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ABSTRACT

Named data networking (NDN) is a new networking paradigm us-
ing named data instead of named hosts for communication. Imple-
mentation of scalable NDN packet forwarding remains a challenge
because NDN requires fast variable-length hierarchical name-based
lookup, per-packet data plane state update, and large-scale forward-
ing tables.

In this paper, we review various design options for a hash table-
based NDN forwarding engine and propose a design that enables
fast forwarding while achieving DoS (Denial-of-Service) resistance.
Our forwarding engine features (1) name lookup via hash tables
with fast collision-resistant hash computation, (2) an efficient FIB
lookup algorithm that provides good average and bounded worst-
case FIB lookup time, (3) PIT partitioning that enables linear multi-
core speedup, and (4) an optimized data structure and software
prefetching to maximize data cache utilization.

We have implemented an NDN data plane with a software for-
warding engine on an Intel Xeon-based line card in the Cisco ASR
9000 router. By simulation with names extracted from the IR-
Cache traces, we demonstrate that our forwarding engine achieves
a promising performance of 8.8 MPPS and our NDN router can
forward the NDN traffic at 20Gbps or higher.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Store and forward net-
works; C.2.6 [Internetworking]: Routers

General Terms

Experimentation, Design, Performance

Keywords

Named data networking, packet forwarding engine, hash table

1. INTRODUCTION
Named data networking (NDN) is a networking paradigm that

tries to address issues with the current Internet by using named data

instead of named hosts for the communication model. NDN com-
munication is consumer-driven; a client requests a named content
via an Interest packet, then any node receiving the interest and hav-
ing the content satisfies it by responding with a Data packet [13].

Since NDN challenges some fundamental technical tradeoffs of
the current Internet, it redesigns many aspects including naming,
security, forwarding, routing, and caching. Among those, imple-
mentation of scalable NDN packet forwarding remains a big chal-
lenge because NDN forwarding is fundamentally different, and in-
herently more complex than IP forwarding.

First, NDN forwarding lookup uses variable-length hierarchical
tokenized names, rather than fixed-length addresses. The forward-
ing decision is made based on either an exact-match or compo-
nentized longest prefix match (LPM) of the name against a set of
tables (discussed below). For example, consider an NDN Interest
packet with the name /com/cisco/ndn that consists of 3 com-
ponents delimited by /. This Interest can match on the FIB with
/com/cisco/ndn, or a shorter prefix, /com/cisco or /com.

Second, NDN uses 3 different forwarding data structures: (1)
the Pending Interest Table (PIT) is a table that stores unsatisfied
Interests – an entry is added when a new Interest packet arrives
and removed when it is satisfied by the corresponding Data packet,
(2) the Content Store (CS) is a buffer/cache memory that stores
previously processed Data packets in case they are re-requested,
and (3) the Forwarding Information Base (FIB) fills the analogous
role as with IP – it is used for forwarding Interest packets based on
the longest prefix match. As shown in Figure 1, the NDN packet
forwarding process requires consulting all three data structures at
different points. These tables can be quite large; approximately
O(108) for the FIB, O(107) for the PIT [28, 5] and the CS based
on an assessment of the likely traffic matrix seen by a large-scale
NDN router.

Lastly, unlike IP some NDN data plane data structures require
per-packet state update. If we simplify the NDN forwarding pro-
cess with regard to operations on the forwarding tables (refer [13]
for details), Interest forwarding consists of CS lookup, PIT lookup
& insert, and the longest prefix match on the FIB while Data for-
warding is composed of CS lookup, PIT lookup & delete, and CS
delete & insert (i.e. cache replacement). For processing every In-
terest or Data packet, the data plane must perform an insertion or
deletion on the CS or PIT. This requires us to rethink the algorithms
and data structures widely used for IP forwarding engines that only
do read operations on a per-packet basis.

We note there are other unique properties of the NDN data plane
such as long-term caching, implicit multicast, and a forwarding
strategy. For this work, we focus only on the design issues regard-
ing name lookup and forwarding tables.

In this paper, we present a design of a fast NDN data plane
based on hash tables. We review various design options for an
NDN forwarding engine including hash function choice, hash table
design, lookup algorithms for FIB, PIT and CS, multi-core paral-
lelization, and router security. We then describe our design that
enables high-speed forwarding while achieving DoS (Denial-of-
Service) resistance. It features (1) name lookup via hash tables
with fast collision-resistant hash computation, (2) an efficient FIB
lookup algorithm that provides good average and bounded worst-
case FIB lookup time, (3) PIT partitioning that enables linear multi-
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Figure 1: NDN Interest/Data forwarding process (Figure cour-

tesy of B. Zhang [27]).

core speedup, and (4) an optimized data structure and software
prefetching to maximize data cache utilization.

Based on the proposed design, we have implemented an NDN
data plane entirely in software on an Intel Xeon-based line card in
the Cisco ASR 9000 router. By simulation with names extracted
from the IRCache traces, we demonstrate that our forwarding en-
gine achieves a promising performance of 8.8 MPPS and our NDN
router can forward NDN traffic at 20Gbps or higher. To the best of
our knowledge, this is the first work that includes a comprehensive
NDN data plane design based on hash tables with fast and DoS-
resistant forwarding and implemented on a real commercial router.

The rest of this paper is organized as follows. We describe design
details of our forwarding engine in Section 2. Section 3 provides
an overview of our router-based system implementation. Our work-
load and experimental results are described in Section 4. Finally,
we discuss related work and conclude in Sections 5 and 6.

2. FORWARDING ENGINE DESIGN
An efficient name lookup engine is a critical component of fast

NDN packet forwarding. Since NDN lookup is based on variable-
length names, it can be seen as a string match problem. After in-
vestigating 2 approaches – DFA (Deterministic finite automata) vs.
hash table (HT), we chose HT because it is simpler and we believe
better matched the nature of the NDN lookup problem. The diffi-
culty of a DFA-based approach is that each prefix in NDN names is
associated with an unbounded string, and hence it requires a special
encoding scheme [24]. (See Section 5.1 for details.)

As illustrated in Figure 2, an HT-based lookup algorithm for
NDN Interest forwarding works as follows: (1) after decoding the
packet and (2) parsing the name components, (3) the full-name hash
(Hn) is generated from the Interest name and matched against the
CS, PIT then FIB HT, and (4) successive lookups are performed
with shorter name prefix hashes (Hn−1,...,H1) against the FIB,
which stores all prefixes in a large HT. Data packet forwarding only
needs CS and PIT lookups with the full-name hash.

For the rest of this section, we review various design options for
hash table-based lookup. These include selection of the hash func-
tion, HT data structures, and ways to improve lookup performance
for FIB, CS and PIT. We focus on pure software forwarding partly
so that we can establish a useful lower bound that any hardware
assisted or pure hardware forwarding approach must surpass to be
competitive. Further efforts based on custom hardware may lead to
different design decisions.
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Figure 2: NDN Interest forwarding using hash tables.

2.1 Hash function
The choice of a hash function affects the performance of HT-

based lookup in 2 ways: the computational load of a hash func-
tion itself, and the quality of generated hashes. We require an effi-
cient hash function that computes hashes fast for character strings,
yet has low hash collision probability, and short average HT chain
length to minimize the hash bucket search time.

We have evaluated the performance and quality of various widely-
used cryptographic and non-crpytographic hash functions for our
purposes, building a hash table with 64K random strings of 10∼60
characters each. Table 1 summarizes the results; the upper 3 rows
show the performance metrics while the lower 4 rows show the
quality metrics. The performance of cryptographic hash functions
(5 right columns) is noticeably worse despite some utilize the In-
tel’s AES-NI instruction sets. Most of the quality metrics are sim-
ilar though CCNx and CRC32 suffered hash collisions – 2 distinct
random strings in the sample generated the same hash value. We
should avoid these functions because even infrequent hash colli-
sions negatively affect lookup performance by forcing extra string
comparison during HT lookup. Among the rest, CityHash64 shows
the best performance in terms of both byte hash and HT lookup
performance.

Despite their better performance, non-cryptographic hash func-
tions lack collision resistance, resulting in an NDN router becom-
ing vulnerable to hash flooding DoS (Denial-of-Service) attacks.
Aumasson et al. [2] have proved that seed-independent collisions
can be generated with popular hashes such as MurmurHash, City-
Hash and SpookyHash. This is particularly dangerous for an NDN
router because a PIT entry is inserted based on the name of an In-
terest packet generated by a user. If a malicious user generates In-
terest packets with a set of names that cause seed-independent hash
collisions, a router (or routers) will suffer significant lookup perfor-
mance degradation due to the hash collision that happens at every
PIT HT lookup. Note that using a different seed at each router does
not alleviate this attack because the collision happens with seed-
independence.

The recently proposed SipHash [2] offers a good balance as it
provides collision resistance and comparable performance to non-
cryptographic hashes. Our evaluation shows that SipHash is 23%
slower than CityHash64 but 61% faster than MD5 with a string
shorter than 60 bytes. Since collision resistance is a necessary prop-
erty for the NDN router security, we have chosen SipHash for our
HT-based lookup design. In order to effectively generate a set of
hashes (Hn,...,H1) for Interest forwarding, we have implemented
our own SipHash that computes all name prefix hashes with one
pass while simultaneously parsing the name components.

2.2 Hash table design
For an HT design, we chose a basic chained HT (a.k.a separate

chaining, closed addressing) because it is simple and requires only
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Table 1: Performance and quality of various hash functions.
Hash type Non-cryptographic Cryptographic

Hash function CCNx CRC32 CityHash64 Spooky Jenkins MD5 LANE ECHO Grøstl SipHash

Average cycles/byte hash 8.88 4.77 4.80 5.03 5.65 15.23 20.13 36.82 51.34 5.94
Incremental cycles/byte hash 4.93 1.08 0.69 0.77 3.29 7.67 5.41 3.18 23.67 3.53
Cycles/HT lookup* 436.73 323.23 296.66 380.12 389.28 906.53 1316.51 2237.78 2407.47 421.96

Avg. length of chain 1.60 1.58 1.57 1.58 1.58 1.58 1.57 1.58 1.58 1.58
Max. length of chain 9 7 7 8 8 8 7 8 9 7
Empty bucket % 38.18 37.17 36.98 37.25 37.16 37.34 37.03 37.25 37.22 36.69
Hash collision 164 1 0 0 0 0 0 0 0 0

* HT lookup tests are done with the chained HT with 64K hash buckets and 64K pre-populated entries (i.e. load factor = 1).
Source: CCNx [3], CRC32 [15], CItiHash64 [9], Spooky, Jenkins [14], MD5 [20], LANE, ECHO [7], Grøstl [10], SipHash [2].
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Figure 3: Hash table data structures.

one hash function. We rejected designs that require multiple hash
functions (e.g. Cuckoo hashing) because the extra computational
overhead would be huge as we need a set of hashes (Hn,...,H1)
for an NDN name. For faster lookup with a chained HT, our first
design goal is to minimize string comparison that negatively af-
fects the performance. For this, the 64-bit hash value generated
from a name is stored at every hash table entry. While searching
for a matching entry during HT chain walk, string comparison is
performed only when it finds an entry that has the exactly same
64-bit hash value as the input lookup key. Use of a strong 64-bit
hash function (SipHash) is well aligned with this design because
the hash collision probability is extremely low; (1/106) with 6.1
million values [26].

Our second goal is to design a data cache (D$) friendly data
structure that causes fewer cache misses during HT lookup. On an
Intel-based platform, a single D$ miss introduces more than a hun-
dred memory stall cycles and therefore it is crucial to minimize the
number of D$ misses. Instead of using linked list buckets, we have
designed a D$-friendly HT data structure using a compact array,
where each hash bucket contains 7 pre-allocated compact entries
(32-bit hash and 32-bit index to the full entry) in 1 cache line (64
bytes). As shown in Figure 3, the key difference is that a single D$
miss occurs in every linked list chain walk while it happens only
once in every 7 compact array chain walks if there is no hash col-
lision in the 32 bit hashes. Compared with the linked list bucket
design, the compact array shows better performance with a smaller
memory footprint as long as the HT load factor (#entries/#buckets)
stays no greater than 4. (See Section 4.2 for details.)

Software prefetching also helps reduce the impact of D$ misses
by hiding the D$ miss latencies. Due to the need for sequential
lookups in NDN forwarding (Interest: CS→PIT→FIB×n, Data:
CS→PIT), an HT bucket used for a future lookup can be prefetched.
We have examined 2 schemes: (1) cascade – a prefetch instruction
is issued at 1 prior lookup (i.e. prefetch PIT bucket at CS lookup,

prefetch nth FIB bucket at PIT lookup and so on), and (2) all-at-

once – all prefetch instructions are issued at the beginning just af-
ter computing all hashes (Hn,...,H1) but before any lookups. With
our evaluation, all-at-once prefetching exhibits better overall per-
formance because the memory latency is much longer than one HT
lookup cycle. Therefore, we have employed all-at-once prefeching
for our implementation. Bucket preallocation in the compact array
design is necessary for the prefetching efficiency because it enables
prefetching of 7 entries, not just a pointer.

2.3 FIB lookup algorithm
In a typical Interest forwarding scenario, the FIB HT lookup can

be a bottleneck because lookup is iterated until it finds the longest
prefix match (LPM). This problem is called prefix seeking [8], and
it is common to any HT-based lookup approach. The most dis-
cussed solution is using Bloom filters (BF) to store the compressed
FIB prefixes [18, 22]. This is quite effective when the hardware
(ASIC or FPGA) performs parallel BF-check on the faster memory
(SRAM) and the hash table in the slower memory (DRAM or RL-
DRAM) is accessed only for the prefixes where BF returns FALSE.
However, it is not appropriate for software implementation because
a BF-check operation (that may involve multiple hash computations
and a single memory read) is iterated for the maximum n times. For
software forwarding, we need a different approach.

The basic HT-based lookup algorithm – longest-first strategy as
lookup starts from the longest prefix – is undesirable for both per-
formance and security reasons. In terms of performance, it will
result in a large average lookup time because FIB matches tend to
happen at prefixes considerably shorter than the full name. This
is expected because publishers advertise short prefixes rather than
the full object names and hierarchical name prefixes typically get
aggregated inside the network. In terms of security, it is not good
either because the worst-case lookup time is determined only by
the number of name components in the Interest packet. With the
longest-first strategy, non-matching (or default-route matching) In-
terests consume the most lookup time because it requires n FIB
lookups. This causes a serious security issue because it makes a
router vulnerable to an DoS attack against FIB processing wherein
an adversary injects Interest packets with long non-matching names
containing garbage tokens. On the other hand, one could consider
the opposite shortest-first strategy. The FIB match may be found
earlier with this approach, but the LPM algorithm still does not ter-
minate until it examines all prefixes in order to guarantee that there
is no longer prefix match.

To address this, we propose a 2-stage LPM algorithm using vir-

tual FIB entries (or prefixes). With this scheme, lookup first starts
from a certain short (M component) name prefix and either con-
tinues to shorter prefixes or restarts from a longer (but shorter than
the longest) FIB prefix if needed. Every FIB entry with M prefixes
maintains the maximum depth (MD) of prefixes that start with the
same prefix in the FIB. At the first stage of the algorithm, lookup
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starts from M name prefix and continues to shorter prefixes until it
finds a match. If no match is found at this stage, there is no LPM for
this Interest. If a match is found but it indicates that there is a possi-
ble LPM at the maximum prefix depth of MD > M , lookup starts
the second stage from MD and continues until it finds a match.

Let’s suppose an example that M = 3 and /a, /a/b/d, and
/a/b/c/d exist in a routing table. When the name prefix /a/b/c/d
is added to the FIB, a virtual FIB entry /a/b/c is also added,
which stores MD = 4. (If a virtual or real /a/b/c already exists,
MD is updated.) The prefix /a (and /a/b/d) inserts only one
entry into the FIB because its prefix depth is not larger than M . As
illustrated in Figure 4, the routing table maintained by the control
plane (RIB, Routing Information Base) is represented as a name
component prefix tree while the FIB on the data plane is our hash
table. For forwarding an Interest /a/b/c/d/e/f, lookup starts
from /a/b/c. Since it finds a match at /a/b/c and MD = 4,
lookup restarts from /a/b/c/d then finds the LPM immediately.
When an Interest /a/c/d/e/f/g comes, it does not find a match
at /a/c/d (i.e. there is no longer prefix in the FIB starting with
/a/c/d), therefore continues to /a/c, and then finds the LPM
at /a. For an Interest /a/b/d/e/f/g, lookup starts at /a/b/d

Algorithm 1 2-stage FIB lookup algorithm.

1: FIB_LPM_STAGE_1:
2: n← number of name components in an Interest packet;
3: for pfx← min(n,M) to 1 do

4: FIB_entry ← LookupFIB(name, pfx);
5: if FIB_entry then

6: if MD(FIB_entry) > M and n > M then

7: start_pfx← min(n,MD(FIB_entry));
8: FIB_entry_1s← FIB_entry;
9: goto FIB_LPM_STAGE_2;

10: else if not IsV irtual(FIB_entry) then

11: return FIB_entry;
12: end if

13: end if

14: pfx← pfx− 1;
15: end for

16: return FIB_NOT_FOUND;
17: FIB_LPM_STAGE_2:
18: for pfx← start_pfx to 1 do

19: if pfx = M then

20: FIB_entry ← FIB_entry_1s;
21: if not IsV irtual(FIB_entry) then

22: return FIB_entry;
23: end if

24: end if

25: FIB_entry ← LookupFIB(name, pfx);
26: if FIB_entry and (not IsV irtual(FIB_Entry)) then

27: return FIB_entry;
28: end if

29: pfx← pfx− 1;
30: end for

31: return FIB_NOT_FOUND;

Table 2: Lookup count saving with 2-stage FIB lookup.
m,n,M MD FIB lookup count Lookup saving*

m ≤ n < M N/A 1 + n −m 0

m ≤ M ≤ n

M = MD 1 + MD −m n−MD

M ≤ MD < n 1 + MD −m n−MD

M < n ≤ MD 1 + n −m 0

M < m ≤ n
(MD + 1) ≤ n 2 + MD −m n−MD − 1
n < (MD + 1) 2 + n −m (−1)

n: number of name components in an Interest packet
m: prefix depth where an Interest name matches at the FIB (m ≤ n)
MD: maximum depth stored in the FIB entry at M
* Lookup count is always (1 + n−m) with the longest-first algorithm.

and immediately finds the LPM. Algorithm 1 shows the details how
the algorithm works.

The 2-stage FIB algorithm saves FIB lookups in most cases. In
the example above, FIB lookup counts are 2, 3, and 1 instead of
3, 6, and 3 respectively. With a good choice of M , most Interest
packets need only the first stage that performs M or fewer lookups.
In case that it needs the second stage, lookup may start at a shorter
prefix (MD) than the longest prefix of the input name. Table 2
summarizes FIB lookup count savings in various conditions. There
is only one case that lookup is penalized by our method; (−1) sav-
ing (i.e. +1 in lookup count) when the FIB match happens at the
prefix longer than M and the name is shorter than (MD + 1) at
the bottom. (e.g. with the same example FIB, an Interest name
/a/b/c/d needs 1 lookup with the longest-first algorithm, but it
requires 2 lookups at /a/b/c and a/b/c/d with our algorithm.)
In all the other cases, our algorithm performs as well or better than
the basic algorithm in terms of FIB lookup count.

Besides improving the average FIB lookup time, our algorithm
provides DoS-resistance for FIB processing because it makes the
worst-case lookup time bounded and independent of input names.
With our algorithm, the worst-case lookup count is only a function
of FIB (or RIB). If no FIB match is found at M , the FIB lookup
count is bounded by M . Otherwise, it is bounded by MD, which is
no greater than the maximum MD in the FIB. The bounded worst-
case lookup time makes an NDN router less vulnerable to DoS at-
tacks against FIB processing. In the garbage-token name attack
scenario described earlier, the FIB lookup count will be always M
with our algorithm while it will be n with the longest-first algo-
rithm.

One disadvantage of our method is a FIB expansion caused by
additional virtual FIB entries. However, we expect that impact
of FIB expansion will not be significant with a good choice of
M because it is less likely that the longer prefix is added to the
FIB without any matching shorter prefixes. (e.g. when a prefix
/com/youtube/cats is inserted to the FIB, /com/youtube
is likely to be present as well.) Also note that a FIB expansion
can be always statically computed from the RIB for a certain M .
Any M that causes the FIB expansion over a certain threshold (e.g.
10%) should be avoided because the over-populated HT entries will
hurt the lookup performance eventually by increasing the average
HT chain length.

There are 2 more questions to be answered with regard to this al-
gorithm. The first is how to determine the parameter M . As shown
in Table 2, we reduce FIB lookup counts in most cases. However,
if M is too large (m ≤ n < M ), there is no lookup saving. If
M is too small (M < m ≤ n), lookup can be penalized in some
cases. The most lookup saving comes form the sweet spot where
M is in the middle (m ≤ M ≤ n). With our initial assessment,
we have found that selecting the optimal M without knowing the
actual input set is extremely hard because the final result is deter-
mined by the component distribution of input names, FIB prefixes
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and their matching statistics. We also think that it may be too early
to develop such an accurate scheme because it should be based on
an analysis of the real NDN traffic traces and FIB data, which are
not available yet.

For now, we can think of 2 simple heuristics that work based on
the FIB (or RIB) name component (prefix) distribution: (1) most-

likely – choose M that contains the most number of components, or
(2) cumulative-threshold – choose M where the cumulative com-
ponent distribution exceeds a certain threshold such as 75%. With
either heuristic, a FIB expansion should be considered as a nega-
tive decision factor. Since choosing a threshold value is another
question when it comes to the cumulative-threshold heuristic, we
have used the most-likely heuristic for our experiments shown in
Section 4. By our evaluation with a bell-shaped FIB component
distribution, the most-likely heuristic works fine showing only 2%
forwarding performance degradation compared to the optimal M .
(See details in Section 4.3.) As we better understand actual NDN
traffic patterns, we can investigate more accurate methods, which
we will leave for future work.

The second question is how it works in a router. In reality, M
should change over time as the RIB changes. Since the choice of M
and the virtual FIB entries (and MD values) are coupled, the FIB
needs careful updating when M is updated. All virtual FIB entries
associated with the new M should be inserted first (and MD up-
dated for every existing node at M ) before a router updates M . The
virtual FIB entries for the old M should stay as long as any packet
processing threads are using the old M , and should be deleted later.
Note that inserting new virtual FIB entries does not affect any for-
warding operations with the old M . In theory, forwarding can use
a different M for each packet as long as the FIB has all necessary
virtual prefixes for multiple M . (However, this is at the expense of
larger FIB expansion.) The initial value of M can be large when
the RIB is empty and then reduced as the RIB grows. Though there
is no lookup saving (nor penalty) with large M , it still provides
DoS-resistance with bounded worst-case FIB lookup time.

2.4 CS and PIT lookup
HT-based lookup fits quite well for PIT and CS lookup because

it only uses the full-name as the key for matching1 and an update
(insert or delete) operation is easy with a hash table. On top of the
basic HT lookup used for FIB, we have devised 2 more techniques
to optimize access for PIT and CS.

First, PIT and CS lookups are combined into one HT lookup be-
cause they are adjacent and use the same full-name key. By com-
bining CS and PIT lookup into a single hash table, it reduces 2 sepa-
rate HT lookups to one. This lookup time saving applies to both In-
terest and Data processing because both require CS and PIT lookup
at the beginning. In addition, our approach reduces the frequency
of HT insertion and deletion on PIT and CS. If we observe the
lifetime of the CS and PIT entries associated with an Interest/Data
packet pair, PIT entry deletion and CS entry insertion happen at the
same time when the Data packet arrives. This is shown in Figure 5;
CS insert means a new Data packet is being cached while CS delete

means the Data packet is evicted from the CS. (We assume that a
simple replacement policy such as FIFO or LRU is used for the CS;
this is reasonable because a caching decision for the CS should be
done in a wire speed as part of the forwarding process in NDN.) In
a typical Data forwarding scenario, ‘PIT lookup & deletion + CS
LRU replacement’ requires 2 delete and 1 insert operations while

1
NDN supports the LPM lookup for the PIT and CS as well. However, we do not

believe that this type of matching is feasible at scale, and creates more problems.
Hence, our implementation deliberately does not support this. Details are not within
the scope of this paper.
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Figure 5: Lifetime of PIT and CS entries.

sharing an CS/PIT entry needs only 1 deletion because a PIT entry
simply evolves to a CS entry by an entry update as shown in Fig-
ure 5. For this to work, a flag bit is used to distinguish whether an
entry belongs to CS or PIT.

The second technique to optimize PIT and CS lookup is to parti-
tion the PIT (i.e. combined CS/PIT) across cores (or threads). With
our experiments, we have found that sharing PIT entries among
parallel packet processing threads significantly impedes multi-core
parallelization speedup because (1) a read or write lock on the
shared entry can block threads due to access serialization, and (2) a
memory write on the shared entry causes invalidation of copies in
other per-core caches due to the cache coherence mechanism (e.g.
MESI) and therefore lowers D$ utilization dramatically. PIT parti-
tioning enables each core to exclusively access its own PIT without
any locking or data aliasing among cores. For this to work, Inter-
est and Data packets with identical names must be looked up in the
same PIT instance. This is achieved by distributing packets to cores
based on names. In our implementation, we use full-name hashes
to distribute packets to the forwarding threads. This is efficient be-
cause the full-name hash needs to be computed in any case for the
CS/PIT HT lookup.

2.5 Content Store design
There are 2 levels of caching that can be done in an NDN router.

Short-term caching of packets provides for any re-transmission that
is needed in case of link congestion, lower-layer transport errors or
client mobility. Long-term caching of Data packets is mainly for ef-
ficiently serving popular content. NDN allows long and short-term
caching to share one mechanism because NDN architecturally inte-
grates storage as a forwarding component. However, from a router
implementation point of view, the different resource requirements
lead us to treat short and long-term caching separately.

Short-term caching will be implemented as a packet buffer mech-
anism with the same memory technology used for the forwarding
data structures. In today’s IP router architecture, the packet buffer
provides 2 basic primitives to a forwarding engine: (1) rx – re-
ceive a packet, which is read by the forwarding engine, and (2) tx

– transmit a packet after it is processed by the forwarding engine.
The lifetime of a packet in the buffer is coupled with each prim-
itive; rx is the beginning while tx is the end. To support caching
using a packet buffer mechanism, the lifetime of a packet must be
decoupled from current tx/rx primitives and the packet buffer has to
support at least 3 additional primitives: (1) tx-and-store – transmit
and cache a packet (extend the life of a packet), (2) delete – evict a
packet (end the life of a packet), and (3) tx-from-buffer – transmit
a packet directly from the packet buffer. If caching is implemented
as a forwarding engine only function without these mechanisms,
expensive memory copy operations are needed to move big Data
packets in and out.

Long-term caching is typically implemented using non-volatile
storage media such as hard drives or SSDs. This can represent
another huge challenge because a router still needs to service Data
packets at wire-speed while keeping them in a storage device. It
may also require a complex replacement policy to cache popular
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(a) ASR 9000 (b) Integrated Service Module

Figure 6: ASR 9000 router and ISM.

contents in a long term. We are currently working on implementing
the first level of CS in the packet buffer. The complete design and
implementation of a Content Store with hierarchical storage will
appear in our future work.

3. SYSTEM IMPLEMENTATION

3.1 Target platform
To implement our NDN data plane design on a router, we have

selected the Cisco ASR 9000 router with the Integrated Service
Module (ISM) [4] shown in Figure 6. This is a flexible platform be-
cause forwarding on an ISM is purely done by the software running
on 64-bit Linux. The ISM is currently used for video streaming and
NAT applications; it features 2 Intel 2.0GHz hexa-core Westmere
EP (Xeon) Processors with Hyper-threading (24 logical cores) and
4 Intel Niantic 10GE interfaces. Additionally, it can include up to
3.2 TB of SSD with 2 modular flash SAM (Service Accelerator
Module) that can be used as NDN cache storage.

3.2 Packet format
The wire format of packets and names has a big impact on for-

warding. The XML packet and name format currently used in
CCNx [3] – PARC’s implementation of the NDN architecture –
provides great flexibility for early research. However, its CCNb bi-
nary encoding incurs significant decoding overhead as it consumes
35% of execution cycles for forwarding [29]. We have found that
the CCNb is not forwarding-friendly mainly for 2 reasons: (1) there
is no easy way to locate the name tag without decoding all proceed-
ing tags, and (2) it includes unnecessary overhead characters that
decrease the lookup efficiency.

In order to address the issues with the current CCNb format,
we are currently working on defining a flexible and forwarding-
friendly binary NDN packet format based on a fixed header and
TLV (Type-Length-Value) fields. Adding the length at every variable-
length field will be critical for forwarding performance because it
enables the data plane to quickly skip the fields that are not used
for forwarding. The details are not the main interest of this paper
and the final format proposal will be published to the NDN commu-
nity separately. For our experiments, we use a simple format that
includes a 1-byte header with a packet type and a simple name for-
mat, which includes the length of the full name and encoded name
components with the component length and characters.

3.3 Packet input and output
Software routers make use of a software forwarding engine built

with off-the-shelf general-purpose hardware. Since our platform is
based on a server-like system architecture with Intel Xeon CPUs
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Figure 7: NDN packet flow in ASR 9000 with ISM.

and Linux OS, it can be considered as a software router. There are
two well-known software router designs: RouteBricks [11] paral-
lelizes router functionality cross the multiple CPU cores in a single
server as well as multiple servers, and PacketShader [6] exploits the
massively-parallel processing power of GPU to address the CPU
bottleneck in current software routers.

Based on lessons learned from those designs, we have applied
2 techniques for fast packet input and output in our system. First,
we bypass the Linux networking kernel stack completely for fast
packet delivery. Our packet I/O system is built on user-space device
drivers for the Intel 10GE Niantic Network Interface Card (NIC)
and DMA (Direct Memory Access) [16, 17]. For both incoming
and outgoing packets, the user-space device driver directly transfers
packets between an NIC and a forwarding process via DMA.

Second, we utilize a batch processing mode in the NIC driver to
reduce per-packet processing overhead [11]. Our I/O system can
process a batch of 255 packets with one receive or transmit trans-
action. Multiple Rx/Tx queues in the Niantic NIC can also be used
to boost I/O performance when they are accessed by different CPU
cores [6]. However, this is not an option for our system because the
packet that arrives on the Niantic NIC in the ISM does not begin
with a standard Ethernet header, but the custom Network Proto-
col Header (NPH) compatible with the ASR 9000 switching fabric.
Furthermore, support for multiple Rx queues requires the NIC to
hash the address and port fields in the packet to determine which
Rx queue the packet goes to, which would not be straightforward
for NDN packets.

In our implementation, there is a process (Dispatcher) desig-
nated for packet I/O for each 10GE interface and NDN packet
forwarding is performed by separate processes (App). The packet
buffer resides in a shared memory region that both types of process
can access.

3.4 System overview
Since our NDN data plane runs on a service line card in an IP

router, the NDN traffic flows as an IP overlay. Figure 7 shows how
NDN packets are processed in the ASR 9000 with an ISM. The
router is connected externally to the interfaces on regular 10GE
transport line cards (LC1-2). A high-speed switching fabric carries
packets between the ISMs and transport line cards. Each ISM has
4 10GE internal interfaces to the fabric. When an NDN packet ar-
rives at a fabric interface on the ISM, it is received by a Dispatcher

process (D0-3) attached to that interface by the user-space driver
via DMA. The Dispatcher identifies the offset of the name in the
packet and computes the hash of the full name, which is used to
identify which App process (A0-A7) will process the packet (in or-
der to support the partitioned PIT). The full-name hash is passed in
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Table 3: 16 IRCache URL traces.
Total Total Average Average Average
# of unique name chars / chars /

Trace names names comp name comp

bo2-09 237869 143916 6.47 58.62 9.06
bo2-10 205993 132971 6.48 57.20 8.83
ny-09 446555 297075 6.42 57.21 8.92
ny-10 389987 274104 6.44 56.36 8.75
pa-09 206337 129584 6.42 54.77 8.53
pa-10 280047 161901 6.57 59.17 9.01
rtp-09 3164942 1649229 6.68 60.30 9.03
rtp-10 2976468 1497909 6.72 59.23 8.82
sd-09 1418522 875807 6.54 56.52 8.64
sd-10 1493782 931209 6.58 56.59 8.60
sj-09 361035 156182 7.08 57.52 8.13
sj-10 346382 150764 7.13 57.75 8.10
sv-09 527132 191376 6.97 60.10 8.62
sv-10 447600 196830 6.83 61.53 9.01
uc-09 527276 277148 6.50 55.20 8.49
uc-10 518888 269054 6.63 55.86 8.42

Total/Avg. 13548815 7335059 6.66 58.39 8.78
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Figure 8: Name component distribution of traces.

with the packet buffer so that the App need not recompute it. The
App performs all the NDN forwarding operations – CS/PIT lookup,
FIB lookup – and then returns the packet to the Dispatcher along
with output interface information. The Dispatcher transmits the re-
turned packet to the outgoing interface through the switching fab-
ric. By varying the number of App processes, our architecture can
correctly balance the work performed at each step for maximum
utilization.

4. EXPERIMENTAL RESULTS

4.1 Workload generation
Since NDN is a future Internet architecture, it is difficult to ob-

tain workloads from real traffic traces. Researchers to date have
translated existing Internet traces to generate NDN workloads [5].
For our experiments, we used the same approach. We have ex-
tracted 13 million HTTP URLs from 16 IRCache traces [12] and
converted them into NDN names using the following method: (1)
each sub-domain name is converted into a single NDN name com-
ponent in a reverse order, (2) the entire query string after ‘?’ charac-
ter is always treated as one component, and (3) every ‘/’ character in
the rest of URL is considered as a name component delimiter. (e.g.
cisco.com/ndn is converted to /com/cisco/ndn.) Table 3
presents the statistics of NDN names generated from the IRCache
traces.

Building a realistic routing table (FIB or RIB) is another issue
because NDN has not been deployed at Internet scale. Since no

Table 4: Memory consumption (MBytes) by FIB HT.
FIB entries 1M 4M 16M 64M

Compact array buckets 16.00 64.00 256.00 1024.00
Dynamic buckets 0.82 3.27 13.10 52.40
FIB entries 64.00 256.00 1024.00 4096.00
FIB names 71.72 263.73 1031.73 4103.73

Total consumed 152.56 587.00 2324.83 9276.13
Total for lookup 35.82 143.27 573.10 2292.40
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Figure 9: Performance vs. HT load factor.

previous work has a good description of how to generate an NDN
routing table, we have developed our own method. Our hypothesis
is that an NDN routing table has a similar long-tailed component
distribution to that of NDN object names, but with a smaller aver-
age and more skewed shape. URLblacklist [21] provides a collec-
tion of domains and short URLs for access blocking. As seen in
Figure 8, its distribution matches our hypothesis; a long-tailed dis-
tribution with the average 4.26 components (compared with 6.66
for IRCache trace names). Another possible candidate for the FIB
distribution is the domain name distribution. However, it was re-
jected because its distribution is heavily skewed; most (73%) names
have 3 name components.

Based on the URLBlacklist component distribution, our FIB names
are synthesized from all possible name prefixes of 16 traces so that
they match the target distribution. As a result, our Interest forward-
ing workload results in an average of 3.87 FIB lookups; the mean
name component distance between Interest and FIB names is 2.40.

4.2 Scalability of HT-based lookup
In order to examine the scalability of our HT-based lookup, we

have evaluated Interest forwarding performance by varying target
FIB sizes from 256K (K=210) to 64M (M=220) entries. Figure 9
shows the cycles/packet for Interest forwarding by increasing HT
load factors (LF=FIBsize/HTsize) from 1 to 16. (e.g. when
FIBsize=1M and HTsize=256K, LF=4.) Since our synthetic
FIB generated from the traces only provides about 1M entries, ran-
dom FIB entries are interleaved during insertion of actual FIB en-
tries if the target FIB size is larger than 1M. For this experiment,
the baseline forwarding code is used and the PIT HTsize is fixed
to 256K. Interest packets are generated from unique names of bo2-
09 trace and the Interest forwarding involves a CS/PIT miss and the
average 3.70 FIB lookups.

As shown in Figure 9, performance is rarely affected by increas-
ing the load factor up to 4, but it gets noticeably worse when the
LF is 8 or greater. This is the effect of our D$-friendly HT data
structure because it incurs only one D$ miss if a matching entry
is found within 7-entry walk. When the LF is 4, the average HT
chain length is 4.07 and the compact array contains about 89% en-
tries. However, with the LF of 8, the average chain length is 8 and
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Table 5: Impact of 2-stage FIB lookup algorithm with different M .
Configuration Baseline M=3 M=4 M=5 M=6 M=7 M=8

Average # FIB lookup per Interest 3.87 3.79 3.18 3.08 3.18 3.36 3.56
FIB lookup saving 1.99% 17.64% 20.21% 17.78% 12.98% 7.94%

FIB size (# entries) 990031 990031 1053043 1053843 1034548 1018426 990031
FIB expansion 0.00% 6.36% 6.45% 4.50% 2.87% 0.00%

Performance improvement 0.00% 3.99% 7.34% 8.69% 8.33% 6.82% 4.85%

FIB component distribution 28.5% 36.9% 19.1% 6.9% 3.3% 3.4%
FIB component cumulative 30.3% 67.2% 86.4% 93.3% 96.6% 100%

the compact array only includes 31% of entries. It means that most
HT chain walks involve multiple D$ cache misses when the LF is
8 or larger. Since the memory size required for the compact array
is inversely proportional to the load factor given a target FIB size,
the LF of 4 is the sweet spot for our HT data structure in terms of
space-time trade-off. The LF of 4 is therefore the best design target
size of the hash table; however, our implementation performs quite
well even if the initial design was short by 100% (i.e. LF=8).

With the same load factor of 4, the lookup performance is neg-
atively affected by increasing the FIB sizes. This is because the
working set size increases with a larger HT while the D$ size is
fixed. Assuming that a random bucket is selected from HTsize
buckets, the probability that the bucket used for a subsequent lookup
exists in the D$ (i.e. D$ hit) linearly decreases as increasing HTsize
– approximately (D$size/64)/HTsize. However, the impact of
D$ misses will become smaller as increasing HTsize because this
probability converges to 0. As shown in Figure 9, the average per-
formance degradation by quadrupling the FIB sizes between 1M,
4M, 16M and 64M is 4.22% while it shows 7.78% degradation
from 256K to 1M.

Table 4 shows the FIB HT memory consumption for different
target FIB sizes. In our implementation, every piece of memory
used dynamically is preallocated and then assigned as needed in
a cache line unit of 64 bytes. Total memory consumption (Total
consumed) includes the total cache lines used for buckets, entries
and names in MBytes. If we only count the space purely used for
lookup (Total for lookup) except names and unused fields in a FIB
entries (only 17 bytes are used for lookup including 64-bit hash and
etc.), the HT only constitutes about 25% of the total consumption.
Compared with a Trie-based approach used in Name Component
Encoding (NCE) [24], the memory consumption of our HT data
structure is competitive; NCE’s lookup data structure (ENPT-STA)
consumes 55.30 MBytes for about 2 million FIB entries while ours
needs 35.82 for 1M entries. (Note that this is not an exact apples-
to-apples comparison because of differences in input name sets.)

4.3 Impact of FIB lookup algorithm
To examine effectiveness of our 2-stage FIB lookup algorithm,

we have run the forwarding code on the ISM with about 7 million
Interest packets generated from all 16 unique-name traces and the
same synthetic FIB based on URLBlacklist. Table 5 summarizes
the results; the first 2 rows present FIB lookup count savings and
the next 2 rows show FIB expansion with different M configura-
tions. At M=5, it achieves the best lookup count saving of 20.21%
at the penalty of the largest FIB expansion of 6.45%. However,
both M=4 and M=6 show quite similar lookup savings and FIB
expansions as M=5. The best performance improvement of 8.69%
is at M=5, but M=4 and M=6 also perform quite well; only 1.35%
and 0.36% lower than the best.

The last 2 rows show the name component distribution and its
cumulative distribution, which can be used for the M -selection
heuristics suggested in Section 2.3. The most-likely method chooses
M=4 while the cumulative-threshold method chooses 4, 5 or 6 re-
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Figure 10: CPU cycles for NDN forwarding.

spectively for thresholds of 50%, 75% and 90%. Since the cumulative-
threshold method presents difficulties with choosing a threshold,
we instead use the most-likely heuristic for the following perfor-
mance evaluation (i.e. M=4 with the third best performance). Though
details are not shown here, we also have evaluated our algorithm
with another synthetic FIB generated from domain names, which
have a more skewed name component distribution in Figure 8. With
this FIB, M=3 chosen by the most-likely heuristic shows the best
FIB lookup saving of 68.29% (28.59% speedup) with a 10.11%
FIB expansion.

4.4 Single-core performance
We directly measured the performance of our NDN forwarding

engine on the target platform, ISM with NDN forwarding simula-
tor. This runs the identical forwarding code but reads packets from
files instead of NICs. Figure 10 shows the per-packet CPU cycles
for Interest, Data packet forwarding and the average by single-core
simulation. In order to measure Interest and Data forwarding per-
formance separately, every trace with unique names is generated
into a series of Interest and Data packets that are sequentially fed
into the simulator. Therefore, the workload for Interest forward-
ing includes a CS/PIT miss, PIT insertion and the average 3.73
FIB lookups while Data forwarding involves a CS miss, a PIT hit
& deletion, and CS replacement. It shows that how much perfor-
mance gain (i.e. cycle count reduction) is achieved as we incremen-
tally apply our proposed design techniques; Precomputed hash –
the full-name hash (Hn) is pre-computed by a Dispatcher process,
FIB algorithm – 2-stage FIB lookup algorithm, and Prefetch – soft-
ware prefetching. Note that right one includes techniques shown on
the left; Prefetch bars show the cycles when all techniques are com-
bined. The target FIB and PIT sizes are set to 16M and 1M entries
respectively with the same HT load factor of 4, and M=4 based on
most-likely heuristic when 2-stage FIB algorithm is used.

The precomputed hash gives 1.76% gain for Interest while it
gives 40.76% gain for Data. The reason is that Interest and Data
forwarding use different types of the hash function; the Interest
forwarding code uses our own implementation of SipHash that de-
codes name components and simultaneously computes all prefix
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Figure 11: Multi-core forwarding performance.

hashes incrementally while the Data forwarding uses the default
SipHash function to compute the full-name hash only. Therefore,
precomputed full-name hash dramatically reduces the Data forward-
ing cycles because it offloads the major workload while it reduces
a small portion of hash computation workload for Interest forward-
ing. However, combining all techniques for Interest forwarding
gives 37.87% speedup because our Interest forwarding code is op-
timized so that it performs name parsing, SipHash computation,
and the first stage of FIB lookup algorithm simultaneously via soft-
ware prefetching. Putting this all together, our forwarding engine
on a single core shows an average forwarding throughput of 1.90
MPPS; 1.32 MPPS Interest and 3.39 MPPS Data forwarding re-
spectively.

4.5 Multi-core and system performance
Figure 11 shows the performance with multi-core simulation vary-

ing FIB and PIT sizes from 1M to 64M entries. Note that we use
MPPS (Million Packets per Second) instead of CPU cycles, and
higher bars hence indicate better performance. The same workload
from 16 traces is used but we increase the number of parallel for-
warding threads from 1 to 2, 4, and 8 running on different CPU
cores. Since there are only 6 cores on a single Xeon processor, we
utilize 8 cores across 2 CPUs for 8-thread simulation so that 4 par-
allel threads run on one CPU and the rest on the other. It achieves
near-linear speedup as increasing the number of threads up to 4;
multi-core speedup is 3.47 for Interest, 3.76 for Data and 3.54 in
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Figure 12: Performance with real system configurations.

average. With 8 threads, it however shows only 4.86, 4.47 and
4.77 multi-core speedup. This is due to the effect of the NUMA
(Non-Uniform Memory Access) architecture. In 8-thread simu-
lation, the main thread for simulation starts on one CPU but for-
warding threads are invoked across 2 CPUs. In such case, thread
invocation, packet distribution, and FIB lookup that happen on 4
cores in the other CPU require remote memory accesses, which
take more time than local memory accesses that happens within the
same CPU.

The throughput is minimally affected by different sizes of FIB
and PIT; from the smallest to the biggest configuration for Interest
forwarding, it shows the maximum of 9.51% performance degra-
dation. By deploying 8 threads, our forwarding engine can process
NDN packets at 8.82 MPPS; 6.30 MPPS Interest and 14.67 MPPS
Data forwarding respectively.

For the actual forwarding system on the ISM, we use 4 Dis-
patcher processes designated for packet I/O with 4 10GE interfaces,
and 8 App processes that run the NDN forwarding code as shown
in Figure 7. In order to find the best mapping of threads to CPU
cores, we first have measured packet forwarding throughput of a
single Dispatcher; it shows 1.5 MPPS when Tx and Rx threads run
on 2 different CPU cores. By precomputing the full-name hashes at
the Dispatcher so that our CS/PIT partitioning scheme work, there
is a slight performance drop; a single Dispatcher shows 1.3 MPPS.

Since our Interest forwarding throughput on a single core is slightly
worse than this (1.22∼1.35 MPPS), it still makes sense to combine
1 Dispatcher with 2 App processes in order that the NDN forward-
ing task not be a bottleneck in the system. For this mapping, 2
App processes have to share a single core by using 2 hyper-threads
(HTh) because a Dispatcher preoccupies 2 cores.

In order to examine the impact of using hyper-threads, we have
performed the same set of simulations by applying the CPU map-
ping used by the Dispatcher and App processes in the system. Fig-
ure 12 shows the throughput with real system configurations: 1x -
2 HTh on 1 core, 2x - 4 HTh on 2 cores, 4x - 8 HTh on 4 cores
across 2 CPUs. It turns out that the use of hyper-threads does not
limit the performance; when using 8 hyper-threads in 4 cores (4x)
across 2 processors, it shows the almost identical throughput to the
case when using 8 full cores.

By fully utilizing 4 sets of (Dispatcher + 2 App), the system cur-
rently shows about 4.5 MPPS forwarding throughput. Assuming
the average NDN packet size is 550 bytes with small Interest but
large Data packets, the throughput of our NDN forwarding is above
4.39 MPPS required for 20Gbps NDN traffic. We believe that fur-
ther system-level optimization (e.g. improving the driver code for
faster packet delivery) may result in better utilization of resources
and we will leave it for future work.
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5. RELATED WORK
The NDN project proposal [18] contains a good overview of

various design issues with NDN including forwarding. Yuan et
al. [29] focused on NDN forwarding and identified 3 key issues:
exact string matching with fast updates, longest prefix matching for
variable-length unbounded names, and large-scale flow-maintenance
based on a detailed analysis on the CCNx forwarding software.

Early research on a content centric router focused on feasibility.
Perino et al. [19] evaluated the performance of CCN forwarding
components (CS, PIT and FIB) based on system modeling of the
hardware and the software technologies used in modern routers.
They concluded that a CCN router can be deployed in ISP scale
while it is not ready for Internet scale deployment. Arianfar et
al. [1] proposed a sample line-speed content centric router design
and estimated the amount of resources used by a router with regard
to the interaction with the pull-based protocols.

5.1 Trie-based name lookup
The Named Component Encoding (NCE) [24] was the first at-

tempt to address the variable-length tokenized name lookup prob-
lem with a Trie-based approach. With NCE, every name compo-
nent is encoded as a code (or symbol) and FIB lookup is performed
with a series of encoded symbols. The FIB is represented as an
Encoded Name Prefix Trie (ENPT) while the component symbols
are stored and looked up in a Component Character Trie (CCT).
Though the LPM lookup on an ENPT shows a reasonable perfor-
mance (1800∼3200 CPU cycles/packet), a bottleneck exists at the
encoding process (i.e. CCT lookup) as 3 parallel code lookup mod-
ules are used for 1 ENPT lookup module. The same ENPT was
applied to PIT lookup as well with an improved data structure (Sim-
plified STA) and a hash-based code allocation function [5]. For the
throughput requirement for PIT accesses, it requires 4 parallel en-
coding modules to keep a single lookup module busy.

In order to avoid the bottleneck in the encoding process, Wang
et al. [25] used a character Trie instead of ENPT. To store a sparse
tree in an effective manner, a special data structure, aligned transi-
tion array (ATA) or multi-stride ATA was used. A software lookup
engine was implemented on a PC with Intel CPUs and NVIDIA
GPU and it shows the great performance (63M searches per sec-
ond with 2×512 cores) that can be obtained by utilizing massive
parallel cores in the GPU.

We advocate an HT-based design for NDN name lookup because
we believe it is better matched the nature of the NDN lookup prob-
lem. When using a component prefix tree (Trie), it requires a spe-
cial encoding scheme, which introduces a serious amount of extra
workload and often may end up being a bottleneck of the whole
lookup process. In case of a character Trie, it does not have the
encoding issue, but the lookup efficiency may decrease linearly as
the length of an input name grows because the lookup is processed
in a byte unit. This makes it hard to design a lookup engine with
predictable performance. An HT-based engine shares the same con-
cern with regard to hash computation, but it affects the only small
portion of the whole lookup process; once hashes are generated,
lookup mostly uses hash values. Lastly, while simple Trie-based
data structures handle updates fairly well, most data structures used
to efficiently pack the Trie are not as update-friendly and therefore
they are not adequate for PIT and CS lookup.

5.2 Hash table-based name lookup
Caesar [22] is the first content centric router design with a hash

table based lookup engine. The FIB is distributed across the line
cards based on the first name component hashes (i.e. 3-stage for-
warding: ingress LC, FIB-storing LC, and egress LC). At each

LC, FIB is represented as 2 data structures: counting Bloom fil-
ters (BF) in on-chip SRAM and a hash table in off-chip DRAM (or
RLDRAM). It is based on the Bloom-filter accelerated longest pre-

fix match design [18], which is effective with appropriate hardware
support. Different from Caesar, our forwarding engine design is
targeted more to software forwarding as it requires no extra logic
or data structures other than HT. We pursue only algorithmic im-
provements and utilization of architectural features.

In order to address the prefix seeking issue without using Bloom
filters, Fukushima et al. [8] proposed a FIB lookup scheme similar
to our 2-stage FIB lookup algorithm. It suggests carrying a prefix
length field at every Interest packet so that the next hop router can
start seeking a prefix from the prefix where a previous hop router
has found the LPM. Though it uses a similar idea as ours, it is
different in 3 ways: (1) it requires protocol level support (while
ours does not), (2) it does not provide resilience to DoS attacks
against FIB processing, and (3) it may cause a significantly larger
FIB expansion because it requires to add all dummy intermediate
prefixes (while ours only requires intermediate virtual prefixes at a
specific prefix depth, M ). However, we consider that carrying such
information in a packet will be useful for further optimization and
hence these 2 schemes can be complementary in practice.

5.3 PIT design and NDN workload generation
In order to address the high scalability requirement for PIT, a few

different distributed PIT designs have been proposed. DiPIT [28]
represents PIT as multiple distributed Bloom filters associated with
each face. Despite good scalability, DiPIT has issues such as re-
quiring parallel lookups on all BFs for matching a Data packet, and
mis-delivery of a packet in case of a false-positive match.

Regarding how to distribute PIT across the line cards (LC), Dai
et al. [5] proposed an output LC placement along with Trie-based
PIT lookup. Varvello et al. [23] suggested a third-party LC place-
ment by applying the same approach used for the distributed FIB
design [22]. In our router, this choice is not available to us be-
cause forwarding is centralized on the ISM. We instead address
how to scale PIT inside a forwarding engine, and propose the par-
titioned CS/PIT across the packet processing elements (or threads)
to achieve better performance and scalability.

Besides the PIT placement, Dai et al. [5] proposed a basic method-
ology to generate NDN workloads with approximate and application-
driven translation of the current IP-generated traces. Though it is
more comprehensive than ours in terms of NDN workload gener-
ation, it does not include any method to generate an NDN routing
table (or FIB). In this paper, we have proposed a practical method
for building the FIB from the name trace. We hope that this can
advance efforts to generate realistic NDN workloads such as traffic
traces and routing tables for future NDN research.

6. CONCLUSION & FUTURE WORK
In this paper, we proposed a design of an NDN data plane based

on hash tables, which not only enables high-speed forwarding but
also provides DoS-resistance for an NDN router. Our design in-
cludes (1) name lookup via hash tables with fast collision-resistant
hash computation, (2) an efficient FIB lookup algorithm that pro-
vides good average and bounded worst-case FIB lookup time, (3)
PIT partitioning that enables linear multi-core speedup, and (4) an
optimized data structure and software prefetching to maximize data
cache utilization.

We implemented this NDN data plane with a software forward-
ing engine on an Intel Xeon-based line card in the Cisco ASR
9000 router. By simulation with names extracted from the IR-
Cache traces, we demonstrated that our forwarding engine achieves
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a promising performance of 8.8 MPPS and our NDN router can
forward the NDN traffic at 20Gbps or higher. Our future work
includes full implementation of our NDN router including a hierar-
chical Content Store, further system-level optimization to improve
the performance, and large-scale experimentation of forwarding
with our NDN routers.
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