
Designing with Parametric CAD: Classification and 
comparison of construction techniques 

Jami J. Shah 

Dept. of Mechanical & Aero. Engineering, Arizona State University, Tempe AZ85287, USA 

Key words: CAD, Parametrics, Geometric constraints 

ABSTRACT 
This paper gives an overview of the rapid evolution of parametrics, from somewhat slow 

beginnings in academic labs to mainstream commercial CAD. Although not recognized by the 

user community, parametric CAD is not a single technique but a set of techniques, each with 

its own advantages and limitations. Each is supported by different technologies. Most CAD 

systems allow one to mix and match different parametric approaches for creating part 

geometry. One objective of this article is to establish a clear terminology of parametric 

paradigms. An enumeration of parametric capabilities for model creation in current 

commercial CAD systems is reviewed. The influence of model history and constraint solving 

techniques on parametric modeling is also examined. Limitations exist in feature validation, 

unexpected model behavior due to topology changes, and solving coupled constraints at full 
3D variational level. The idea of "assembly features" has not yet been exploited in 

commercial CAD. The discussion in this paper is a generalization of parametric capabilities of 
commercial systems; prototypes in academic research labs are not discussed. 

1. BACKGROUND 

When solid modeling based CAD was introduced, it met with resistance 
from designers because of difficulty of use. It was not until the introduction 
of parametric based CAD that this resistance began to melt away. There are 
three claimed benefits of parametrics: 
• Automatic change propagation 
• Geometry re-use 
• Embedding ofdesign/ manufacturing knowledge with geometry 
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Parametric technology is not a single technique but a set of 
techniques. Each technique has some capabilities and limitations. Not all of 
the techniques provide all of the above benefits. Also, the last benefit has 
yet to be exploited fully in commercial systems. Common to all parametric 
techniques is associativity that allows changes to propagate automatically. 
Parametrization may be done a priori, such as in design by features or 
modeling of part families; a posteriori, as in feature recognition, or 
concurrently, as in constraint based design. Most CAD systems provide 
many alternative methods to create and modify part geometry. 

2. HISTORY OF PARAMETRIC CAD 

Initial work on form features was related to automatic recognition and 
extraction from CAD models. Since this paper is not about feature 
recognition, we do not discuss this line of development. Table I shows three 
aspects of parametrics development. In the first column we have listed 
implementations of constraint based and feature based systems. As shown in 
Table 1, the concept of design by features was first proposed by Pratt and 
Wilson (1986) in a CAM-I project. Prototype feature-based modeling 
systems began appearing in the mid-1980s, mostly in university research 
labs. Among them were Dixon et al.' s system at University of 
Massachusetts (Cunningham and Dixon, 1988), Turner and Anderson's 
QTC at Purdue (Turner and Anderson, 1988), and Shah et al's ASU 
Features Testbed (Shah et al., 1988). Commercial implementations of 
feature-based modeling became available around 1990, but features were 
only construction macros. 2D constraint based sketching were developed 
independently, initially to support tolerances in CAD (Hillyard & Braid 78, 
Light & Gossard 82). This was followed by application of constraints for 
positioning parts in assemblies. In the mid 1990s most major vendors 
supported constraint and feature-based CAD systems. 

The underlying technology for parametrics is constraint solving. In the 
context of geometric modeling, constraints result in non-linear simultaneous 
algebraic equations. Work in constraint solving has been done both in 
conjunction with CAD and also unrelated to it. In general, a parametric 
problem can be described in terms of a list of variable entities, parameters 
describing the entities, constraints between the entities and the allowable 
range for each parameter. The second column in Table 1 shows the entities 
and constraints used in parametric systems over the years. 

The third column shows the solution techniques used in parametric CAD. 
Simultaneous algebraic equations were solved numerically in early 2D 
systems. Constraint programming (Borning, 1979) was also developed early. 
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It involves using graphs; each constraint is associated with a subroutine for 
determining the unknown variable from the known variables. 

T bl 1 P a e t. CAD t h I ararne nc ec no og1es: L" fd I meso eve opmen t 
Parametric Constraints Solving Techniques 
desh~n 

1978 2D constraints on !Numerical Constraint 
vertex positions (Hillyard&Braid, Programming 

fLight&Gossard) (Homing) 
1985 Concept of DBF User-equations Bipartite graph 

(Pratt& Wilson) (Serrano) 
1\.cademic 
systems; (Shah, 
!Anderson, 
Dixon) 
Commercial 2D constraints on 
system points, lines and 
CIMPLEX circles 

1990 Commercial Rule-based 
System: Pro-E (Aldefeld, Suzuki, 

Shimizu) 
Constraint based 3D construct. Procedural Constraint 
2D sketching procedures (Roller, Solano, ~raph (Owen) 

3D constraints on vanEmmerik) 
point, line, plane 
3D constraints on ~ommercial 
assemblies rroolkit 

(DCM2D) 
Constraint based Kinematic 
assembly ~OF methods 
modeling (Kramer) 

Symbolic algebra 
(Buchanan/ 
de Pennington) 

1995 Most 
commercial 
CAD support 
feature macros 

Propagational 3DDCM 
(Bouma, 
MiintyHi) 

Serrano & Gossard ( 1987) proposed Bipartite graph algonthms to find 
maximal matchings of equations to variables so that each equation is used to 
solve for one variable. However, these algorithms have difficulty with 
strongly connected components (or cycles in the graph) and resort to 
numerical methods (Serrano, 1991). Commercial solvers based on Bipartite 
Graphs, such as DCM-2D, became available in early 1990. Rule based 
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approaches can be divided into degree-of-freedom analysis and pattern 
matching. Degree-of-freedom methods are faster than pattern matching 
(Kramer, 1992). The pattern matching methods search for combinations of 
one free geometric entity, several fixed geometric entities and constraints 
between them which match a pattern in a rule-base (Aldefeld, 1988; Suzuki 
et al., 1990; and Shimizu et al., 1991). Symbolic solvers based on 
Buchberger's algorithm for finding Grabner bases were developed by 
Davenport et al. (1993), and Buchanan and de Pennington (1993). Methods 
that act directly on geometric entities are divided into algorithmic (graph 
constructive) and rule-based. Algorithmic approaches operate on constraint 
graphs, either by decomposing them (Owen, 1991) or constructing them 
(Bouma et al., 1995). Differences between geometric constraint solvers 
occur in the types of geometric primitives that can be handled, how multiple 
solutions are treated, whether over/underconstrained systems are allowed, 
the combinations of constraints that can be handled and the speed of 
solution. We will see in later sections of the paper that the lack of effective 
means to get the user desired solution and combining of 2D constraint 
solving with history based model changes create many problems for users of 
parametric systems today. 

3. CLASSIFICATION OF CONSTRUCTION MODES 

Figure 1 shows that there are basically two modes in which one can 
create/modify the geometry of parts and assemblies in CAD systems: 
traditional (non-parametric) and parametric. These are further classified into 
seven distinct model construction approaches, as discussed below. 

-[
No construction history 

with construction history 
-[

on - Parametric . . . 

MODEL . . . 
CONSTRUCTION 2D constraint with 3D history 

MODE Parametric 3D variational 

Figure 1 
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3.1 Non-parametric mode 

Non-parametric modes may be implemented with or without construction 
history. In the traditional method, one creates unconstrained 2D sketches 
from low level entities, then sweeps or lofts them into 3D objects, and/or 
uses primitive solids and Booleans. Positioning of objects for Boolean 
operations or assembly must be done in global coordinates. This makes it 
tedious to construct objects. It is also difficult to make changes to the 
geometry, particularly if construction history is not supported. For example, 
if there was a groove on a hole and we want to change the hole's diameter 
without changing the groove depth, or to move the hole with the groove, 
there is no easy way to do it. Some limited editing is possible in history­
based non-parametric CAD. Allowable changes are those related to 
primitive dimensions and positions. Some 3D construction parameters, such 
as sweep distance, sweep direction, and Boolean operation may also be 
changed. The model is rolled back to the point of change; the changed 
primitive is re-created with the new size or position and the rest of the 
history is rolled back. There is still no associativity between parameters of 
different primitives or entities of 2D sketches used. In pure solid models, the 
data stored is at a low level and cannot be directly used in knowledge based 
applications. The design intent is hard to encode in such models. 

3.2 2D constraints with 3D history 

·we classify parametric methods into 5 distinct classes, shown in Figure 
1. There are or two versions of constraint based modeling. The more 
common approach found in commercial systems involves constraints 
solving only at the 2D level; 3D construction parameters are edited via the 
construction history. In this approach, the user-defines a planar topology 
and specifies dimensional, geometric and algebraic constraints relating the 
points, lines, arcs of the 2D sketch. The sketch plane can be positioned 
anywhere in space, or even on one of the existing faces of the solid. If the 
sketch is under-constrained, the default scale on the screen is used for the 
unspecified dimensions. The constraint equations are solved in 2D for 
either point positions or parameters of the geometric entities involved. 
These 2D sketches are typically used as sections for sweep or lofting 
operations. When changes are made, the model is rolled back to the 3D 
operation that involves the change. In many modelers, solids resulting from 
3D operations are loosely termed "features". If the change involves 
parameters in a 3D operation, the construction command is repeated with 
the new parameters. If the change involves parameters in a 2D sketch, 2D 
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constraints are solved again, a new sketch is generated, and then the history 
is replayed. This gives the user the illusion of editing at the 3D level. 

Some systems use terms like "smart" or "intelligent" shapes to imply 2D 
shapes that can be dragged and dropped on another sketch. In case of 
intersections between the curves of the existing sketch and the dropped 
sketch, trimming is automatically done at the first intersection. In such cases, 
outer and inner loops of both sketches are concatenated separately. An 
example is shown in Figure 2. In (a) we see a sketch (lower figure) and a 
predefined shape. In (b) we see the predefined shape dragged and dropped 
on the main sketch. The result, shown in (c) is somewhat like a 2D Boolean 
operation. This type of capability may be regarded as a hybrid between 
constraint based and feature based design since it uses a pre-defined sketch 
from a library of shapes. 

~ 

(a) 

' N 

v 

(b) 

(c) 

Figure 2 

In complex models, users can be overwhelmed by conflicting constraints 
or under constrained situations. Some hints from the system are helpful. The 
user needs to know not only whether the sketch is under or over constrained 
but also which degrees of freedom are available, or which constraints are in 
conflict. Pure numerical solvers cannot provide this information. Symbolic 
solvers are useful for this type of functionality. 

In 2D constraint based modeling, the construction sequence and 
parameterization must be carefully thought out prior to modeling because 
this will restrict the user to what can be edited after the model is built. 
Constraints cannot be applied or solved at the 3D level. The dependence on 
history creates many unexpected results, particularly when the reference 
entity, such as an edge, is split, merged or deleted. An example of such 
occurrence is shown in Figure 3. When the slot is shrunk away from the 
front edge, one cannot predict what will happen when the two edges on 
either side of the slot are merged. One is chamfered, the other is not. In this 
case the chamfer is applied to the entire edge. In addition, there are the usual 

58 



problems with constraints solving such as multiple solutions. Each modeler 
users its own set to offer heuristic rules. Some recent work has been done in 
separating constraints into active (used in solving), and passive (used in 
selecting between multiple solutions (Bettig 2001). For example, the 
solution that affects the least number of entities is preferred by some solvers. 
Some constraint solvers solve the equations sequentially, while others solve 
simultaneously. This can also result in different solutions and different 
capabilities. 

Figure 3 

3.3 3D variational design 

By 30 variational design we imply the application and solution of 
constraints on models at the 30 level. However, there is no standard 
approach for 3D variational design, per se. Part positioning in assembly 
design, and application of constraints between the dimensions of two parts 
in an assembly, are special cases of 30 constraint based design. The former 
problem uses fewer degrees of freedom, only those related to position of 
parts not to their shape or size. The latter can easily be solved procedurally. 

Some implementations limit 30 constraints to only entities obtained 
from linear sweep. Figure 4(a) shows a slot created by linear sweep on a 
face of a polyhedron obtained by a separate linear sweep. No constraints 
were used initially. 3D constraints were applied directly to the solid: the 
side faces of the slot and the bottom were made parallel to the sides and 
bottom of the outside body (Figure 4.b). Of course, this functionality does 
not require 30 constraint solving because parallel/perpendicular faces can 
be mapped to parallel/perpendicular lines in 20 sketches and the constraints 
solved in 20. 

Figure 5 shows a more sophisticated 30 case. The same part of Figure 
4(a) was used but an additional sweep (protrusion) was created on a 
different face and in a different direction than the slot (Figure 5a). The top 
face of the protrusion was then made parallel and coplanar with the bottom 
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of the slot, as shown in Figure 5.b. Even this could be implemented by 
embedding special procedures and without solving 3D constraints. 

(a) (b) 

Figure 4 

(a) (b) 

Figure 5 

A truly 3D variational system needs a 3D constraint solver; going from 
2D to 3D solving has proved to be challenging. Robust solvers are still not 
available. Thus, CAD systems that support the 3D variational approach are 
still not commercial. Many vendors have come to the conclusion that it is 
very difficult for most users to create 3D models directly with this approach. 
However, the real merit of this approach is in modifying solids that may 
have been created with or without parametrics. 

3.4 Parametric family catalogs 

Parametric part family catalogs allow one to pre-define a part shape 
driven by some key dimensions. An example part family is shown in Figure 
6. Using this approach requires a two phase process. First, a parametric 
model is created by any of the other parametric methods and constrained. A 
table of standard variants is created using only driving dimensions - the rest 
are either calculated from these or are fixed. After a catalog is archived, 
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users can quickly create variants by specifying only the key dimensions or 
use one of the standard variants. Obviously, the domain of such modeling is 
very limited. 

MX-1 TP-27 PC-42 

Part no. Hole dia Hub dia. Outer-dia Rim-thck. Rim-width 
MX-1 2.0 4.0 8.0 0.25 1.0 
MX-6 .... 
TP-27 1.5 2.5 6.0 0.5 2.0 
TP-45 .... 
PC-42 1.0 3.0 5.0 0.40 4.5 

Figure 6 

3.5 Feature based design 

Form features may be thought of as stereotypical shapes that may be 
encountered frequently in certain problem domains. Therefore, features can 
be predefined and stored in feature libraries. A features definition may 
include some or all of the following: topology, topological relations, 
geometry, geometric relations, dimensional parameters, algebraic relations 
between parameters, and parametric construction history. A definition 
containing both the declarative and constructive specifications would be 
redundant. Usually one or the other is used. 

Features could be implemented as persistent objects or as construction 
macros. Features that are persistent must maintain all topological, geometric, 
and parametric conditions. For example, a through hole must always remain 
through. Features implemented as macros are intended only for initial 
geometry construction and can be modified in any way after construction. 
Instancing a feature onto an existing part incorporates its corresponding 
constraint graph and construction history into the existing model, saving 
design time. However, the feature does not maintain a separate identity; 
users can modify them in any way, as if the feature had been built piecemeal 
rather than as a unit. For example, a hole can be converted to a boss by 
changing the Boolean operation and the sweep direction. Therefore, we say 
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that such construction macros are not persistent and cannot be used for 
downstream applications, such as DFM, DFA, etc. 

Unlike constraint based modeling, both types of feature based design 
requires considerable initial investment in creating feature libraries. 
Commercial systems do not support a very extensive library of pre-packaged 
features. This is because there are many special geometries found only on 
certain kinds of products. Commercial systems only provide some very 
general shapes, such as counter-sunk/bored holes, dovetail slots, etc. Users 
can use pre-packaged feature macros or define their own. The functionality 
of pre-packaged feature macros and vendor feature macros is now the same. 

The process of defining feature macors involves creating a parametric 
solid by one of the methods discussed in the foregoing sections, and 
specifying the Boolean operation to be used for incorporating the feature 
into a solid model. In some systems, limits on feature parameters can be 
specified in terms of inequality constraints. However, these inequalities are 
set to numerical values and not algebraic relations involving other feature 
parameters. The feature may be positioned like any other primitive. In 
some systems one is able to create auxiliary geometry, such as reference 
lines or planes representing edges and faces with respect to which the 
feature's position will be defined all on the solid model. Once a library of 
features has been created, users can begin to instance them by specifying 
only the independent dimension and position parameters. After the features 
are incorporated in the solid model they are treated just like any other 
parametric portion of the model for the purpose of editing. For example, if 
the feature is created by the 2D constraint and 3D history approach; 
modifications can be made to any of the constraints of the 2D sketch or any 
of the sweep parameters. 

In feature based design users are able to reduce the number of 
construction steps by re-using shapes that have been archived. Persistent 
features can be added or deleted from the model by a single operation; this 
is true of macros only if a single node in the construction history is involved. 
When a feature parameter is changed, the construction history is re-executed 
from the point of change. Because users can change the Boolean operation 
type, sweep operation parameters, and even the topology of the 2D sketch, 
features do not retain their original meaning. This is where commercial 
systems did not follow academic research systems. Additionally, CAD 
systems do not maintain a concurrent and separate feature model in the 
database. Therefore, applications that depend on features cannot be used. 
Another problem that contributes to this loss of functionality is related to 
inadvertent feature intersections with entities of the existing model, 
destroying the stereotypical geometry associated with the feature. 
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In light of the last comment, one might ask if some kind of feature 
validation mechanism is necessary to enforce the rules and relations 
archived in the feature's definition. Unlike manifold solid models that must 
satisfy precise topological relations (Euler-Poincare), feature models have 
no mathematical basis - they are whatever the creator of the feature library 
meant them to be. Some academic systems have implemented rule based 
validation (Shah, 1995). 

4. COMPARISON OF CONSTRUCTION PARDIGMS 

In this section we compare the six paradigms of geometry identified in 
this paper. Using solid models without parametrics and without history 
reminds us why designers considered CAD systems as detrimental to their 
needs. The systems would only be useful after one had already completed 
the design on paper and then proceeded to electronically document the 
design. Even in that case one cannot afford to make mistakes because 
making changes requires almost as much work as the initial design itself. 
The addition of construction history allows some limited editing, but the 
lack of associativity between the geometric entities prevents most changes 
to be made and to be propagated automatically. These methods are still 
available in CAD systems and can be used if the parametric methods 
discussed below are not justified. 

3D variational modeling can be considered only a curiosity at the present 
time. 2D constraint modeling with 3D history does not require any 
customization on the part of the user-organization. However initial 
construction of the models is even more tedious than pure solid modeling 
because one must not only define the geometry but also all the relationships 
from scratch. Once the initial model is set up, and if it is done skillfully, 
making changes is quick and easy. Since all the geometric modeling and 
constraint capabilities of the CAD system are available for this kind of 
design, the domain of objects that can be model is only limited by the 
capabilities of the CAD system. Of course, rolling back and rolling forward 
using the history tree leads to unexpected results, as discussed before. 

Parametric part family catalogs have limited and specialized use. They 
can be used for creating part variants and for standard components, such as 
fasteners, ball bearings, and pulleys. When catalogs can be used, part 
definition time is minimal. Of course, some initial effort is needed to create 
the catalogs in the first place. 

The articulation and archival of features (persistent or macros) as 
stereotypical shapes allows fast definition of geometry (the system works 
out the details from the stored relations) and design change propagation. 

63 



Persistent features facilitate automation of some types of analysis, planning 
and other applications which use feature characteristics to drive their 
reasoning. Some problems with features are as follows. Since features are 
viewpoint dependent, feature mapping and recognition are needed to 
transform features between viewpoints. There has not been much progress 
in this direction so far. Also, considerable up-front investment is needed in 
creating feature libraries. Another problem is that the more specific a feature 
is, the faster and easier it makes design, change propagation, or applications 
but the feature becomes less versatile. In other words: 

Design efficiency oc Information Level 
Feature Versatility oc (//Information Level) 

Consider the connecting rods (Figure 7) that were part of a case study we 
conducted. 9 features were needed to fully model part A. However, Part B 
could not be fully modeled with those 9 features. 19 features were needed to 
model both A and B. 27 features were needed to model an additional group 
of conrods from other automotive manufacturers. Even though the functions 
of these parts are identical, and they even appear to be geometrically similar, 
the number of features proliferates. There are two ways around this problem. 
One is to make the features less specific and the other is to model some non­
recurring portions of the part without features. The latter approach seems 
prudent in most cases. 

Part A 

Figure 7 

From the above remarks one should not get the impression that features 
are not versatile at all. Compared to parametric part families, features allow 
a greater variety of shapes to be generated. All the shapes shown in Figure 
8 can be generated with a modest set of features. Because the topologies are 
so different, these parts cannot be modeled as one part family. 

Figure 9 compares four of the six design paradigms with respect to 
design efficiency, change efficiency, domain and initial investment needed 
to begin using the method. By design efficiency we mean the time needed to 
create the initial design. By domain, we mean the variety of parts that can be 
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created. All parametric methods have high change efficiency but the design 
efficiency is proportional to investment. 3D variational CAD is not included 
in these comparisons since it is not available commercially. Also, solid 
modeling without history is not included since that is passe these days. 

or ~ 

Figure 8 
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Figure 9 

5. ASSEMBLY MODELING 

Assembly modeling without parametrics can also be tedious because 
parts are positioned independently in space. Not only is it difficult to do this, 
it also retains no relations. Making changes to part sizes after assembly is 
not possible without repeating the whole process. Constraint based tools 
(co-axial, co-planar, etc.) are now available to align mating parts via related 

65 



geometry. This helps in both assembly definition and design change 
propagation. Solving for part positions in 3D is relatively easy. 

The concept of features has not yet permeated assembly design. Recall 
that a form feature is a stereotypical shape. So what is an assembly feature? 
It is a stereotypical assembly "situation". For example, insertion feature or 
sliding contact feature. We define an assembly feature as an association 
between two form features on different parts (Shah 93). Figure 10 depicts 
some examples of assembly features. Assembly features encode mutual 
constraints on mating features' shape, dimensions, position, and orientation. 

Al 

(a) insertion feature 

(b) alignment feature (c) abutment feature 
Figure 10 

The information that defines an assembly feature consists of both 
directly specified attributes and derived parameters. Structural relations, 
positioning rules and constraints, and Fit are examples of directly specified, 
generic attributes; Part-of is an instance parameter; Dof and Limits are 
derived. Derived parameters are those that are constrained by something 
already in the model, while independent parameters are user choices at the 
time of assembly . For example, the position and orientation of a pin is 
constrained by the hole in which it is to be inserted, whilst the depth of 
insertion is user specified. The conditions for mating(Fit) need to be 
specified also in order to determine if the shape, size, and juxtaposition of 
features make a given assembly possible. Assembly features need to be 
parameterized and stored in libraries. During assembly design, one can 
instance these features and quickly apply them to the model at hand. This 
kind of modeling has been explored only minimally in academic circles and 
not all in industry. There are no assembly feature libraries, or user defined 
assembly features in commercial CAD systems. Assembly models are 
constructed using the constraint based approach not feature based. 
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6. CONCLUSION 

After years of rapid advances in parametric CAD, recent releases seem 
stable as these technologies have matured. This paper gives a generalization 
of parametric techniques in commercial CAD systems. These capabilities 
are embodied in various forms and to different extents in different systems. 
Each system has its own terminology, often influenced by marketing hype. 
These claims and marketing terms are often misleading. This paper attempts 
to provide a generic terminology based on technical factors and tries to 
clarify the real differences between parametric paradigms. 

From this paper one can see that parametric CAD is not a single method 
but a collection of construction and validation methods. Each one has its 
own strengths and weaknesses and hence is appropriate for particular types 
of design. One needs to look at the application (airfoil lofting, variant 
machine design, novel design, etc.); the extent of re-usable information, the 
level of maturity of the product; the type of artifact (door panel, turbine disk, 
structure, etc.); the frequency of introducing new products; the frequency of 
design changes. All methods are useful and one typically needs to combine 
several of them to achieve the desired objectives. 

Some of the methods, such as 3D variational design, are not fully 
developed or widely available. The concept of features has not yet been 
extended to assemblies, yet few people understand the difference between 
that and constraint based assembly design which is commonly available. 
The usefulness of features in assembly design is up for debate. 

Research in feature recognition goes further back than design by features 
or constraint based design. Despite the maturity of this technology and 
availability of a wide range of robust and efficient techniques (Shah 2001), 
feature recognition has not been incorporated into mainstream CAD systems. 
This technology has great potential in automating machining process 
planning but industry does not seem to have demanded this capability from 
CAD vendors yet. 
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