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Abstract— Automatic estimation of 3D shape similarity from
video is a very important factor for human action analysis, but
also a challenging task due to variations in body topology and
the high dimensionality of the pose configuration space. We con-
sider the problem of 3D shape similarity in 3D video sequence
for different actors and motions. Most current approaches use
conventional global features as a shape descriptor and define
the shape similarity using L2 distance. However, such methods
are limited to coarse representation and do not sufficiently
reflect the pose similarity of human perception. In this paper,
we present a novel 3D human pose descriptor called Extremal
Human Curves (EHC), extracted from both the spatial and
the topological dimensions of body surface. To compare tow
shapes, we use an elastic metric in Shape Space between their
descriptors, based on static features, and then perform temporal
convolutions, thereby capturing the pose information encoded
in multiple adjacent frames.

We quantitatively analyze the effectiveness of our descriptors
for both 3D shape similarity in video and content-based pose
retrieval for static shape, and show that each one can contribute,
sometimes substantially, to more reliable human shape and
pose analysis. Experimental results are promising and show
the robustness and accuracy of the proposed approach by
comparing the recognition performance against several state-
of-the-art methods.

I. INTRODUCTION

While human analysis in 2D image and video has received
great interest during the last two decades, 3D human body
is still a little explored field. Relatively few authors have so
far reported work on 3D static analysis of 3D human body,
but still less on 3D human video analysis.

3D Human body shape similarity is itself an important
area, recently attracted much attention in the field of human-
computer interface (HCI) and computer graphics, with many
related research studies. Among these, researches started
with 3D features have been applied for body pose estimation
and 3D video analysis. More than that, 3D video sequences
of human motion is more and more available. In fact,
their acquisition with a multiple view reconstruction systems
or animation and synthesis approaches [1] [2] received a
considerable interest over the past decade following the
pioneering work of kanade [3].

Several potential applications arisen from this, such as
content based pose retrieval in a basis of human, applica-
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tions of motion transition decision and concatenating 3D
video sequences to produce a novel character animation, 3D
video summarization and compression and 3D mesh video
retrieval. These potential applications subsequently require
solving the problem of identifying frames with similar pose.

In this paper, we present a novel 3D human curve-
based shape descriptor called Extremal Human Curve (EHC)
descriptor, extracted from body surface; robust to topology
changes and invariant to rotation and scale. It is based on
extremal features and geodesics between each pair of them.
Every 3D frame will be represented by a collection of open
curves whose comparison will be performed in a Riemannien
Shape Space using an elastic metric. Our ultimate goal is
to be able to perform reliable reduced representation based-
geodesic curves for shape and pose similarity metric, which
can be employed in several potential applications like video
annotation and concatenation, activity analysis and behaviour
understanding.

Our method contributes to the challenges of designing
effective shape similarity tool in three ways. First, it uses an
efficient descriptor that can be applied to many existing 3D
shape retrieval tools. Second, the EHC provides a reduction
in the dimensionality of the shape representation, thereby
reducing both the space for storage and the time for com-
parison. Finally, the elastic metric applied in the Riemannien
Shape Space gives more efficient similarity distance than
those obtained by rotation invariant approaches, e.g. Shape
Histogram and Spherical Harmonic.

The rest of the paper is structured as follows. The next
section discusses previous works in the area of shape de-
scription, similarity metrics and properties. The extremal
curves extraction and curves collection on the human body
surface are presented in section III. In section IV, we
describe the mathematical properties of the elastic metric
in the Shape Space. In section V, we provide experimental
tests comparing 3D shape similarity metric results over
different databases with others approaches of the state-of-
the-art. Finally, we conclude in section VI by summarizing
our results and discussing issues for future work.

II. RELATED WORK

In this section, we review some methods of shape and
pose similarity, related to our approach, which only utilize
the full-reconstructed 3D data for feature extraction and
description. A number of researchers have been addressed
the problem of shape similarity for 3D video. Most of them
evaluate a similarity metric on spatial shape descriptors based
on surface or volume. Johnson and Hebert proposed the



spin image [4], encoding the density of mesh vertices into
2D histogram. Osada et al. use a Shape Distribution [5] to
measure geometric properties of a 3D model, by computing
the distance between random points on the surface, and
then construct its shape signature. Ankerst et al. introduced
the shape histogram [6], as a volume sampling spherical
histogram by partitioning the space containing an object into
disjoint cells corresponding to the bins of the histogram.
Kazhdan et al. applied spherical harmonics to describes
an object by a set of spherical basis functions [7]. These
approaches use global features to characterize the overall
shape and provide a coarse description, that is insufficient
to distinguish similarity in 3D video sequence for an object
having the same global properties in the time.

Some other works have trends to capture the evolvement
of shape and pose changes in the sequence and then to
add temporal information [8]. The temporal similarity in 3D
video has also been addressed in the case of skeletal motion
[9]. They demonstrate that skeleton-based Reeb-Graph have
excellent performance in the task of finding similar poses
of the same person in 3D video, and has recently presented
as a stable topology descriptor, preserving the geometrical
representation in presence of deformations [10].

Recently, Huang et al. [11] proposed 3D shape similarity
metrics for 3D video sequences of people, using time filtering
and shape flows obtained via invariant-rotation shape his-
togram. Their experiments conducted for 3D video sequence
from i3DPost database [12] showed that Shape Histogram
performs all other descriptors and gives the best recognition
performance for time-varying non-rigid shape retrieval. Such
approaches give a good shape descriptor but usually do not
capture any geometrical information about the 3D human
body pose and joint positions / orientations. This prevents its
use in certain applications that require accurate estimation of
the pose of the body parts. This approach will be discussed
in this paper by comparing their results to the ours, both
obtained over i3DPost database.

III. EXTREMAL CURVES

We aim to present a body shape as a skeleton based
shape representation. This skeleton will be extracted on the
surface of the mesh by connecting features located on the
extremities of the body. The main idea behind the use of
this representation is to analyze pose variation with elastic
deformation of the body, using representative curves on the
surface.

A. Feature point detection

Feature points refers to the points of a surface located at
the extremity of its prominent components. In our approach,
theses feature points are used to present a new pose de-
scriptor based on curves connecting each two extremities.
To extract the feature points, some works use Gaussian
curvature threshold [13] or multidimensional scaling [14]
and others, more robust, propose a cross-analysis using
geodesic based scalar functions defined over the surface [15].
Feature points in this later are points resulting from the

intersection of their two sets of local extrema. We chose
to detect the body extremities by this method since it is
based on geodesic distance evaluation, stable and invariant to
geometrical transformations and model pose. Fig. 1 (a) shows
the stability of the feature extraction for different persons
(shape) in different poses.

B. Body curves extraction
Let M be a body surface and E = {e1, e2, e3, e4, e5} a

set of feature points on the body representing the output of
feature point extraction. Let β denote the open curve on M
which joints two feature points of M {ei, ej}. To obtain β,
we seek for geodesic path Pij between ei and ej . We repeat
this step to extract extremal curves from the body surface
ten times so that we do all possible paths between elements
of E. As illustrated in Fig.1 (b) the body is represented using
these extremal curves M ∼

⋃
βij .

We have chosen to represent the body pose by a collection
of curves for two reasons. Firstly, these curves connect
limbs and give obviously a good representation of the body
shape and pose, using a reduced representation of the mesh
surface. Secondly, elastic analysis shapes of curves inside
Shape Space is more efficient [16]. However, to compare
correspondent extremal curves we need a distance to evaluate
how much the shape of the corresponding curves is similar.
The distance we are going to use is called an elastic metric.

IV. ELASTIC METRICS IN SHAPE SPACE

While human body is an elastic shape, its surface can
be simply affected by a stretch (raising hand) or a bind
(squatting). In order to analyze human curves independently
to this elasticity, we need an elastic metric within a Shape
Space framework [17].

A. Elastic distance
Let β : I → R3, for I = [0, 1], represents an extremal

curve obtained as described above. To analyze the shape of
β, we shall represent it mathematically using a square-root
velocity function (SRVF), denoted by q(t):

q(t)
.
=

β̇(t)√
‖β̇(t)‖

. (1)

Fig. 1: Body curves extraction: (a) feature points extracted
from human body surface, (b) human body represented as a
collection of extremal curves.



q(t) is a special function introduced by [16] that captures the
shape of β and is particularly convenient for shape analysis.
It has been shown in [16] that the classical elastic metric for
comparing shapes of curves becomes the L2-metric under
the SRVF representation. This point is very important as it
simplifies the calculus of elastic metric to the well-known
calculus of functional analysis under the L2-metric. We
define the set:

C = {q : I → R3|‖q‖ = 1} ⊂ L2(I,R3) . (2)

With the L2 metric on its tangent spaces, C becomes a
Riemannian manifold. In particular, since the elements of C
have a unit L2 norm, C is a hyper sphere in the Hilbert space
L2(I,R3). In order to compare the shapes of two extremal
curves, we can compute the distance between them in C
under the chosen metric. This distance is defined to be the
length of the shortest geodesic connecting the two points in
C. Since C is a sphere, the formulas for the geodesic and the
geodesic length are already well known. The geodesic length
between any two points q1, q2 ∈ C is given by:

dc(q1, q2) = cos−1(〈q1, q2〉) , (3)

and the geodesic path α : [0, 1]→ C, is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) ,

where θ = dc(q1, q2) is the inner product in the Hilbert space
L2.
It is easy to see that several elements of C can represent
curves with the same shape. For example, if we rotate a body
changing its direction in R3, and thus its extremal curves, we
get different SRVFs for the curves but their shapes remain
unchanged. Another similar situation arises when a curve is
re-parametrized; a re-parametrization changes the SRVF of
curve but not its shape. In order to handle this variability,
we define orbits of the rotation group SO(3) and the re-
parametrization group Γ as equivalence classes in C. Here,
Γ is the set of all orientation-preserving diffeomorphisms
of I to itself and the elements of Γ are viewed as re-
parametrization functions. For example, for a curve β :
I → R3 and a function γ ∈ Γ, the curve β ◦ γ is a
re-parametrization of β. The corresponding SRVF changes
according to q(t) 7→

√
γ̇(t)q(γ(t)). We define the equivalent

class containing q as:

[q] = {
√
γ̇(t)Oq(γ(t))|O ∈ SO(3), γ ∈ Γ} ,

The set of such equivalence class is called the shape space
S of elastic curves [16].

Let q∗2(t) =

√
˙γ∗(t)O∗q2(γ∗(t))) be the optimal element

of [q2], associated with the optimal rotation O∗ and re-
parametrization γ∗ of the second curve, then

ds([q1], [q2])
.
= dc(q1, q

∗
2) , (4)

In practice, SVD is used to compute optimal rotation and the
dynamic programming is performed for optimal parametriza-
tion.

The shortest geodesic between [q1] and [q2] in S is given by:

α(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q∗2) ,

where θ is now ds([q1], [q2]).

B. Static shape similarity

The elastic metric applied on extremal curve-based de-
scriptors can be used to define a similarity measure.
Given two 3D meshes x, y and their descriptors x′ =
{qx1 , qx2 , qx3 , ..., qxN} and y′ = {qy1 , q

y
2 , q

y
3 , ..., q

y
N}, the mesh-

to-mesh similarity can be represented by the curve pairwise
distances and can be defined as follows:

s(x, y) = d(x′, y′) , (5)

d(x′, y′) =

∑N
i=1 d(βx

i , β
y
i )

N
=

∑N
i=1 ds([q

x
i ], [qyi ])

N
. (6)

where N is the number of curves used to describe the
mesh. The mean of curve distances between two descriptors
captures the similarity between their mesh poses. In case
of change of shape in even one curve, the global distance
will be affected and increase indicating that the poses are
different.

In Fig.2, a geodesic path between each corresponding
two extremal curves, taken from two human bodies doing
different poses, is computed in Shape Space. For the left
model, the person’s arm is down and for the right model
it is raised. In the middle the geodesic path between each
two curves is shown in the shape space. This evolution
looks very natural under the elastic matching. Since we
have geodesic paths denoting optimal deformations between
individual curves, we can combine these deformations to
obtain full deformations between two poses. In order to have
a global distance, an arithmetic distance is computed. Thanks
to this global distance, we can compare human poses. For
small deformation, the distance will be small and it is going
to increase for models doing different poses.

V. EXPERIMENTAL RESULTS

To show the practical relevance of our method, we perform
an experimental evaluations on several databases, and com-
pare it, separately, to the most efficient descriptors of the
state-of-the-art methods. We firstly evaluate our descriptor
for content-based pose retrieval application over public static
shape database and evaluate the results against Spherical
Harmonic descriptor [7]. Secondly, we measure the efficacy
of our descriptor to capture the shape similarity in 3D video
sequences of different actors and actions from another public

Fig. 2: Geodesic path between three extremal human curves
of a neutral pose with raised hands.



database. We evaluate this later against Temporal Shape
Histogram [11], Multi-resolution Reeb-graph [9] and other
classic shape descriptors, using provided Ground Truth.

A. Content-based pose retrieval

The crucial point in all content-based retrieval systems
is the notion of ”similarity” employed to compare different
objects. In fact, thanks to the static shape similarity, we are
able to compare human poses using their extremal human
curve descriptors and decide if two poses are similar or not.
In this experiment, we advocate the usage of the EHC for
content-based pose retrieval, where a query consists of a
3D human shape model in a given pose. As in a classical
retrieval procedure, in response to a given 3D shape query,
our approach searches the benchmark database and returns an
ordered list of responses called the ranked list. The evaluation
of the algorithm is then transformed to the evaluation of the
quality of the ranked list.

The similarity metric represented by elastic measure val-
ues between each pair of models allows us to generate a
confusion matrix for all classes of pose, in order to evaluate
the recognition performance by computing statistic retrieval
measures thanks to the provided ground truth. Once extremal
curves are extracted from all models of the database and all
query-to-model distances for a given query are calculated,
we have to analyze the efficiency of distances based-curve.

1) Curve selection: From five feature endpoints, we have
extracted ten extremal curves representing the human body
shape model. According to the human poses, extremal curves
exhibit different performance and some curves are more
efficient to capture the shape similarity between two poses.
Our shape descriptor can be seen as a concatenation of ten
curve representations and the similarity between two shape
models doing two different poses, is represented by a vector
of ten elastic distance values. Before all tests, we analyze
the performance of all possible combinations of curves on
the shape similarity measurements. A Sequential Forward
Selection method, applied on elastic distance values and
coupled with First-tier criterion, has been used to select the
best combination of curves among all possible ones (1013
combinations).

This experiment has been evaluated on a set of shape
models of different persons from a statistical shape database
representing different poses with known ground truth [18].
Empirical tests show that best combination is obtained by the
five curves: right hand to right foot, left hand to left foot,
left hand to right hand, left foot to right foot, and head to
the right foot. The selected five curves seem to be the most
stable ones and are sufficient to represent at best the body
like a skeleton on the surface. Therefore, the elimination
of five curves allows to eliminate the ambiguity due to the
redundancy of some curves of the body parts.

2) Results from static shape data: To assess the perfor-
mance of the EHC for content-based pose retrieval, several
experiments were performed on a statistical shape database
[18]. This database is challenging for human body shapes
and pose retrieval as it is realistic shape database captured

with a 3D laser scanner, and interesting as it contains more
than hundred subjects doing more than thirty different poses.
We perform our descriptor on a subset of 338 shape models
obtained from different subjects with 18 consistent poses (p0,
p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p16,
p28, p29, p32) [18]. Each pose represents a class where at
least 4 different subjects do the same pose.

The self similarity matrix obtained from the mean elastic
distance of the five selected curves is shown in the Fig.3.
Main observation made from this matrix is that similar poses
have a small distance which increases with the degree of
the change between poses. This allows pose classification
or pose retrieval by comparing models using their extremal
curve representation and the elastic metric for measuring the
distance.

We compare our descriptor to the popular Spherical Har-
monic descriptors [7], applied with 32 shells, 16 descriptors
for each shell and Euclidean distance as similarity mea-
surement. In Fig.4 Recall/Precession curves show very good
results due to the efficient of extremal curves to detect the
information of the pose. Our EHC, using the five selected
curves, outperforms SH descriptor to retrieve models with the
same pose. Notice that the accuracies for very little number
of poses are relatively low. This is probably due to the
significant variations of the same pose performed by different
subjects. For example, some ambiguities can be noticed in
the case of a pose where the body just twist the torso due to
the confusion with a neutral pose. Heavy move of legs can
also be not detected and confused with the neutral pose.

B. Shape Similarity for 3D Video Sequences

Identifying frames with similar shape and pose can be used
potentially for concatenative human motion synthesis. Con-
catenate existing 3D video sequences allows the construction
of a novel character animation. It can also be used for the
extraction of key-frames for video summarization, by ana-
lyzing self-similarity matrix. Similar frames will be grouped

Fig. 3: Confusion similarity matrix. The matrix contains
pose similarity computation between models of a 3D humans
in different poses. The blocks with coldest color allow to
identify models having similar poses.



Fig. 4: Precision/Recall curves for EHC and SH.

and representative ones will be selected to summarize the
video. A good descriptor that matches correctly correspon-
dent frames allows the synthesis of videos with smooth
transitions and finding best frames to summarize the video.
To evaluate the effectiveness of our descriptor to correctly
identify similar frames, we perform an experiment using a
ground-truth database from synthetic 3D video sequences of
people, and compare the recognition performance against
several state-of-the-art descriptors. To compute similarity
measure with consideration of multiple adjacent frames, we
extend the static shape similarity (EHC) to a temporal one
(TEHC) using a simple time filtering convolution.

1) Similarity metric and evaluation criterion: Given two
3D video sequences P = {pi} and Q = {qj}, we firstly rep-
resent each pose frame by an EHC and compute the frame-to-
frame similarity between pi and qj as sij = s(pi, qj). Then,
in order to evaluate temporal similarity according to [11], we
apply a simple time filter with a window size 2Nt + 1. This
time filter is a way of incorporating motion in the similarity
measure, and temporal similarity is computed as follow [11],

stij =
1

2Nt + 1

Nt∑
k=−Nt

s(i+ k, j + k) (7)

A quantitative evaluation have been conducted over a syn-
tectic database [12], created using 14 models, with different
body-shape and clothing, animated using 28 motion capture
sequences. Each sequence comprised 100 frames giving a
total of 39200 frames of synthetic 3D video with known
ground-truth correspondence. A Temporal ground truth sim-
ilarity between two frames is defined as a combination of
shape and velocity similarity as described in [11].

In order to identify frames as similar or dissimilar, a
threshold is set on temporal ground truth similarity matrix.
Recognition performance is evaluated using the Receiver-
Operator-Characteristic (ROC) curves, created by plotting the
fraction of true-positive rate (TPR) against the fraction of
false-positive rate (FPR), at various threshold settings. The
true and false dissimilarity compare the predicted similarity
between two frames, against the ground-truth. An example
of self-similarity matrix computed using ground-truth de-
scriptor, static and temporal descriptors is shown in Fig.5.
This figure illustrates also the effect of time filtering with
increasing temporal window size for EHC descriptors on a
periodic walking motion.

2) Comparison with state-of-the-art descriptors: A com-
parison is made between our TEHC (Temporal Extremal
Human Curve) and several descriptors from the state-of-
the-art: Shape Distribution (SD) [5], Spin Image (SI) [4],
Spherical Harmonics Representation (SHR) [7], two Shape-
flow descriptors, the global / local frame alignment Shape
Histograms (SHvrG / SHvrS) [11] and Reeb-Graph as skele-
ton based shape descriptors (aMRG) [19] [9]. Note that a
spectral representation was also evaluated in [9] which is
the Multi-Dimentional Scaling (MDS).

To measure the performance of the similarity metric
results, we plot the ROC curves obtained from our EHC
descriptor (see Fig.6 (a)). These results are compared with
ROC curves obtained by all state-of-the-art descriptors pre-
sented in figure 6 at [9] where our descriptor is among the
more three efficient descriptors.

We analyze these results from various points of view,
including the role of the time-filer, the relative performance
of the descriptors and the relative performance per action.

(1) We notice that recognition performance of EHC in-
creases with the increase of the window size of time-
filter like any other descriptor. In fact, time-filter reduces
the minima in the anti-diagonal direction, resulting from
motion in the static descriptor. (2) The MDS is insen-
sitive to mesh deformation which maintains the geodesic
distance and shows lower recognition performances. (3)
Our descriptor outperforms MDST and other classic shape
descriptors (SI, SHRT, SD) and shows competitive results
with (SHvrG/SHvrS) and aMRG. (4) Multiframe shape-flow
matching required in SHvrG allows the descriptor to be
more robust but the computational cost will increase by
the size of selected time window. (5) Our EHC descriptor,
by its simple representation, demonstrates a comparable
recognition performance to aMRG. It is efficient as the
curve extraction is instantaneous and robust as the curve
representation is invariant to elastic and geometric changes
thanks to the use of the elastic metric. (6) Finally, the result
analysis for each action shows that TEHC gives a smooth
rates that are stable and not affected by the complexity of
the motion. Such complex motions are rock and roll, vogue
dance, faint, shot arm as illustrated in Fig.6 (b). However,
this is not the case for SHvrS where performance recognition
falls suddenly with complex motions as presented in figure
18 at [11].
We apply the time filtering Extremal Human Curves descrip-
tor to real captured 3D video sequences of people. Inter-
person similarity across two people in a walking motion
with an example similarity curve are shown in Fig. 7.
Our temporal similarity measure identifies correctly similar
frames across different people. These similar frames are
located in the minima of the similarity curve.

VI. CONCLUSIONS

In this paper, a novel 3D shape descriptor for the purpose
of 3D human shape similarity has been proposed. Some
general rules for the extraction of extremal curves as geo-
metric invariant descriptors of body shape within Riemannian



Fig. 5: Similarity measure for ”Fast Walk” motion in a
straight line compared with itself. Coldest colors indicate
most similar frames. (a) Temporal Ground-Truth (TGT), (b-
d) Self-similarity matrix computed with TEHC with window
size 3, 5 and 7 respectively.

Fig. 6: ROC curves (a) for static (Nt = 0) and time-filtered
EHC decriptor (Nt = 1, Nt = 2) on self-similarity across
14 people doing 28 motions, (b) ROC performance for 4
complex motions obtained by EHC, for fixed window size 5
(Nt = 2) against Temporal Ground Truth.

Shape Space framework have been discussed. Body shape in
a given pose is firstly represented as a set of geodesic curves
extracted from shape surface using extremal feature points.
Then, an elastic metric is calculated as a pairwise descriptor
distance in the Shape Space, allowing the comparison be-
tween two shape models in order to estimate their similarity.
The quality of our descriptor regarding the recognition
performance of pose retrieval and shape similarity in 3D
video was analyzed and verified also with respect to another
related recent techniques. Results obtained from extensive
experiments have clearly shown the promising performance
of the proposed descriptor and also the advantages of using
such reduced representation of the shape model.

As for short term future work, we plan to investigate the
usage of our descriptor for further related applications like
3D human action and gesture recognition.
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