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Abstract
The authors present experimental and simulation results 
of an outcome-based learning model as it applies to the 
identification of emerging threats. This model integrates 
judgment, decision making, and learning theories to 
provide an integrated framework for the behavioral study 
of emerging threats.  

1.  Introduction 

In this paper, the authors expand on previous work 
regarding the behavioral aspects of emerging insider 
threat identification [22, 27] to include the analysis of 
experimental results1. Through experimentation, we 
conduct empirical validation of the dynamic theory to 
increase confidence in the usefulness of the model [30]. 
Our model, based on reinforcement learning theories, is 
used for the behavioral study of emerging threats 2.

2.  Learning models 

Learning models have been explored in many 
disciplines, including psychology, economics, educational 
research, and instructional systems development literature. 
Three main types of learning models have been identified 
and empirically explored: reinforcement models, belief-
based models, and mixed models. Reinforcement models 
are based on the premise that people learn with experience 

1 The work presented here builds on previous work developed 
with Thomas R. Stewart, Eliot H. Rich, and Elise Weaver from 
the University at Albany. The authors acknowledge their 
valuable contribution to this work. Additionally, the authors 
thank Ido Erev, Michael Samsa, and Bill Buehring for their 
constructive comments on earlier versions of this paper. All 
errors are responsibility of the authors. 

2 This article has been created by the University of Chicago as 
Operator of Argonne National Laboratory (“Argonne”) under 
Contract No. W-31-109-ENG-38 with the U.S. Department of 
Energy. The U.S. Government retains for itself, and others 
acting on its behalf, a paid-up, nonexclusive, irrevocable 
worldwide license in said article to reproduce, prepare derivative 
works, distribute copies to the public, and perform publicly and 
display publicly, by or on behalf of the Government. 

[20]. Although it can be difficult to directly experience the 
consequences of many of our decisions [29], in these 
models, learning is achieved by identifying the different 
outcomes of peoples’ decisions and by assigning utilities 
to those that promote change (improvement) in their 
experience. Good outcomes reinforce the strategies used, 
while bad outcomes generate pressures for change in 
strategies [7, 8, 14]. Belief-based learning models focus 
on the role of notions of past performance and 
expectations of future performance as drivers of change in 
strategies [9]. Mixed models use characteristics of both 
reinforcement models and belief-based models to capture 
a wider range of human learning processes than either 
model alone [6, 18]. 

3.  Methods

We used system dynamics to develop the model 
presented here [10, 28, 30]. The system dynamics 
approach helps researchers gain insight into dynamic 
problems by providing a framework to identify the causal 
structure that conditions the observed behavior of systems 
[for examples of the use of system dynamics in the study 
of  identification of threats, see 24, 26]. 

For many scientists, empirical validation is the gold 
standard for model validation. In system dynamics, we 
pose models that are theories about real systems that, 
“must not only reproduce/predict its behavior, but also 
explain how the behavior is generated” [1, pp. 185-186]. 
Therefore, in order to build confidence in our models, we 
conduct behavior reproduction tests, but only as one of 
many other types of tests [28, 30]. Behavior reproduction 
tests alone are considered fragile tests of confidence 
because several causal structures, with enough degrees of 
freedom, can generate almost any temporal behavioral 
pattern. However, empirical validation, paired with deep 
understanding of the causal structure that conditions the 
observed behavior, is extremely useful for enhancing 
system understanding and generating “the right output 
behavior for the right reasons” [1, p. 186]. 

Throughout the development of the model presented 
here, the authors conducted several confidence building 
tests as recommended in the system  dynamics literature 
[10, 23, 28, 30]. 
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4.  Model description

4.1 Model overview

The model focuses on the interaction of outcomes and 
the level of the decision threshold over time. Figure 1
shows a simplified version of the feedback structure of the 
model.  
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Figure 1.  Model overview 

The model has four main sectors: the judgment 
sector, the decision-making sector, the outcome-
decomposition sector, and the outcome-based learning 
sector. These sectors are interconnected and are part of the 
same complete causal structure that represents a 
prototypical decision maker in a detection-selection-action 
process. 

The learning model presented in this paper is the 
result of a theory integration effort to capture the main 
components of the judgment and decision making 
processes present in the detection of emergent threats in 
organizations. 

In our model, we integrate concepts from social 
judgment theory [4, 5, 13, 15, 16], signal detection theory 
[12, 34, 35], and the psychology of learning, particularly 
reinforcement learning theories discussed both in the 
psychological and economics literature on human learning 
[6-8, 18]. 

Our learning model is a simplified version of Erev’s 
[7] cutoff-reinforcement learning model. In our model, 
decision makers learn by making judgments and 

decisions, and by identifying the consequences of their 
decisions. In our model, individuals generate judgments 
about the world by using a linear additive model looking 
at multiple information cues, which are then compared to 
a decision threshold that determines the action to be taken. 
Additionally, in our model, events are generated by 
comparing the level of the activity stream to that of the 
criterion threshold (definition of what level constitutes an 
event). When the level of the activity stream is larger than 
the criterion threshold, a positive event is generated (a 
threat in this case); otherwise a negative event is 
generated (negative in the sense that it does not belong to 
the object class of the identification process). 
Subsequently, when an action is taken, and when the type 
of action is compared to the type of event that happens, 
one of four types of outcomes occurs: true-positive 
outcomes, false-positive outcomes, false-negative 
outcomes, and true-negative outcomes. Because these 
outcomes are identified and associated with a predefined 
payoff structure, decision makers adjust their decision 
threshold for decisions about future action, closing the 
learning feedback loop that allows them to increase their 
effectiveness in identification of emergent threats. 

4.2 Judgment sector

The first sector of the model deals with how human 
judges in organizations integrate information to generate 
behaviorally-based judgments about the likelihood of 
threats emerging. Figure 2 shows the causal structure that 
captures a model of judgment that has been identified as 
robust enough to represent human judgment in general 
[13-17, 31-33]. This model of judgment uses a linear 
additive combination of information cues to represent the 
judgment process of decision makers in organizations. 
The model is of the form shown in see equation 1: 

(1)  1 1 2 2 ... n nY w X w X w X e
where  represents the judgment of likelihood of threat, Y

nX  represents the information cues used in the judgment 

process,  represents the relative weight that each 

information cue has on the judgment, and  represents 
the unavoidable uncertainty in the judgment process. In 
the model presented in this paper, the information cues 
represent cues used by security officers to recognize the 
emergent threat of a terrorist attack to an information 
system in an organization (judgment about activity stream
in Figure 1 [generic definition] and judgment of likelihood 
of terrorist behavior in Figure 2 [specific definition in the 
context of threat identification]). The specific cues that the 
security officer uses to try to distinguish those cases that 
belong to the terrorists’ population are: level of weapons 
training, level of previous suspicious activity, and level of 
radicalism in religious practice.

nw
e

Proceedings of the 40th Hawaii International Conference on System Sciences - 2007

2
Proceedings of the 40th Annual Hawaii International Conference on System Sciences (HICSS'07)
0-7695-2755-8/07 $20.00  © 2007



Judgment of
Likelihood of

Terrorist Behavior

Judge Weight of
Level of Weapons

Training

Judge Weight of Level
of Previous

Suspicious Activity

Inherent Unpredictability
of Likelihood of Terrorist

Behavior

Judge Weight of Level
of Radicalism in

Religious Practice

True Weight of
Level of Weapons

Training

True Weight of Level
of Previous

Suspicious Activity

True Weight of Level
of Radicalism in

Religious Practice Judge Bias

<Level of Weapons
Training>

<Level of Previous
Suspicious
Activity>

<Level of
Radicalism in

Religious Practice>

True Likelihood of
Terrorist Behavior

Judge
Reliability

Figure 2.  Judgment sector structure

4.3 Decision-making sector

Decision making in the model is captured by 
comparing the level of the judgment of the variable under 
study (in this case judgment of likelihood of terrorist 
behavior) with that of the associated decision threshold. If 
the judgment exceeds the threshold level, defensive action 
is considered warranted, and is performed. Figure 3 shows 
the causal structure of this process. The higher the level of 
the decision threshold, the less often action is granted 
because fewer judgments exceed the threshold level. 
Extremely vigilant decision makers, concerned with the 
emergence of threats, have low decision thresholds in 
place in their organizations. Following precepts from 
signal detection theory [12, 35], the optimal level for the 
decision threshold can be identified given a predetermined 
payoff matrix. The optimal level for the decision threshold 
is the one that maximizes payoff. 
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Figure 3.  Decision-making structure 

4.4 Outcome-decomposition sector

After decisions are made and actions are performed, 
outcomes are decomposed into four categories depending 
on whether actions correspond with the nature of the event 
that triggers them. Figure 4 shows the causal structure of 
this process. 

For example, suppose security officers decide to take 
defense actions because they mistakenly believe these 
actions are warranted. After the fact, when it becomes 

clear that these actions were not needed, these are 
considered false-positive outcomes (also known as false 
alarms). Being able to decompose outcomes in the four 
basic categories that signal detection theory uses as a basis 
for performance analysis in selection-detection processes 
allows us to fully characterize this process in the model. 
In real-life decision processes, because decision makers 
normally confront incomplete and imperfect outcome 
feedback, it is difficult to have accurate knowledge of all 
four types of outcomes — making learning a difficult 
enterprise.
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Figure 4. Outcome-decomposition structure 

4.5 Outcome-based learning sector 

The core learning process in the model is 
characterized as a reinforcement-learning process. When 
intended outcomes are obtained, they create reinforcing 
influences on the level of the decision threshold. When 
unintended outcomes (errors) are experienced, influences 
to change the level of the decision threshold are triggered. 
Reinforcement occurs via two important elements in the 
model: the payoff matrix and the size of the change of the 
decision threshold. 
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The payoff matrix captures the importance of each 
type of outcome to the decision maker. In our model, a 
symmetric payoff matrix is used. True-positive and true-
negative outcomes (intended outcomes) represent a gain 
of $1.00 US, and false-positive and false-negative 
outcomes (errors) cost $1.00 US each (independently of 
the type of error). In certain contexts, as in the case of 
identification of terrorists, the payoff matrix might be 
asymmetric; in this case, the cost of a false-negative 
outcome compared with that of a false-positive would be 
enormous. 
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Figure 5. Outcome-based learning structure 

In his cutoff-reinforcement learning model, Erev [7] 
introduces the concept of reinforcement relative to a 
dynamic reference value that, depending on whether it is 
going up or down, the decision threshold (DecT) changes 
more or less rapidly. In our model, we capture this process 
with two parameters that represent the size of the 
adjustment when the decision threshold is growing and 
declining: size of change up and size of change down (see 
Figure 5). When size of change down and size of change 
up are equal, a symmetric mechanism is represented. 
Alternatively, when these two parameters are different, an 
asymmetric mechanism is captured. 

4.6 Behavior 

The model is capable of generating converging 
behavior within the parameter space selected. Figures 6, 7, 
and 8 show simulated temporal evolution of decision 
thresholds given a symmetric payoff matrix (as in Erev 
[7]), symmetric directional size adjustments (following 
Erev’s [7] use of 101 decision thresholds in his study, 
both size of change up and size of change down are 
parameterized to 1-unit change in a 100-unit range 
possible), and different initial levels of the decision 
threshold (for the three cases presented [base, low initial,
and high initial], the parameters used in the simulation 
are: 50, 30, and 70 decision-threshold units, respectively).  

In the three cases presented, convergence to the 
criterion threshold (base rate of threat emergence and 
optimal decision threshold in this case) is achieved. In the 
base condition (Figure 6), convergence is achieved after 
160 trials (where lines 3 and 4 meet). In the low-initial-
decision-threshold condition (Figure 7), convergence is 
reached after 170 trials. In the high-initial-decision-
threshold condition (Figure 8), it is reached after 
approximately 110 trials. In the model, one trial is 
performed by the security officer in each simulated time 
period. 
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Figure 6. Behavior (base case) 
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Figures 6, 7, and 8 also present the temporal 
evolution of sensitivity and specificity scores achieved by 
the simulated judge. These two scores are useful in 
understanding the effectiveness of the judging process and 
in understanding how learning is taking place over time. 
Theoretically, when learning occurs, these two scores 
grow over time and, eventually, reach their limit of 1 
when a large number of trials are performed by the judge. 

The sensitivity score (Figures 6–8, line 1) refers to 
the ability of the judge to correctly identify threats as a 
percentage of all threats generated over the simulated time 
(see Equation 2):  

(2)  1

n i
i i

i i

TP
Sensitivity

TP FN

Where represent true-positive outcomes, TP FN
false-negative outcomes, and n  the number of trials 
performed. When sensitivity is 1, no false-negative 
outcomes are generated, and 100% of threats are correctly 
identified. 

The specificity score (Figures 6–8, line 2) captures 
the accuracy of the judge in identifying non-threats as a 
percentage of all non-threats generated over the simulated 
time (see Equation 3): 

(3)  1

n i
i i

i i

TN
Specificity

TN FP

Where represent true-negative outcomes, 
false-positive outcomes, and  the number of trials 
performed. When specificity is 1, no false-positive 
outcomes are generated, and 100% of non-threats are 
correctly identified.  

TN FP
n

A decision maker who is capable of finding the 
optimal decision threshold can, in theory, achieve 
sensitivity and specificity scores of 1. As shown in 
Figures 6 and 7, when the initial decision threshold is 
lower than the criterion threshold (in this case, the optimal 
too), representing a cautious security officer, and the 
adjustment toward the criterion threshold does not exhibit 
extreme changes that would produce oscillations around 
the optimal as convergence is achieved (as discussed in 
Weaver and Richardson [36]), the sensitivity score is 
higher than the specificity score. In these cases, the 
specificity score increases over time as decision makers 
learn about the right level of the decision threshold. 
Alternatively, when the initial decision threshold is higher 
than the criterion threshold, capturing the case of a not-
vigilant-enough security officer (see Figure 8), and the 
adjustment is smooth, the specificity score is always 
higher than the sensitivity score because more false-
negative outcomes are allowed through the detection 
process while the decision maker learns where the right 
level of the decision threshold should be.  

5. Experiment 

5.1 Description

Our model assumes that individuals learn how to 
improve detection of threats by paying attention to the 
results of their judgments and decisions in the past and 
consequently adjusting the decision threshold that 
produces these results. To gain confidence that the results 
of the model are a fair representation of human decision 
making and learning and to empirically test our theory, we 
designed and conducted the experiment described below. 

We set up a judgment task of behaviorally-based 
identification of terrorists by using the three information 
cues described in Section 4.2: level of weapons training,
level of previous suspicious activity, and level of 
radicalism in religious practice. The experiment was 
implemented in an Excel spreadsheet and carried out over 
a two-week period. Using purposive sampling [2, 3, 25], a 
non-probability sampling method used in exploratory 
research and pilot studies in the social sciences, we 
selected professionals from the field of decision and 
information sciences as subjects. Twelve subjects 
participated in three blocks each generating a total of 36 
experimental blocks. We used purposive sampling to 
capture the learning processes of experienced decision 
scientists because the experimental task is related to threat 
identification. We decided that, in this context, the 
participation of experienced decision scientists could give 
us more representative information about this process than 
a pool of subjects obtained via a traditional random 
sampling technique. 

In this experiment, trials were constructed by using a 
truncated normal random distribution for the information 
cues with the stochastic characterization that follows: 
mean of 50, standard deviation of 16.66, maximum of 
100, and minimum of 0. 

 The judgment task included the judgment of 100 
trials of terrorists’ profiles using three information cues. 
Three blocks were used to account for the learning 
process over time and with increasing experience. In total, 
the subjects completed 300 trials each. The subjects were 
presented with one trial at a time. They were shown 
numerical scores for the three information cues (scores 
between 0 and 100) of the profile and an additional 
composite score that combined the information cues 
(again, between 0 and 100). The subjects were instructed 
that the composite score accurately combined the three 
information cues. Additionally, the subjects were 
presented with a predetermined initial level for the 
decision threshold (50 units in the base case) and, after 
being presented with the numerical information about the 
profile, they were asked to determine a new level for the 
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decision threshold (subjects could change it based on 
experience or leave it at the same level). The decision to 
determine the level of the decision threshold was the only 
one that the subjects needed to make each trial.  

After each trial, we provided the subjects with 
immediate, complete, accurate, fully decomposed 
feedback about their performance, explicitly specifying 
the type of outcome generated: this action allowed the 
subjects to know not only whether their response was 
correct or incorrect, but also why it was correct or 
incorrect. This type of feedback is richer than traditional 
outcome-based feedback (just stating if the outcome is 
correct or incorrect). Additionally, we allowed the 
subjects access to all previous results of their judgments 
and decisions — giving them a complete history of all 
their prior decisions and outcomes to help them in the 
learning process. With the feedback provided and the 
history of trials judged, the subjects adjusted their 
decision thresholds trying to maximize payoff and avoid 
error generation consistent with Maddox and Bohil’s [21] 
competition between reward and accuracy (COBRA) 
hypothesis. The subjects were awarded one dollar for each 
correct response and were penalized one dollar for each 
incorrect one (regardless of the type of error incurred: 
false positive or false negative). If all responses were 
correct, subjects could achieve the maximum payoff of 
$100 (US) per block (subjects did not receive any actual 
monetary compensation — just the satisfaction of 
identifying the terrorists, doing the right thing, and 
achieving imaginary payoffs). 

5.2 Results

Figures 9 and 10 show some of the results of the 
experiment. The subjects exhibited learning during each 
block and over the set of three blocks. Payoffs grew over 
time, time to complete each block decreased and, as 
expected, error generation dropped. 
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Figure 9. Average results 

Due to learning, the total number of errors generated 
by the subjects declined from an average of 6.5 in the first 
block, to 3.5 in the second, to 0.5 in the final block. False-
positive outcomes show the most dramatic adjustment in 
this process, changing from an average of 5.5 to less than 
one. False-negative outcomes, on the other hand, 
remained fairly unchanged across blocks. 
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Figure 10. Error generation 

In order to enhance our understanding of the learning 
process and to test whether the model is capable of 
capturing the way in which human subjects behave, we 
compared the human-generated temporal evolution of 
decision thresholds with model-generated data. The 
results are presented in Section 6. 

6. Comparing experimental results with 
simulation 

The human-generated decision thresholds and the 
model-generated decision thresholds were compared and 
analyzed by using Theil inequality statistical metrics [30]. 
Theil inequality statistics are extremely useful when 
assessing the degree to which two time series of data 
match each other because these statistics allow for the 
decomposition of the sources of error in the comparison: 
mean, variance, or covariance. 

Simulated results were calibrated to the human-
generated data by using Vensim® automated calibration 
capability (specialized simulation software used for 
system dynamics modeling), providing two parameters for 
the adjustment process: size of adjustment up and size of 
adjustment down. These parameters capture the size of the 
revision that human decision makers use when adjusting 
decision thresholds to find the optimal level. Figures 11 
and 12 show results of different decision makers’ 
behavior; Figures 13 and 14 show their corresponding 
sources of error according to Theil inequality statistics. 

When the source of error is related to differences in 
mean, it indicates bias in the results. When the error 
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source is variance, it indicates a failure of the model to 
capture the basic variability of the result. Covariance 
variation only indicates that there is not a point-to-point 
correspondence between the simulated data and the 
experimental data [30]. In the cases presented in Figures 
13 and 14, most of the mean-squared error obtained when 
comparing the simulated time series data with the human-
generated time series data is attributable to covariance 
differences. This means that the model accurately captures 
the variability of the human-generated results without 
bias. 
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Comparing experimental data with simulated data 
allows for increasing confidence in the usefulness of the 
model [10, 11, 28, 30]. The results of the calibration 
process are presented in Table 1. 

Calibration Results Mean Min Max Standard Deviation

R^2 0.7301 0.5842 0.8862 0.1270
Mean Abs. Percent Error 0.0116 0.0036 0.0190 0.0065
Mean Square Error 1.6821 0.2082 4.2194 1.5185
Root Mean Square Error 1.1717 0.4563 2.0541 0.6092
Mean 0.0136 0.0008 0.0320 0.0138
Variance 0.0506 0.0135 0.1350 0.0440
Covariance 0.9358 0.8425 0.9842 0.0533

Table 1. Calibration results

7. Conclusions 

Outcome-based learning models, such as the one 
described here, are useful in helping researchers to 
understand the emergence of threats. The model presented 
here integrates judgment, decision making, and learning 
theories to provide an integrated framework with which to 
behaviorally approach the study of threats. 
 This model is not complete by any means, further work 
is necessary. Further work includes performing additional 
tests of behavior, changing parametric definitions to 
include different stochastic characterizations of 
populations, increasing the sample size of subjects, 
varying the types of judgment tasks to test for robustness 
of the model across types of tasks, incorporating the use 
of memory stages in the learning process, and including 
elements of destabilization of correspondence between 
type of task and cognitive ability required [14], as in the 
case of threat emergence. 

We also recognize that work related to cue discovery, 
as a critical part of the learning process [18, 19], is a 
natural next step in this investigation, along with 
endogenizing several parameters of the model to expand 
the learning paths present in the model. Some parameters 
to be endogenized include (1) the size of adjustment of the 
decision threshold, (2) the judgment weights on 
information cues, (3) the payoff structure, and (4) the base 
rate of events as expressed in the criterion threshold. 
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Model equations 

(001) Absolute Critical Error Rate = ZIDZ (Real Count of False 
Negatives, Real Count of Transactions) Units: Dmnl 
(002) Accumulated Events = INTEG (Changes to Event Accumulation, 
Initial Events) Units: Event 
(003) "Accumulated Payoff (v)" = INTEG (Change to Payoff, Initial 
Accumulated Payoff) Units: Utility 
(004) Action = IF THEN ELSE (“Sampled Judgment of Distal Variable 
(x)" > Decision Threshold, 1, 0) Units: Audit 
(005) Action Count Rate = IF THEN ELSE (Action = 1, Event Counter, 
0) Units: Event/Period 
(006) Adding Transactions = Sampling Flag / TIME STEP Units: 
Event/Period
(007) Average Event Base Rate = ZIDZ (Accumulated Events, Real 
Count of Transactions) Units: Dmnl 
(008) Average Payoff = ZIDZ (“Accumulated Payoff (v)”, Real Count of 
Transactions) Units: Utility/Transaction 
(009) Base Rate = ZIDZ (Accumulated Events, Real Count of 
Transactions) Units: Dmnl 
(010) Calibration Data = DecTData[Judge 5,Trial 1] Units: Intensity 
(011) Change to Decision Threshold = IF THEN ELSE ( Net Influence 
of Outcome on DecThre > 0, ( ( Net Influence of Outcome on DecThre * 
Size of Change UP ) / TIME STEP ) , ( ( Net Influence of Outcome on 
DecThre * Size of Change DOWN) / TIME STEP ) ) Units: 

Intensity/Period
(012) Change to Payoff = Net Payoff / TIME STEP Units: Utility/Period 
(013) Changes to Event Accumulation = Event * Count Multiplier 
Units: Event/Period 
(014) Count Multiplier = 1 / TIME STEP Units: 1/Period 
(015) Criterion Threshold = 61 + STEP (0, 10) Units: Intensity 
(016) Cue1 Error Max = 3 Units: Intensity 
(017) Cue1 Error Mean = 0 Units: Intensity 
(018) Cue1 Error Min = -3 Units: Intensity 
(019) Cue1 Error Seed = 32453 Units: Dmnl 
(020) Cue1 Error StdD = 0 Units: Intensity 
(021) Cue1 Max = 100 Units: Intensity 
(022) Cue1 Mean = 50 Units: Intensity 
(023) Cue1 Min = 0 Units: Intensity 
(024) Cue1 Seed = 1234 Units: Dmnl 
(025) Cue1 StdD = (50 / 3) Units: Intensity 
(026) Cue2 Error Max = 3 Units: Intensity 
(027) Cue2 Error Mean = 0 Units: Intensity 
(028) Cue2 Error Min = -3 Units: Intensity 
(029) Cue2 Error Seed = 4.75657e+009 Units: Dmnl 
(030) Cue2 Error StdD = 0 Units: Intensity 
(031) Cue2 Max = 100 Units: Intensity 
(032) Cue2 Mean = 50 Units: Intensity 
(033) Cue2 Min = 0 Units: Intensity 
(034) Cue2 Seed = 123321 Units: Dmnl 
(035) Cue2 STd = (50 / 3) Units: Intensity 
(036) Cue3 Error Max = 3 Units: Intensity 
(037) Cue3 Error Mean = 0 Units: Intensity 
(038) Cue3 Error Min = -3 Units: Intensity 
(039) Cue3 Error Seed = 3.42565e+008 Units: Dmnl 
(040) Cue3 Error StdD = 0 Units: Intensity 
(041) Cue3 Max = 100 Units: Intensity 
(042) Cue3 Mean = 50 Units: Intensity 
(043) Cue3 Min = 0 Units: Intensity 
(044) Cue3 Seed = 345345 Units: Dmnl 
(045) Cue3 StdD = (50 / 3) Units: Intensity 
(046) Decision Threshold = INTEG (Change to Decision Threshold, 
Decision Threshold Initial) Units: Intensity 
(047) Decision Threshold Initial = 50 Units: Intensity 
(048) DecTData[Judge,Trial] Units: Intensity 
(049) DecThre Range = Max Decision Threshold - Min Decision 
Threshold Units: Intensity 
(050) Distal Variable = (Information Cue 1 * True Weight of 
Information Cue 1) + (Information Cue 2 * True Weight of Information 
Cue 2) + (Information Cue 3 * True Weight of Information Cue 3) + 
(Inherent Unpredictability of the Environment * True Weight of 
Unpredictability of the Environment) + Environment Natural Propensity 
Units: Intensity 
(051) Environment Error Max = 3 Units: Intensity 
(052) Environment Error Mean = 0 Units: Intensity 
(053) Environment Error Min = -3 Units: Intensity 
(054) Environment Error Seed = 9.86599e+008 Units: Dmnl 
(055) Environment Error StdD = 1 Units: Intensity 
(056) Environment Natural Propensity = 0 Units: Intensity 
(057) Error Rate = ZIDZ (Errors Generated, Real Count of Transactions) 
Units: Dmnl 
(058) Errors Generated = Real Count of False Positives + Real Count of 
False Negatives Units: Event 
(059) Event = IF THEN ELSE (Sampled Distal Variable > Criterion 
Threshold, 1, 0) Units: Event 
(060) Event Counter = Count Multiplier * Number of Events per DT 
Units: Event/Period 
(061) External Fraud Threat Threshold = Criterion Threshold 
Units: Intensity 
(062) False Negatives = IF THEN ELSE (Event = 1: AND: Action = 0: 
AND: Sampling Flag = 1, 1, 0) Units: Event 
(063) False Negatives Count Rate = IF THEN ELSE (Event = 1: AND: 
Action = 0: AND: Sampling Flag = 1, Event Counter, 0) 
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Units: Event/Period 
(064) False Negatives Payoff = -1 Units: Utility/Event 
(065) False Positives = IF THEN ELSE (Event = 0: AND: Action = 1: 
AND: Sampling Flag = 1, 1, 0) Units: Event 
(066) False Positives Count Rate = IF THEN ELSE (Event = 0: AND: 
Action = 1: AND: Sampling Flag = 1, Event Counter, 0) Units: 
Event/Period
(067) False Positives Payoff = -1 Units: Utility/Event 
(068) FINAL TIME = 200 Units: Period 
(069) Frequency of Sampling = 1 Units: Period 
(070) Influence of False Negatives on Decision Threshold = -1 Units: 
Dmnl/Event 
(071) Influence of False Positives on Decision Threshold = 1 Units: 
Dmnl/Event 
(072) Influence of True Negatives on Decision Threshold = 0 Units: 
Dmnl/Event 
(073) Influence of True Positives on Decision Threshold = 0 Units: 
Dmnl/Event 
(074) Information Cue 1 = RANDOM NORMAL (Cue1 Min, Cue1 
Max, Cue1 Mean, Cue1 StdD, Cue1 Seed) Units: Intensity 
(075) Information Cue 2 = RANDOM NORMAL (Cue2 Min, Cue2 
Max, Cue2 Mean, Cue2 STd, Cue2 Seed) Units: Intensity 
(076) Information Cue 3 = RANDOM NORMAL (Cue3 Min, Cue3 
Max, Cue3 Mean, Cue3 StdD, Cue3 Seed) Units: Intensity 
(077) Inherent Unpredictability of the Environment = RANDOM 
NORMAL (Environment Error Min, Environment Error Max, 
Environment Error Mean, Environment Error StdD, Environment Error 
Seed) Units: Intensity 
(078) Initial Accumulated Payoff = 0 Units: Utility 
(079) Initial Events = 0 Units: Event 
(080) Initial Real Count of False Negatives = 0 Units: Event 
(081) Initial Real Count of False Positives = 0 Units: Event 
(082) Initial Real Count of Transactions = 0 Units: Event 
(083) Initial Real Count of True Negatives = 0 Units: Event 
(084) Initial Real Count of True Positives = 0 Units: Event 
(085) INITIAL TIME = 0 Units: Period 
(086) Judge: Judge 1…Judge 12 
(087) Judge Bias = 0 Units: Intensity 
(088) Judge Error Max = 3 Units: Intensity 
(089) Judge Error Mean = 0 Units: Intensity 
(090) Judge Error Min = -3 Units: Intensity 
(091) Judge Error Seed = 1234 Units: Dmnl 
(092) Judge Error StdD = 1 Units: Intensity 
(093) Judge Reliability = RANDOM NORMAL ( Judge Error Min , 
Judge Error Max , Judge Error Mean , Judge Error StdD , Judge Error 
Seed ) Units: Intensity 
(094) Judge Reliability Weight = 0 Units: Dmnl 
(095) Judge Weight of Information Cue 1 = (1 / 6) Units: Dmnl 
(096) Judge Weight of Information Cue 2 = (2 / 6) Units: Dmnl 
(097) Judge Weight of Information Cue 3 = (3 / 6) Units: Dmnl 
(098) Judgment of Distal Variable = ( ( Knowledge about Information 
Cue 1 * Judge Weight of Information Cue 1 ) + ( Knowledge about 
Information Cue 2 * Judge Weight of Information Cue 2 ) + ( 
Knowledge about Information Cue 3 * Judge Weight of Information Cue 
3 ) + ( Judge Reliability * Judge Reliability Weight ) ) + Judge Bias 
Units: Intensity 
(099) Knowledge about Information Cue 1 = Measurement Error of 
Information Cue 1 + Information Cue 1 Units: Intensity 
(100) Knowledge about Information Cue 2 = Information Cue 2 + 
Measurement Error of Information Cue 2 Units: Intensity 
(101) Knowledge about Information Cue 3 = Information Cue 3 + 
Measurement Error of Information Cue 3 Units: Intensity 
(102) Max Decision Threshold = 100 Units: Intensity 
(103) Measurement Error of Information Cue 1 = RANDOM NORMAL 
(Cue1 Error Min, Cue1 Error Max, Cue1 Error Mean, Cue1 Error StdD, 
Cue1 Error Seed) Units: Intensity 
(104) Measurement Error of Information Cue 2 = RANDOM NORMAL 
(Cue2 Error Min, Cue2 Error Max, Cue2 Error Mean, Cue2 Error StdD, 

Cue2 Error Seed) Units: Intensity 
(105) Measurement Error of Information Cue 3 = RANDOM NORMAL 
(Cue3 Error Min, Cue3 Error Max, Cue3 Error Mean, Cue3 Error StdD, 
Cue3 Error Seed) Units: Intensity 
(106) Min Decision Threshold = 0 Units: Intensity 
(107) Net Influence of Outcome on DecT = False Negatives * Influence 
of False Negatives on Decision Threshold + False Positives * Influence 
of False Positives on Decision Threshold + True Negatives * Influence 
of True Negatives on Decision Threshold + True Positives * Influence of 
True Positives on Decision Threshold Units: Dmnl 
(108) Net Payoff = False Negatives * False Negatives Payoff + False 
Positives * False Positives Payoff + True Negatives * True Negatives 
Payoff + True Positives * True Positives Payoff Units: Utility 
(109) "Non-Events" = Real Count of True Negatives + Real Count of 
False Positives Units: Event 
(110) Number of Events per DT = 1 Units: Event 
(111) Real Count of Actions = INTEG (Action Count Rate, 0) Units: 
Event 
(112) Real Count of False Negatives = INTEG (False Negatives Count 
Rate, Initial Real Count of False Negatives) Units: Event 
(113) Real Count of False Positives = INTEG (False Positives Count 
Rate, Initial Real Count of False Positives) Units: Event 
(114) Real Count of Transactions = INTEG (Adding Transactions, Initial 
Real Count of Transactions) Units: Event 
(115) Real Count of True Negatives = INTEG (True Negatives Count 
Rate, Initial Real Count of True Negatives) Units: Event 
(116) Real Count of True Positives = INTEG (True Positives Count 
Rate, Initial Real Count of True Positives) Units: Event 
(117) Relative Critical Error Rate = ZIDZ (Real Count of False 
Negatives, Errors Generated) Units: Dmnl 
(118) Sampled Distal Variable = IF THEN ELSE (Sampling Flag = 1, 
Distal Variable, -5) Units: Intensity 
(119) "Sampled Judgment of Distal Variable (x)" = IF THEN ELSE 
(Sampling Flag = 1, Judgment of Distal Variable, -5) Units: Intensity 
(120) Sampling Flag = IF THEN ELSE (MODULO (Time, Frequency of 
Sampling) = 0: AND: Time <> 0, 1, 0) Units: Event 
(121) SAVEPER = 1 Units: Period [0,?] 
(122) Selection Rate = ZIDZ (Real Count of Actions, Real Count of 
Transactions) Units: Dmnl 
(123) Sensitivity = ZIDZ (Real Count of True Positives, (Real Count of 
True Positives + Real Count of False Negatives)) Units: Dmnl 
(124) Size of Change DOWN = DecThre Range / (“Total Number of 
DecThre Cutoffs (mDOWN)" - 1) Units: Period 
(125) Size of Change UP = DecThre Range / (“Total Number of 
DecThre Cutoffs (mUP)" - 1) Units: Intensity 
(126) Specificity = ZIDZ (Real Count of True Negatives, (Real Count of 
True Negatives + Real Count of False Positives)) Units: Dmnl 
(127) TIME STEP = 0.0625 Units: Period [0,?] 
(128) "Total Number of DecThre Cutoffs (mDOWN)" = 101 Units:Dmnl 
(129) "Total Number of DecThre Cutoffs (mUP)" = 101 Units: Dmnl 
(130) Trial: Trial 1, Trial 2, Trial 3 
(131) True Negatives = IF THEN ELSE (Event = 0: AND: Action = 0: 
AND: Sampling Flag = 1, 1, 0) Units: Event 
(132) True Negatives Count Rate = IF THEN ELSE (Event = 0: AND: 
Action = 0: AND: Sampling Flag = 1, Event Counter, 0) Units: 
Event/Period
(133) True Negatives Payoff = 1 Units: Utility/Event  
(134) True Positives = IF THEN ELSE (Event = 1: AND: Action = 1: 
AND: Sampling Flag = 1, 1, 0) Units: Event 
(135) True Positives Count Rate = IF THEN ELSE (Event = 1: AND: 
Action = 1: AND: Sampling Flag = 1, Event Counter, 0) Units: 
Event/Period
(136) True Positives Payoff = 1 Units: Utility/Event 
(137) True Weight of Information Cue 1 = (1 / 6) Units: Dmnl 
(138) True Weight of Information Cue 2 = (2 / 6) Units: Dmnl 
(139) True Weight of Information Cue 3 = (3 / 6) Units: Dmnl 
(140) True Weight of Unpredictability of the Environment = 0 
Units: Dmnl 
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