros are not persistent and cannot be used for
downstream applications, such as DFM, DFA, etc.

Unlike constraint based modeling, both types of feature based design
requires considerable initial investment in creating feature libraries.
Commercial systems do not support a very extensive library of pre-packaged
features. This is because there are many special geometries found only on
certain kinds of products. Commercial systems only provide some very
general shapes, such as counter-sunk/bored holes, dovetail slots, etc. Users
can use pre-packaged feature macros or define their own. The functionality
of pre-packaged feature macros and vendor feature macros is now the same.

The process of defining feature macors involves creating a parametric
solid by one of the methods discussed in the foregoing sections, and
specifying the Boolean operation to be used for incorporating the feature
into a solid model. In some systems, limits on feature parameters can be
specified in terms of inequality constraints. However, these inequalities are
set to numerical values and not algebraic relations involving other feature
parameters. The feature may be positioned like any other primitive. In
some systems one is able to create auxiliary geometry, such as reference
lines or planes representing edges and faces with respect to which the
feature's position will be defined all on the solid model. Once a library of
features has been created, users can begin to instance them by specifying
only the independent dimension and position parameters. After the features
are incorporated in the solid model they are treated just like any other
parametric portion of the model for the purpose of editing. For example, if
the feature is created by the 2D constraint and 3D history approach;
modifications can be made to any of the constraints of the 2D sketch or any
of the sweep parameters.

In feature based design users are able to reduce the number of
construction steps by re-using shapes that have been archived. Persistent
features can be added or deleted from the model by a single operation; this
is true of macros only if a single node in the construction history is involved.
When a feature parameter is changed, the construction history is re-executed
from the point of change. Because users can change the Boolean operation
type, sweep operation parameters, and even the topology of the 2D sketch,
features do not retain their original meaning. This is where commercial
systems did not follow academic research systems. Additionally, CAD
systems do not maintain a concurrent and separate feature model in the
database. Therefore, applications that depend on features cannot be used.
Another problem that contributes to this loss of functionality is related to
inadvertent feature intersections with entities of the existing model,
destroying the stereotypical geometry associated with the feature.

62

In light of the last comment, one might ask if some kind of feature
validation mechanism is necessary to enforce the rules and relations
archived in the feature's definition. Unlike manifold solid models that must
satisfy precise topological relations (Euler-Poincare), feature models have
no mathematical basis - they are whatever the creator of the feature library
meant them to be. Some academic systems have implemented rule based
validation (Shah, 1995).

4. COMPARISON OF CONSTRUCTION PARDIGMS

In this section we compare the six paradigms of geometry identified in
this paper. Using solid models without parametrics and without history
reminds us why designers considered CAD systems as detrimental to their
needs. The systems would only be useful after one had already completed
the design on paper and then proceeded to electronically document the
design. Even in that case one cannot afford to make mistakes because
making changes requires almost as much work as the initial design itself.
The addition of construction history allows some limited editing, but the
lack of associativity between the geometric entities prevents most changes
to be made and to be propagated automatically. These methods are still
available in CAD systems and can be used if the parametric methods
discussed below are not justified.

3D variational modeling can be considered only a curiosity at the present
time. 2D constraint modeling with 3D history does not require any
customization on the part of the user-organization. However initial
construction of the models is even more tedious than pure solid modeling
because one must not only define the geometry but also all the relationships
from scratch. Once the initial model is set up, and if it is done skillfully,
making changes is quick and easy. Since all the geometric modeling and
constraint capabilities of the CAD system are available for this kind of
design, the domain of objects that can be model is only limited by the
capabilities of the CAD system. Of course, rolling back and rolling forward
using the history tree leads to unexpected results, as discussed before.

Parametric part family catalogs have limited and specialized use. They
can be used for creating part variants and for standard components, such as
fasteners, ball bearings, and pulleys. When catalogs can be used, part
definition time is minimal. Of course, some initial effort is needed to create
the catalogs in the first place.

The articulation and archival of features (persistent or macros) as
stereotypical shapes allows fast definition of geometry (the system works
out the details from the stored relations) and design change propagation.

63

Persistent features facilitate automation of some types of analysis, planning
and other applications which use feature characteristics to drive their
reasoning. Some problems with features are as follows. Since features are
viewpoint dependent, feature mapping and recognition are needed to
transform features between viewpoints. There has not been much progress
in this direction so far. Also, considerable up-front investment is needed in
creating feature libraries. Another problem is that the more specific a feature
is, the faster and easier it makes design, change propagation, or applications
but the feature becomes less versatile. In other words:

Design efficiency oc Information Level
Feature Versatility oc (//Information Level)

Consider the connecting rods (Figure 7) that were part of a case study we
conducted. 9 features were needed to fully model part A. However, Part B
could not be fully modeled with those 9 features. 19 features were needed to
model both A and B. 27 features were needed to model an additional group
of conrods from other automotive manufacturers. Even though the functions
of these parts are identical, and they even appear to be geometrically similar,
the number of features proliferates. There are two ways around this problem.
One is to make the features less specific and the other is to model some non­
recurring portions of the part without features. The latter approach seems
prudent in most cases.

Part A

Figure 7

From the above remarks one should not get the impression that features
are not versatile at all. Compared to parametric part families, features allow
a greater variety of shapes to be generated. All the shapes shown in Figure
8 can be generated with a modest set of features. Because the topologies are
so different, these parts cannot be modeled as one part family.

Figure 9 compares four of the six design paradigms with respect to
design efficiency, change efficiency, domain and initial investment needed
to begin using the method. By design efficiency we mean the time needed to
create the initial design. By domain, we mean the variety of parts that can be

64

created. All parametric methods have high change efficiency but the design
efficiency is proportional to investment. 3D variational CAD is not included
in these comparisons since it is not available commercially. Also, solid
modeling without history is not included since that is passe these days.

or ~

Figure 8

100 100

~ ~ I LEGEND

~ NP- Noa· :!~
Parametric. !!il ! Cf• Constraint

0 Bo...S
NP cr FE PF 0

FE= Feature NP cr FE PF
Booed

100 PF= Part 100 Fomlll ..

i !5

I
0 0 NP cr FE PF

Figure 9

5. ASSEMBLY MODELING

Assembly modeling without parametrics can also be tedious because
parts are positioned independently in space. Not only is it difficult to do this,
it also retains no relations. Making changes to part sizes after assembly is
not possible without repeating the whole process. Constraint based tools
(co-axial, co-planar, etc.) are now available to align mating parts via related

65

geometry. This helps in both assembly definition and design change
propagation. Solving for part positions in 3D is relatively easy.

The concept of features has not yet permeated assembly design. Recall
that a form feature is a stereotypical shape. So what is an assembly feature?
It is a stereotypical assembly "situation". For example, insertion feature or
sliding contact feature. We define an assembly feature as an association
between two form features on different parts (Shah 93). Figure 10 depicts
some examples of assembly features. Assembly features encode mutual
constraints on mating features' shape, dimensions, position, and orientation.

Al

(a) insertion feature

(b) alignment feature (c) abutment feature
Figure 10

The information that defines an assembly feature consists of both
directly specified attributes and derived parameters. Structural relations,
positioning rules and constraints, and Fit are examples of directly specified,
generic attributes; Part-of is an instance parameter; Dof and Limits are
derived. Derived parameters are those that are constrained by something
already in the model, while independent parameters are user choices at the
time of assembly . For example, the position and orientation of a pin is
constrained by the hole in which it is to be inserted, whilst the depth of
insertion is user specified. The conditions for mating(Fit) need to be
specified also in order to determine if the shape, size, and juxtaposition of
features make a given assembly possible. Assembly features need to be
parameterized and stored in libraries. During assembly design, one can
instance these features and quickly apply them to the model at hand. This
kind of modeling has been explored only minimally in academic circles and
not all in industry. There are no assembly feature libraries, or user defined
assembly features in commercial CAD systems. Assembly models are
constructed using the constraint based approach not feature based.

66

6. CONCLUSION

After years of rapid advances in parametric CAD, recent releases seem
stable as these technologies have matured. This paper gives a generalization
of parametric techniques in commercial CAD systems. These capabilities
are embodied in various forms and to different extents in different systems.
Each system has its own terminology, often influenced by marketing hype.
These claims and marketing terms are often misleading. This paper attempts
to provide a generic terminology based on technical factors and tries to
clarify the real differences between parametric paradigms.

From this paper one can see that parametric CAD is not a single method
but a collection of construction and validation methods. Each one has its
own strengths and weaknesses and hence is appropriate for particular types
of design. One needs to look at the application (airfoil lofting, variant
machine design, novel design, etc.); the extent of re-usable information, the
level of maturity of the product; the type of artifact (door panel, turbine disk,
structure, etc.); the frequency of introducing new products; the frequency of
design changes. All methods are useful and one typically needs to combine
several of them to achieve the desired objectives.

Some of the methods, such as 3D variational design, are not fully
developed or widely available. The concept of features has not yet been
extended to assemblies, yet few people understand the difference between
that and constraint based assembly design which is commonly available.
The usefulness of features in assembly design is up for debate.

Research in feature recognition goes further back than design by features
or constraint based design. Despite the maturity of this technology and
availability of a wide range of robust and efficient techniques (Shah 2001),
feature recognition has not been incorporated into mainstream CAD systems.
This technology has great potential in automating machining process
planning but industry does not seem to have demanded this capability from
CAD vendors yet.

7. REFERENCES

Aldefeld, B., 1988 "Variation of geometries based on a geometric-reasoning method",
Computer -Aided Design, Vol. 20, No.3, pp. 117-126

Boming, A., 1979, 'ThingLab- A Constraint-Oriented Simulation Laboratory", Technical
Report SSL-79-3, XEROX Research Center, Palo Alto, California, July 1979.

Bouma, W., Fudos, 1., Hoffmann, C., Cai, J., Paige, R., 1995 "Geometric constraint solver",
Computer-Aided Design, Vol. 27, No.6, pp. 487-501

67

Buchanan, S. A., and de Pennington, A., 1993, "The Constraint Definition System: A
Computer Algebra Based Approach to Solving Geometric Problems", Computer-Aided
Design, Vol. 25, No. 12.

Cunningham, J., and Dixon, J., 1988, Design with Features: The Origin of Features, ASME
Computers in Engineering Conferences, San Francisco, July/August 1988.

Davenport, J. H., Siret, Y., and Tournier, E., 1993, Computer Algebra; systems and
algorithms for algebraic computation, Second Edition, Academic Press, New York.

Hillyard, R. C., and Braid, I. C., 1978, Analysis of dimensions and tolerances in computer­
aided mechanical design, Computer-Aided Design 10(3):161-166.

Kramer, G.A. , 1992, Solving Geometric Constraint Systems, The MIT Press, Cambridge, MA
Light, R. and Gossard, D., 1982, "Modification of geometric models through variational

geometry", Computer-Aided Design, Vol. 14, No.4, pp. 209-214
Miintylii, M., An Introduction to Solid Modeling, Computer Science Press, 1988.
Owen, J.C. , 1991 "Algebraic Solution for Geometry from Dimensional Constraints", Proc.

Symposium on Solid Modeling and Applications, Austin, Texas, ACM press, New York
Pratt, M. J., and Wilson, P. R., 1986, Requirements for support ofform features in a solid

modeling system, final report, Technical Report R-86-ASPP-01, CAM-I, Inc., Arlington.
Roller, D., 1991, "Advanced Methods for Parametric Design", Geometric Modelling Methods

and Applications, D. Hagen and D. Roller (Ed.'s), pp. 251-266, Springer-Verlag.
Serrano, D., 1991, "Automatic Dimensioning in Design for Manufacturing", Proc.

Symposium on Solid Modeling Foundations and CAD/CAM Applications, Austin, Texas.
Serrano, D., and Gossard, D., 1987, "Constraint Management in Conceptual Design",

Knowledge Based Expert Systems in Engineering: Planning and Design, D. Sriram and R.
A. Adey (Ed.'s), Computational Mechanics Publications, Southhampton.

Shah J., Miintylii, M., 1995, "Parametric & Feature based CAD/CAM: Concepts, Techniques,
Applications", J. Wiley, New York.

Shah, J., Rogers, M., 1988, "Expert form feature modeling shell", Computer aided Design,
20(9), 515-524.

Shah J., Rogers M., 1993, "Assembly modeling as an extension of feature based design",
Research in Eng. Design, V5, 218-237.

Shah J., Anderson D., Kim Y-S, Joshi S., 2001, "A Discourse on Geometric Feature
Recognition", J. of Computing & Information Science in Eng. (JCISE), Vl(l).

Shimizu, S., Inoue, K., Numao, M., 1991, "An ATMS-Based Geometric Constraint Solver for
3D CAD", Proc. Third Int. Conf. On Tools for AI, San Jose, CA, Nov. 1991, IEEE
Computer Society Press, Los Alamitos, CA

Solano, L., and Brunet, P., 1993, "A System for Constructive Constraint-Based Modelling",
Modeling in Computer Graphics, B. Falcidieno, T. L. Kunii, (Ed.'s) Springer-Verlag.

Suzuki, H., Hidetoshi, A. and Kimura, F., 1990, "Geometric Constraints and Reasoning for
Geometrical CAD Systems", Computers & Graphics, Vol. 14, No.2, pp. 211-224

Turner, G., and Anderson, D. C., 1988, An object oriented approach to interactive, feature
based design for quick turnaround manufacturing, ASME Computers in Engineering Conf.,
San Francisco, July 31-August 4, ASME Press.

van Emmerik, M., 1991, "Interactive Design of#D Models with Geometric Constraints", The
Visual Computer, Springer-Verlag, Vol. 7, pp. 309-325.

68

