
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 10, NO. 4, APRIL 2011 1199
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Abstract—This paper focuses on the average bit error rate
(BER) and diversity order analysis of the distributed Alamouti’s
code in dissimilar cooperative networks with channel state
information (CSI)-assisted relays. We first assume that the relays
adopt the amplifying coefficient proposed in [1]. Lower and upper
bounds of the average BER of the distributed Alamouti’s code
are derived. Those two bounds tightly bound the exact average
BER. Then we show that, surprisingly, the distributed Alamouti’s
code achieves only diversity order one when the relays use the
amplifying coefficient proposed in [1]. To resolve this problem,
we propose a new threshold-based amplifying coefficient for the
distributed Alamouti’s code based on the work in [3]. This
new amplifying coefficient makes the distributed Alamouti’s
code achieve the full diversity order two. Moreover, based on
three different CSI assumptions, four amplifying schemes are
developed in order to determine the value of the threshold used
in the new amplifying coefficient.

Index Terms—Bit error rate (BER), channel state information
(CSI)-assisted relay, distributed Alamouti’s code, diversity order.

I. INTRODUCTION

IN a cooperative network, several single-antenna relay ter-
minals help the source transmit signals to the destination

by virtually forming a distributed multiple-antenna system [1]–
[5]. Specifically, in an amplify-and-forward (AF) cooperative
network, each relay multiplies the received signal with an
amplifying coefficient and then forwards it to the destination.
In order to coordinate the transmissions from the relays,
distributed space-time block codes (DSTBCs) have been pro-
posed and extensively studied [2], [6] and [7]. Many works
have analyzed the error performance and diversity order of the
DSTBCs in AF cooperative networks. For example, Jing et al.
showed that the DSTBCs could achieve the full diversity order
in the number of relays [2]. In [8], Ju et al. found the exact
average BER expression of the distributed Alamouti’s code;
but the expression was not given in closed-form. Very recently,
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two closed-form approximate average BER expressions were
derived for the distributed Alamouti’s code [9].

However, the authors of [2], [8], and [9] all assumed
that the relays in the cooperative network did not have any
channel side information (CSI) of the first-hop channels, i.e.
the channels from the source to the relays. Those relays
were called the blind relays in the literature. As a result,
the amplifying coefficients at the relays were fixed constants,
and the power efficiency significantly deteriorated because
the power amplifier at each relay might operate in the non-
linear region when the instantaneous gains of the first-hop
channels were large [10]. In practical systems, it is more
preferable to implement the CSI-assisted relays which know
the instantaneous channel gains of the first-hop channels. In
fact, this CSI can be easily obtained at the relays without
any feedback overhead. Laneman et al. have proposed an
amplifying coefficient for the CSI-assisted relays [1] and it
can successfully enhance the power efficiency at the relays
[10]. Due to this reason, this amplifying coefficient has been
used in numerous previous publications [11]–[13]. Therfore,
it is practically very important to analyze the distributed
Alamouti’s code in cooperative networks with CSI-assisted
relays. Because it is very hard to directly extend the results
in [2], [8], and [9] to such networks, a new approach must be
taken.

In this paper, we analyze the error performance and di-
versity order of the distributed Alamouti’s code with CSI-
assisted relays. Specifically, we first consider a dissimilar
cooperative network, where all the channels possibly have
different variances, and we assume that the CSI-assisted relays
in the network adopt the amplifying coefficient proposed in
[1]. We derive lower and upper bounds of the average BER
of the distributed Alamouti’s code. Irrespective of the values
of the channel variances, the proposed bounds tightly bound
the average BER. Very surprisingly, we find that, when the
relays use the amplifying coefficient proposed in [1], the
distributed Alamouti’s code achieves only diversity order one.
To address this problem, we then propose a new threshold-
based amplifying coefficient for the distributed Alamouti’s
code based on the work in [3]. This new amplifying coefficient
makes the code achieve the full diversity order two. Moreover,
it also enhances the power efficiency at the relays. Based on
three different CSI assumptions, we develop four amplifying
schemes in order to determine the value of the threshold used
in the new amplifying coefficient.

The rest of this paper is organized as follows. Section II
describes the cooperative network studied in this paper. In
Section III, assuming that the relays adopt the amplifying
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coefficient proposed in [1], we derive lower and upper bounds
of the average BER of the distributed Alamouti’s code in a
dissimilar cooperative network. Furthermore, we show that
the diversity order of the distributed Alamouti’s code is just
one when the relays use the amplifying coefficient proposed
in [1]. In Section IV, a new threshold-based amplifying
coefficient is proposed. This new amplifying coefficient makes
the distributed Alamouti’s code achieve the full diversity order
two. Moreover, we develop four amplifying schemes in order
to determine the value of the threshold used by the new
amplifying coefficient. Section V presents some numerical
results and Section VI concludes this paper.

Notation: We use 𝐴 := 𝐵 to denote 𝐴, by definition,
equals 𝐵 and use 𝐴 =: 𝐵 to denote 𝐵, by definition, equals
𝐴. For a random variable 𝑋 , E[𝑋 ] denotes its expectation.
𝑋 ∼ 𝒞𝒩 (0,Ω𝑋) means 𝑋 is a circularly symmetric complex
Gaussian random variable with zero mean and variance Ω𝑋 .
Let ⌊⋅⌋, 𝑄(⋅), 2𝐹1(1, 2; 3; ⋅), and Ei(⋅) denote the floor func-
tion, 𝑄-function, hypergeometric function, and exponential
integral function [15], respectively.

II. SYSTEM DESCRIPTION

In this section, we first describe the system model, and then
discuss two possible relaying coefficients: a blind relaying
coefficient and a CSI-assisted relaying coefficient.

A. System Model and Distributed Alamouti’s Code

We consider an AF cooperative network with one source,
two CSI-assisted relays, and one destination. Every terminal
has only one antenna and is half-duplex. We use S, D, and
R𝑘 to denote the source, the destination, and the 𝑘-th relay
for 𝑘 = 1, 2, respectively. Let ℎ𝑘 and 𝑓𝑘 denote the channel
from S to R𝑘 and the channel from R𝑘 to D, respectively. The

channel coefficient ℎ𝑘 is modeled as ℎ𝑘 = ℎ̄𝑘

√
𝑑
−𝛽𝑠,𝑘

𝑠,𝑘 , where
ℎ̄𝑘 ∼ 𝒞𝒩 (0, 1), 𝛽𝑠,𝑘 is the path loss exponent for this channel,
and 𝑑𝑠,𝑘 is the normalized distance between S and R𝑘. The
value of 𝑑𝑠,𝑘 is decided by 𝑑𝑠,𝑘 = 𝑑𝑠,𝑘/𝐷, where 𝑑𝑠,𝑘 is
the actual distance between S and R𝑘 and 𝐷 is the reference
distance determined from measurements [16]. Similarly, we

model the channel coefficient 𝑓𝑘 as 𝑓𝑘 = 𝑓𝑘

√
𝑑
−𝛽𝑘,𝑑

𝑘,𝑑 , where
𝑑𝑘,𝑑 is the normalized distance between R𝑘 and D, 𝛽𝑘,𝑑 is
the path loss exponent for this channel, and 𝑓𝑘 ∼ 𝒞𝒩 (0, 1).
The value of 𝑑𝑘,𝑑 is decided by 𝑑𝑘,𝑑 = 𝑑𝑘,𝑑/𝐷, where 𝑑𝑘,𝑑
is the actual distance between R𝑘 and D. Thus, the variances
Ωℎ𝑘

and Ω𝑓𝑘 of ℎ𝑘 and 𝑓𝑘 equal to Ωℎ𝑘
= 𝑑

−𝛽𝑠,𝑘

𝑠,𝑘 and Ω𝑓𝑘 =

𝑑
−𝛽𝑘,𝑑

𝑘,𝑑 , respectively.
The system model for the distributed Alamouti’s code is

depicted in Fig. 1. Specifically, at the first and second time
slots, S transmits two information-bearing symbols 𝑥1 and 𝑥2

to R1 and R2, respectively. The transmission power at S is 𝐸𝑠.
The received signal 𝑦𝑘,𝑡 of R𝑘 at the 𝑡-th time slot is given by
𝑦𝑘,𝑡 =

√
𝐸𝑠ℎ𝑘𝑥𝑡 + 𝑛𝑘,𝑡 for 𝑘 = 1, 2 and 𝑡 = 1, 2, where 𝑛𝑘,𝑡

is the additive white Gaussian noise and 𝑛𝑘,𝑡 ∼ 𝒞𝒩 (0, 𝜎2
𝑛).

At the third and fourth time slots, the two relays use the dis-
tributed Alamouti’s code to transmit signals to the destination
after multiplying the received signal 𝑦𝑘,𝑡 with an amplifying
coefficient 𝜌𝑘. The coefficient 𝜌𝑘 will be discussed in detail

1h

R

R1

DS

2
2h

1f

2f

Time slots 1 and 2

Time slots 3 and 4

Fig. 1. System model for the distributed Alamouti’s code.

later. Specifically, at the third time slot, R1 transmits 𝜌1𝑦1,1
and R2 transmits −𝜌2𝑦

∗
2,2. Thus, the received signal at D is

𝑦1 = 𝜌1𝑓1𝑦1,1−𝜌2𝑓2𝑦
∗
2,2+𝑛1, where 𝑛1 is the additive white

Gaussian noise and 𝑛1 ∼ 𝒞𝒩 (0, 𝜎2
𝑛). At the fourth time slot,

R1 transmits 𝜌1𝑦1,2 and R2 transmits 𝜌2𝑦
∗
2,1. Consequently,

the received signal at D is 𝑦2 = 𝜌1𝑓1𝑦1,2 + 𝜌2𝑓2𝑦
∗
2,1 + 𝑛2,

where 𝑛2 is the additive white Gaussian noise and 𝑛2 ∼
𝒞𝒩 (0, 𝜎2

𝑛). Due to the orthogonal structure of the distributed
Alamouti’s code, the maximum likelihood (ML) estimate 𝑥1

of 𝑥1 is given by �̂�1 = 𝜌1𝑓
∗
1ℎ

∗
1𝑦1 + 𝜌2𝑓2ℎ

∗
2𝑦

∗
2 [8]. Thus, the

instantaneous SNR 𝛾(𝜌1, 𝜌2) of �̂�1 is given by

𝛾(𝜌1, 𝜌2) =
𝐸𝑠(𝜌

2
1∣𝑓1ℎ1∣2 + 𝜌22∣𝑓2ℎ2∣2)

𝜎2
𝑛(𝜌

2
1∣𝑓1∣2 + 𝜌22∣𝑓2∣2 + 1)

. (1)

Similarly, the instantaneous SNR of the ML estimate �̂�2 of 𝑥2

is also given by 𝛾(𝜌1, 𝜌2).
If 𝑀 -quadrature amplitude modulation (QAM) is used

as the modulation scheme, the exact closed-form BER
𝑃𝑏(𝛾(𝜌1, 𝜌2)), conditioned on the instantaneous channel co-
efficients ℎ𝑘 and 𝑓𝑘, of �̂�1 or �̂�2 is given by [17]1

𝑃𝑏 (𝛾(𝜌1, 𝜌2)) =
2√

𝑀 log2 𝑀

log2

√
𝑀∑

𝑗=1

[ (1−2−𝑗)
√
𝑀−1∑

𝑖=0

𝐴𝑗,𝑖(𝑀)

×𝑄

(
(2𝑖+ 1)

√
3𝛾(𝜌1, 𝜌2)

𝑀 − 1

)]
, (2)

where the coefficient 𝐴𝑗,𝑖(𝑀) is given by

𝐴𝑗,𝑖(𝑀) = (−1)⌊2𝑗−1𝑖/𝑀⌋
(
2𝑗−1 −

⌊
2𝑗−1𝑖√

𝑀
+

1

2

⌋)
. (3)

The average BER 𝑃𝑏 can be obtained by 𝑃𝑏 =
E [𝑃𝑏(𝛾(𝜌1, 𝜌2))], i.e.

𝑃𝑏 =
2√

𝑀 log2 𝑀

log2
√
𝑀∑

𝑗=1

{ (1−2−𝑗)
√
𝑀−1∑

𝑖=0

𝐴𝑗,𝑖(𝑀)

× E

[
𝑄

(
(2𝑖+ 1)

√
3𝛾(𝜌1, 𝜌2)

𝑀 − 1

)]}
. (4)

1If other modulation schemes are used, the conditional BER can be obtained
by using [17] as well.
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B. Blind Relaying and CSI-Assisted Relaying Coefficients

In this subsection, we discuss two widely-adopted relaying
coefficients: a blind relaying coefficient and a CSI-assisted
relaying coefficient. We first consider the blind relaying co-
efficient. In the blind relaying, a fixed amplifying coefficient
𝜌𝑘 =

√
𝑐𝑘 is used, where 𝑐𝑘 is a positive constant [2], [8], and

[9]. When this 𝜌𝑘 is used, the performance of the distributed
Alamouti’s code has been extensively studied in the literature
[8], [9]. In particular, it has been shown that the distributed
Alamouti’s code achieved the full diversity order two. This
blind relaying coefficient, however, raises a problem that the
output power at the relay is given by 𝑐𝑘(𝐸𝑠∣ℎ𝑘∣2+𝜎2

𝑛), which
varies substantially with time due to ∣ℎ𝑘∣2. Particularly, the
peak-to-average power ratio (PAPR) can be practically very
large or it can be theoretically even infinity2 depending on the
distribution of ∣ℎ𝑘∣2. Thus, the power efficiency significantly
deteriorates, because the power amplifier at each relay operates
in the non-linear region when ∣ℎ𝑘∣2 is large. It is well-known
that the power efficiency deteriorates when the power amplifier
operates in the non-linear region [14].

Another well-known amplifying coefficient is the CSI-
assisted relaying coefficient. In the CSI-assisted relaying, the
amplifying coefficient 𝜌𝑘 is given by [1]

𝜌𝑘 =

√
𝐸𝑟𝑘

𝐸𝑠∣ℎ𝑘∣2 + 𝜎2
𝑛

. (5)

A benefit of this amplifying coefficient is that the output
power of the 𝑘-th relay is always maintained to be 𝐸𝑟𝑘, and
thus, the PAPR is 0 dB. Hence, this CSI-assisted relaying is
very practical, because the power amplifier at each relay will
never go into the non-linear region. Due to this reason, the
amplifying coefficient 𝜌𝑘 of (5) has been used in numerous
previous publications [11]–[13]. However, the performance of
the distributed Alamouti’s code with 𝜌𝑘 of (5) has not been
well-studied in the literature. In this paper, focusing on 𝜌𝑘
of (5), we will derive average BER of the distributed Alam-
outi’s code and show that, very surprisingly, the distributed
Alamouti’s code achieves only diversity order one.

III. BER AND DIVERSITY ORDER ANALYSIS OF THE

DISTRIBUTED ALAMOUTI’S CODE

In this section, adopting the CSI-assisted relaying coeffi-
cient 𝜌𝑘 in (5), we first derive lower and upper bounds of
the average BER of the distributed Alamouti’s code. Then we
show that, very surprisingly, the distributed Alamouti’s code
achieves only diversity order one.

In order to facilitate the analysis of the average BER 𝑃𝑏, we
approximate 𝜌𝑘 by 𝜌𝑘 ≈√𝐸𝑟𝑘/(𝐸𝑠∣ℎ𝑘∣2) as in [11] and [12].
Note that

√
𝐸𝑟𝑘/(𝐸𝑠∣ℎ𝑘∣2) is a very tight approximation of 𝜌𝑘

as shown in [11] and [12]. For example, in [11], it has been
demonstrated that the difference between the exact average
BER and the approximate average BER, which is based on
the approximation 𝜌𝑘 ≈√𝐸𝑟𝑘/(𝐸𝑠∣ℎ𝑘∣2), is less than 0.2 dB.

2The PAPR is defined as the ratio of the maximum transmission power
𝐸max to the average transmission power 𝐸avg , i.e. PAPR := 𝐸max/𝐸avg .
For the blind relaying, the PAPR at the 𝑘-th relay is given by PAPR =
𝐸max/𝐸avg = 𝑐𝑘(𝐸𝑠 max[∣ℎ𝑘∣2] + 𝜎2

𝑛)/(𝑐𝑘(𝐸𝑠E[∣ℎ𝑘∣2] + 𝜎2
𝑛)). In this

case, the PAPR can be infinity if max[∣ℎ𝑘∣2] is infinity.

Therefore, the instantaneous SNR 𝛾(𝜌1, 𝜌2) in (1) is tightly
approximated by

𝛾(𝜌1, 𝜌2) ≈ 1

𝜎2
𝑛

𝐸𝑟1∣𝑓1∣2 + 𝐸𝑟2∣𝑓2∣2
𝐸𝑟1∣𝑓1∣2
𝐸𝑠∣ℎ1∣2 + 𝐸𝑟2∣𝑓2∣2

𝐸𝑠∣ℎ2∣2 + 1
. (6)

Now we will analyze the average BER 𝑃𝑏 based on (6). It is
well-known that the moment generating function (MGF)-based
approach is very useful to derive 𝑃𝑏 for various constellations
[18]. In order to obtain the value of 𝑃𝑏, one needs the MGF
of 𝛾(𝜌1, 𝜌2), which is technically very hard. In the following,
we try to find lower and upper bounds of 𝑃𝑏 and show that
the bounds are very tight to 𝑃𝑏.

A. A lower bound of 𝑃𝑏

We upper-bound 𝛾(𝜌1, 𝜌2) in the following way

𝛾(𝜌1, 𝜌2) < 𝛾𝑈 =
1

𝜎2
𝑛

𝐸𝑟1∣𝑓1∣2 + 𝐸𝑟2∣𝑓2∣2
max

(
𝐸𝑟1∣𝑓1∣2
𝐸𝑠∣ℎ1∣2 , 𝐸𝑟2∣𝑓2∣2

𝐸𝑠∣ℎ2∣2
) . (7)

In order to find a lower bound of 𝑃𝑏, it is desirable to obtain
the MGF of 𝛾𝑈 . To this end, we prove the following lemma.

Lemma 1: Assume 𝑋1, 𝑋2, 𝑌1, and 𝑌2 are exponential
random variables with means 𝑎1, 𝑎2, 𝑏1, and 𝑏2, respec-
tively. The MGF ℳ1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) of the function (𝑌1 +
𝑌2)/max(𝑌1/𝑋1, 𝑌2/𝑋2) is given as follows:

ℳ1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) =
𝑏1𝑏2
𝑎1𝑎2

(
𝑎1 − 𝑎2
𝑏1 − 𝑏2

ℳ1
1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2)

+
𝑎2𝑏1 − 𝑎1𝑏2

𝑏1 − 𝑏2
ℳ2

1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2)

)
.

(8)

In this function, ℳ1
1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) and

ℳ2
1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) are given by

ℳ1
1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2)

=
𝑎1𝑎2

𝑎1𝑏2(1− 𝑎2𝑠)− 𝑎2𝑏1(1− 𝑎1𝑠)
ln

𝑎1𝑏2(1 − 𝑎2𝑠)

𝑎2𝑏1(1 − 𝑎1𝑠)
, (9)

ℳ2
1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2)

=
𝑎1

𝑏2(𝑏1 − 𝑏2)(1 − 𝑎1𝑠)
− 𝑎2

𝑏1(𝑏1 − 𝑏2)(1 − 𝑎2𝑠)

+
𝑎2(𝑎1 − 𝑎2)

2𝑎1(1 − 𝑎2𝑠)2(𝑏2 − 𝑏1)2
2𝐹1

(
1, 2; 3;

𝑎2𝑏1−𝑎1𝑏2
𝑎1(𝑏1−𝑏2) − 𝑎2𝑠

1− 𝑎2𝑠

)

+
𝑎1(𝑎2 − 𝑎1)

2𝑎2(1 − 𝑎1𝑠)2(𝑏1 − 𝑏2)2
2𝐹1

(
1, 2; 3;

𝑎2𝑏1−𝑎1𝑏2
𝑎2(𝑏1−𝑏2) − 𝑎1𝑠

1− 𝑎1𝑠

)
.

(10)

Proof: See Appendix A.
Using Lemma 1, the MGF ℳ𝑈 (𝑠) of 𝛾𝑈 can now be easily

derived, and it is given by

ℳ𝑈 (𝑠) = ℳ1

(
𝑠

𝜎2
𝑛

;𝐸𝑠Ωℎ1 , 𝐸𝑠Ωℎ2 , 𝐸𝑟1Ω𝑓1 , 𝐸𝑟2Ω𝑓2

)
.

(11)
Based on (11), we obtain a lower bound of 𝑃𝑏 in the following
theorem.
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Theorem 1: When 𝑀 -QAM is used as the modulation
scheme, the average BER 𝑃𝑏 can be lower-bounded by

𝑃𝑏 > 𝑃𝐿
𝑏

=
2

𝜋
√
𝑀 log2 𝑀

log2

√
𝑀∑

𝑗=1

{ (1−2−𝑗)
√
𝑀−1∑

𝑖=0

𝐴𝑗,𝑖(𝑀)

×
∫ 𝜋

2

𝜃=0

ℳ𝑈

(
− 3(2𝑖+ 1)2

2(𝑀 − 1) sin2 𝜃

)
𝑑𝜃

}
. (12)

Proof: Since 𝛾(𝜌1, 𝜌2) is upper-bounded by 𝛾𝑈 and the
MGF of 𝛾𝑈 is given by ℳ𝑈 (𝑠) in (11), it follows Craig’s
formula [18, eq. (4.2)] that

E

[
𝑄

(
(2𝑖+ 1)

√
3𝛾(𝜌1, 𝜌2)

𝑀 − 1

)]

>
1

𝜋

∫ 𝜋
2

𝜃=0

ℳ𝑈

(
− 3(2𝑖+ 1)2

2(𝑀 − 1) sin2 𝜃

)
𝑑𝜃. (13)

By substituting (13) into (4), we obtain the lower bound 𝑃𝐿
𝑏 .

Although the lower bound 𝑃𝐿
𝑏 contains an integration, this

integration is over a finite range, and hence, it is not hard
to compute. In fact, it is well-known that 𝑄-function can
be approximated by 1

12𝑒
−𝑥2/2 + 1

4𝑒
−2𝑥2/3 [19]. By using

this approximation, we can obtain approximate 𝑃𝐿
𝑏 in closed-

form, which can further reduce the computational complexity.
Numerical results will demonstrate that 𝑃𝐿

𝑏 is a very tight
lower bound of 𝑃𝑏 except when Ωℎ𝑘

is much larger than
Ω𝑓𝑘 . For this special case, the ratio 𝐸𝑟𝑘∣𝑓𝑘∣2/(𝐸𝑠∣ℎ𝑘∣2) in
the denominator of (6) is much smaller than one with a very
high probability. Therefore, 𝑃𝐿

𝑏 loses its tightness because we
neglect the constant one in the denominator of 𝛾(𝜌1, 𝜌2) as
shown in (7) when we derive 𝑃𝐿

𝑏 . This particular case will
be addressed by deriving an upper bound of 𝑃𝑏 in the next
subsection.

B. An upper bound of 𝑃𝑏

In order to find a tight bound for 𝑃𝑏 when Ωℎ𝑘
is much

larger than Ω𝑓𝑘 , we develop an upper bound of 𝑃𝑏 in the
following. We keep the constant one in the denominator of
𝛾(𝜌1, 𝜌2); but replace ∣ℎ1∣2 and ∣ℎ2∣2 by min(∣ℎ1∣2, ∣ℎ2∣2).
This gives us a lower bound 𝛾𝐿 of 𝛾(𝜌1, 𝜌2)

𝛾(𝜌1, 𝜌2) ≥ 𝛾𝐿 =
1

𝜎2
𝑛

𝐸𝑟1∣𝑓1∣2 + 𝐸𝑟2∣𝑓2∣2
𝐸𝑟1∣𝑓1∣2+𝐸𝑟2∣𝑓2∣2
𝐸𝑠 min(∣ℎ1∣2,∣ℎ2∣2) + 1

. (14)

In order to find an upper bound of 𝑃𝑏, it is desirable to obtain
the MGF of 𝛾𝐿. Thus, we show the following lemma.

Lemma 2: Assume 𝑋1, 𝑋2, 𝑌1, and 𝑌2 are exponential ran-
dom variables with means 𝑎1, 𝑎2, 𝑏1, and 𝑏2, respectively. The
MGF ℳ2(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) of the function (𝑌1 + 𝑌2)/((𝑌1 +
𝑌2)/min(𝑋1, 𝑋2) + 1) is given as follows:

ℳ2(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) =
𝑏1

𝑏1 − 𝑏2
𝑊

(
𝑠,

𝑎1𝑎2
𝑎1 + 𝑎2

, 𝑏1

)

− 𝑏2
𝑏1 − 𝑏2

𝑊

(
𝑠,

𝑎1𝑎2
𝑎1 + 𝑎2

, 𝑏2

)
, (15)

where the function 𝑊 (𝑥, 𝑦, 𝑧) is given by

𝑊 (𝑥, 𝑦, 𝑧) =
1

(𝑦 + 𝑧 − 𝑥𝑦𝑧)2 − 4𝑦𝑧

[
(𝑦 + 𝑧)(𝑦 + 𝑧 − 𝑥𝑦𝑧)

− 4𝑦𝑧 +
4𝑦𝑧(−𝑥𝑦𝑧)

√
(𝑦 + 𝑧 − 𝑥𝑦𝑧)2

(𝑦 + 𝑧 − 𝑥𝑦𝑧)
√

4𝑦𝑧 − (𝑦 + 𝑧 − 𝑥𝑦𝑧)2

× arccos

(
𝑦 + 𝑧 − 𝑥𝑦𝑧

2
√
𝑦𝑧

)]
. (16)

Proof: Let 𝑇 = 𝑌1 + 𝑌2 and 𝑍 = min(𝑋1, 𝑋2). Thus,
the function (𝑌1+𝑌2)/((𝑌1+𝑌2)/min(𝑋1, 𝑋2)+1) becomes
𝑇/((𝑇/𝑍)+1) = 𝑇𝑍/(𝑇+𝑍) which is actually the harmonic
mean of 𝑇 and 𝑍 . Moreover, it is not hard to find the PDFs
𝑓𝑇 (𝑡) of 𝑇 and 𝑓𝑍(𝑧) of 𝑍

𝑓𝑇 (𝑡) =
𝑒
− 𝑡

𝑏1 − 𝑒
− 𝑡

𝑏2

𝑏1 − 𝑏2
, 𝑓𝑍(𝑧) =

(
1

𝑎1
+

1

𝑎2

)
𝑒
−
(

1
𝑎1

+ 1
𝑎2

)
𝑧
.

(17)
By using the results in [11], it is not hard to find
ℳ2(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) in (15).

Based on Lemma 2, one can easily find the MGF ℳ𝐿(𝑠)
of 𝛾𝐿 and it is given by

ℳ𝐿(𝑠) = ℳ2

(
𝑠

𝜎2
𝑛

;𝐸𝑠Ωℎ1 , 𝐸𝑠Ωℎ2 , 𝐸𝑟1Ω𝑓1 , 𝐸𝑟2Ω𝑓2

)
.

(18)
The MGF ℳ𝐿(𝑠) enables us to find an upper bound of 𝑃𝑏 as
in the following theorem.

Theorem 2: When 𝑀 -QAM is used as the modulation
scheme, the average BER 𝑃𝑏 can be upper-bounded by

𝑃𝑏 ≤ 𝑃𝑈
𝑏

=
2

𝜋
√
𝑀 log2 𝑀

log2

√
𝑀∑

𝑗=1

{ (1−2−𝑗)
√
𝑀−1∑

𝑖=0

𝐴𝑗,𝑖(𝑀)

×
∫ 𝜋

2

𝜃=0

ℳ𝐿

(
− 3(2𝑖+ 1)2

2(𝑀 − 1) sin2 𝜃

)
𝑑𝜃

}
. (19)

Proof: The proof is the same as that of Theorem 1, except
ℳ𝐿(𝑠) is used in order to obtain an upper bound.

The upper bound 𝑃𝑈
𝑏 also just contains a finite integration,

and hence, it is not hard to compute. Moreover, as we
expected, 𝑃𝑈

𝑏 is a very tight bound of the average BER
𝑃𝑏 when Ωℎ𝑘

is much larger than Ω𝑓𝑘 . This is because the
denominator of (6) is dominantly decided by the constant one
for this special case. As a result, replacing ∣ℎ1∣2 and ∣ℎ2∣2
by min(∣ℎ1∣2, ∣ℎ2∣2) in (14) only slightly reduces the value
of 𝛾(𝜌1, 𝜌2), and hence, 𝑃𝑈

𝑏 is very tight to 𝑃𝑏. Recall that
the lower bound 𝑃𝐿

𝑏 is very tight to 𝑃𝑏 except when Ωℎ𝑘
is

much larger than Ω𝑓𝑘 . Therefore, depending on the values of
Ωℎ𝑘

and Ω𝑓𝑘 , one can always use either 𝑃𝐿
𝑏 or 𝑃𝑈

𝑏 in order to
tightly bound the average BER 𝑃𝑏 for every possible scenario.

C. Diversity order of the distributed Alamouti’s code when
the CSI-assisted relays use 𝜌𝑘

In the following theorem, we show that the distributed
Alamouti’s code achieves diversity order one when the relays
use 𝜌𝑘 of (5).
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Theorem 3: In a cooperative network with two CSI-assisted
relays, the distributed Alamouti’s code achieves diversity order
one when the relays use 𝜌𝑘 of (5) as the amplifying coefficient.

Proof: See Appendix B.
Note that, in the proof of Theorem 3, we use the exact

SNR of (1), not the approximate SNR of (6). Therefore, the
result of Theorem 3 is exact. Actually, the diversity order
of the distributed Alamouti’s code can intuitively be inferred
from its approximate SNR 𝛾(𝜌1, 𝜌2) in (6). When the channel
from S to R1 is in deep fading, i.e. when ∣ℎ1∣2 is very
small, the denominator of (6) may go to infinity, and hence,
𝛾(𝜌1, 𝜌2) may be very small. Similarly, when ∣ℎ2∣2 is very
small, 𝛾(𝜌1, 𝜌2) may go to zero as well. That is, the failure
of either ℎ1 or ℎ2 will make the approximate SNR at the
destination very small, which implies the diversity order is
just one.

Furthermore, in a general cooperative network with more
than two relays, we conjecture that the DSTBCs proposed
in [2] achieve only diversity order one as well when the
amplifying coefficient proposed in [1] is used at the relays.3

Although the analytical proof is very difficult, the simulated
BER results in Section V will suggest that the diversity order
is one. However, the simulation results should be interpreted
cautiously, because the asymptotic slope of the BER may not
appear at typical BER values.

IV. A NEW THRESHOLD-BASED AMPLIFYING

COEFFICIENT FOR THE DISTRIBUTED ALAMOUTI’S CODE

WITH CSI-ASSISTED RELAYS

In Section III, we showed that the distributed Alamouti’s
code achieved only diversity order one when the relays
adopted the amplifying coefficient 𝜌𝑘 of (5). In order to
solve this problem, one may use the blind relaying coefficient;
however, this raises another problem, a very large (possibly
infinite in theory) PAPR. In this section, to address those
problems, we propose a new amplifying coefficient 𝜌𝑘 as
follows:

𝜌𝑘 =

√
𝐸𝑟𝑘

𝐸𝑠max(∣ℎ𝑘∣2, 𝛼𝑘) + 𝜎2
𝑛

=

√
𝐸𝑟𝑘

max(𝐸𝑠∣ℎ𝑘∣2 + 𝜎2
𝑛, 𝐸𝑠𝛼𝑘 + 𝜎2

𝑛)
, (20)

where 𝛼𝑘 > 0 can be seen as a threshold for ∣ℎ𝑘∣2
and the choice of 𝛼𝑘 will be discussed in detail later. If
the received symbol power is greater than a threshold, i.e.
𝐸𝑠∣ℎ𝑘∣2 + 𝜎2

𝑛 > 𝐸𝑠𝛼𝑘 + 𝜎2
𝑛, then 𝜌𝑘 becomes the same as

the CSI-assisted relaying coefficient 𝜌𝑘 of (5); if the received
symbol power is smaller than or equal to a threshold, i.e.
𝐸𝑠∣ℎ𝑘∣2 + 𝜎2

𝑛 ≤ 𝐸𝑠𝛼𝑘 + 𝜎2
𝑛, then 𝜌𝑘 becomes the same

as the blind relaying coefficient [2], [8], and [9]. This new
amplifying coefficient enjoys two benefits: 1) it enhances the
power efficiency by guaranteeing the PAPR at each relay to
stay within a certain range; 2) it also makes the distributed
Alamouti’s code achieve the full diversity order two. Firstly,

3Note that the DSTBCs proposed in [2] represent a large collection of
distributed space-time codes and they have been used in many previous
publications including [20]–[22].

it is easy to check that the transmission power at the 𝑘-
th relay is always less than or equal to 𝐸𝑟𝑘 when 𝜌𝑘 is
used. That is, 𝐸max = 𝐸𝑟𝑘; also, 𝐸avg is given by 𝐸avg =
E
[
𝐸𝑟𝑘(𝐸𝑠∣ℎ𝑘∣2 + 𝜎2

𝑛)/(𝐸𝑠max[∣ℎ𝑘∣2, 𝛼𝑘] + 𝜎2
𝑛)
] ≈ 𝐸𝑟𝑘.

Thus, the PAPR remains within a certain (controllable small)
value. Consequently, the new amplifying coefficient 𝜌𝑘 en-
hances the power efficiency at each relay. Furthermore, we will
show that the use of 𝜌𝑘 also makes the distributed Alamouti’s
code achieve the full diversity order. This is the topic of the
next subsection.

A. Diversity order of the distributed Alamouti’s code when the
CSI-assisted relays use 𝜌𝑘

In this subsection, we show that the distributed Alamouti’s
code can achieve the full diversity order when the relays use
𝜌𝑘. In this circumstance, the instantaneous SNR 𝛾(𝛼1, 𝛼2) of
𝑥1 or 𝑥2 is given by

𝛾(𝛼1, 𝛼2)

= 𝛾(𝜌1, 𝜌2)

=
𝐸𝑠

(
𝐸𝑟1∣𝑓1ℎ1∣2

𝐸𝑠 max(∣ℎ1∣2,𝛼1)+𝜎2
𝑛
+ 𝐸𝑟2∣𝑓2ℎ2∣2

𝐸𝑠 max(∣ℎ2∣2,𝛼2)+𝜎2
𝑛

)
𝜎2
𝑛

(
𝐸𝑟1∣𝑓1∣2

𝐸𝑠 max(∣ℎ1∣2,𝛼1)+𝜎2
𝑛
+ 𝐸𝑟2∣𝑓2∣2

𝐸𝑠 max(∣ℎ2∣2,𝛼2)+𝜎2
𝑛
+ 1
) .
(21)

Thus, the conditional BER is given by 𝑃𝑏 (𝛾(𝛼1, 𝛼2)), and the
average BER is given by 𝑃𝑏 = E [𝑃𝑏 (𝛾(𝛼1, 𝛼2))]. We show
the diversity order by deriving an upper bound of 𝑃𝑏. To this
end, we develop the following lemma.

Lemma 3: Assume 𝑋 , 𝑌1, and 𝑌2 are exponential random
variables with means 𝑎, 𝑏1, and 𝑏2, respectively. The MGF
ℳ3(𝑠; 𝑎, 𝑏1, 𝑏2) of the function 𝑋𝑌1/(𝑌1 + 𝑌2 + 1) is given
as follows:

ℳ3(𝑠; 𝑎, 𝑏1, 𝑏2) = 1 + 𝑎𝑠𝐻

(
𝑏2
𝑏1

,−𝑎𝑠,
1

𝑏1

)
, (22)

where the function 𝐻(𝑥, 𝑦, 𝑧) is given by

𝐻(𝑥, 𝑦, 𝑧) =
1

(𝑥 + 𝑦 − 1)2(1− 𝑦)

×
[
(1− 𝑦)(𝑥+ 𝑦 − 1) + 𝑒

𝑧
𝑥Ei
(
− 𝑧

𝑥

)
𝑥(1− 𝑦)

+ 𝑒
𝑧

1−𝑦 Ei

(
𝑧

−1 + 𝑦

)
(𝑥𝑧 − (𝑥 + 𝑧)(1− 𝑦))

]
.

(23)

Proof: See Appendix C.
Based on Lemma 3, an upper bound of 𝑃𝑏 is derived in the

following lemma.
Lemma 4: When 𝑀 -QAM is used as the modulation

scheme, the average BER 𝑃𝑏 can be upper-bounded by

𝑃𝑏 ≲ 𝑃𝑈𝑃
𝑏

=
2

𝜋
√
𝑀 log2 𝑀

log2

√
𝑀∑

𝑗=1

(1−2−𝑗)
√
𝑀−1∑

𝑖=0

𝐴𝑗,𝑖(𝑀)

× ℳ̃𝐿

(
−3(2𝑖+ 1)2

𝑀 − 1

)
, (24)
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where ℳ̃𝐿(𝑠) =
∑4

𝑖=1 ℳ𝛾𝐿-𝑖(𝑠), and the function ℳ𝛾𝐿-𝑖(𝑠)
is given by

ℳ𝛾𝐿-1(𝑠) ≈ ℳ3

(
𝑠
𝐸𝑠

𝜎2
𝑛

; Ωℎ1 , 𝑏1, 𝑏2

)
ℳ3

(
𝑠
𝐸𝑠

𝜎2
𝑛

; Ωℎ2 , 𝑏2, 𝑏1

)
,

(25)

ℳ𝛾𝐿-2(𝑠) ≲ ℳ3

(
𝑠
𝐸𝑠

𝜎2
𝑛

; Ωℎ1 , 𝑏1, 𝑏2

)
ℳ3

(
𝑠
𝐸𝑠𝛼2

𝜎2
𝑛

; 1, 𝑏2, 𝑏1

)
,

(26)

ℳ𝛾𝐿-3(𝑠) ≲ ℳ3

(
𝑠
𝐸𝑠𝛼1

𝜎2
𝑛

; 1, 𝑏1, 𝑏2

)
ℳ3

(
𝑠
𝐸𝑠

𝜎2
𝑛

; Ωℎ2 , 𝑏2, 𝑏1

)
,

(27)

ℳ𝛾𝐿-4(𝑠) ≲ ℳ3

(
𝑠
𝐸𝑠𝛼1

𝜎2
𝑛

; 1, 𝑏1, 𝑏2

)
ℳ3

(
𝑠
𝐸𝑠𝛼2

𝜎2
𝑛

; 1, 𝑏2, 𝑏1

)
,

(28)

where 𝑏1 = 𝐸𝑟1Ω𝑓1/(𝐸𝑠𝛼1) and 𝑏2 = 𝐸𝑟2Ω𝑓2/(𝐸𝑠𝛼2).
Proof: See Appendix D.

The upper bound 𝑃𝑈𝑃
𝑏 enables us to obtain the diversity

order of the distributed Alamouti’s code when the relays
use 𝜌𝑘 as the amplifying coefficient and it is shown in the
following theorem.

Theorem 4: In a cooperative network with two CSI-assisted
relays, the distributed Alamouti’s code achieves the full di-
versity order two when the relays use 𝜌𝑘 as the amplifying
coefficient.

Proof: In order to show the diversity order, we assume
𝐸𝑠 = 𝐸𝑟1 = 𝐸𝑟2 = 𝐸 and 𝜎2

𝑛 = 1. Then it can be easily
shown that

lim
𝐸→∞

𝐸2ℳ̃𝐿

(
−3(2𝑖+ 1)2

𝑀 − 1

)
= 𝐶2, (29)

where 0 < 𝐶2 < ∞. That is, ℳ̃𝐿
(−3(2𝑖+ 1)2/(𝑀 − 1)

)
behaves like 1/𝐸2, when 𝐸 is large. Thus, when 𝐸 is large,
𝑃𝑈𝑃
𝑏 behaves like 1/𝐸2. Since 𝑃𝑈𝑃

𝑏 is an upper bound of
𝑃𝑏, the average BER 𝑃𝑏 behaves like 1/𝐸2 as well when
𝐸 is large. That is, the diversity order of the distributed
Alamouti’s code is two when the CSI-assisted relays use 𝜌𝑘
as the amplifying coefficient.

B. Amplifying schemes to determine the value of 𝛼1 and 𝛼2

The use of 𝜌𝑘 makes the distributed Alamouti’s code
achieve the full diversity order two as long as the threshold 𝛼𝑘
is strictly positive, irrespective of the selection of 𝛼𝑘. For a
small value 𝛼𝑘, however, the noise propagation may severely
degrade the system performance in the practical SNR range.
Therefore, the value of 𝛼𝑘 should be determined properly in
order to enhance the performance. In the remaining of this
subsection, we propose four amplifying schemes to determine
the value of 𝛼𝑘 based on different CSI assumptions.

1) Amplifying Scheme I given channel variances: In order
to optimize the value of 𝛼𝑘, it will be ideal to use the exact
average BER 𝑃𝑏; but 𝑃𝑏 is too hard to obtain. Thus, we use
upper bounds of 𝑃𝑏 to optimize 𝛼𝑘 by using similar ideas in
[2], [24], and [25]. It is possible to use the upper bound 𝑃𝑈𝑃

𝑏

of (24) to optimize 𝛼𝑘. In this paper, however, we adopt more
tight upper bounds to optimize 𝛼𝑘. To this end, we first use

the following well-known very accurate approximation [19] to
obtain the lower bound 𝑃𝑏 in closed-form:

𝑄(𝑥) ≈ 1

12
𝑒−

1
2𝑥

2

+
1

4
𝑒−

2
3𝑥

2

. (30)

Taking a step similar to (24), we obtain an upper bound 𝑃𝑈
𝑏

as follows:

𝑃𝑏 ≲ 𝑃𝑈
𝑏

=
2√

𝑀 log2 𝑀

log2

√
𝑀∑

𝑗=1

{ (1−2−𝑗)
√
𝑀−1∑

𝑖=0

𝐴𝑗,𝑖(𝑀)

×
[

1

12
ℳ̃𝐿

(
−3(2𝑖+ 1)2

2(𝑀 − 1)

)
+

1

4
ℳ̃𝐿

(
−2(2𝑖+ 1)2

𝑀 − 1

)]}
.

(31)

Then we determine 𝛼𝑘 that minimizes the upper bound:

Amplifying Scheme I:

(𝛼1, 𝛼2) = arg min
𝛼1>0,𝛼2>0

𝑃𝑈
𝑏 . (32)

The scheme given in (32) is referred to as Amplifying Scheme
I in this paper and it is optimum in the sense that it minimizes
the upper bound 𝑃𝑈

𝑏 given channel variances only. Note that
the upper bound 𝑃𝑈

𝑏 has been averaged over the instantaneous
channel gains ℎ𝑘 and 𝑓𝑘. Thus, it only depends on the channel
variances Ωℎ𝑘

and Ω𝑓𝑘 which change very slowly. Thus,
although the minimization in Amplifying Scheme I has to
be solved numerically, the relays only need to conduct the
minimization once in a long time and the computational loads
at the relays may be negligible.

2) Amplifying Scheme II given instantaneous CSI for first
hop: Amplifying Scheme I can greatly improve the perfor-
mance of the distributed Alamouti’s code with very low com-
putational loads at the relays. However, it is more desirable
to develop a scheme where 𝛼𝑘 is optimized by exploiting
the instantaneous channel coefficient ℎ𝑘 (not just channel
variances). One can expect that the performance may be
further improved by doing so. To this end, we take the
expectation of the conditional BER 𝑃𝑏(𝛾(𝛼1, 𝛼2)) over 𝑓𝑘
only and upper-bound this expectation by using (31):

E𝑓1,𝑓2 [𝑃𝑏 (𝛾(𝛼1, 𝛼2))] ≲ 𝑃𝑈
𝑏 (ℎ1, ℎ2), (33)

where 𝑃𝑈
𝑏 (ℎ1, ℎ2) is obtained from (31) by replacing ℳ̃𝐿(𝑠)

with ℳ̃𝑈 (𝑠), which is given by

ℳ̃𝑈 (𝑠) = ℳ3

(
𝑠
𝐸𝑠∣ℎ1∣2

𝜎2
𝑛

; 1, 𝜌21Ω𝑓1 , 𝜌
2
2Ω𝑓2

)

×ℳ3

(
𝑠
𝐸𝑠∣ℎ2∣2

𝜎2
𝑛

; 1, 𝜌22Ω𝑓2 , 𝜌
2
1Ω𝑓1

)
. (34)

Then a new scheme to determine 𝛼𝑘 is given as follows:

Amplifying Scheme II:

(𝛼1, 𝛼2) = arg min
𝛼1>0,𝛼2>0

𝑃𝑈
𝑏 (ℎ1, ℎ2). (35)

The scheme given in (35) is called Amplifying Scheme II in
this paper and it is optimum in the sense that the upper bound
𝑃𝑈
𝑏 (ℎ1, ℎ2) is minimized given instantaneous CSI for the first
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hop.4 Numerical results will show that, compared to Amplify-
ing Scheme I, Amplifying Scheme II indeed further improves
the performance. This is because Amplifying Scheme II takes
advantage of the instantaneous CSI available at the relays.
However, the minimization in (35) must be solved numerically
and it has to be done whenever the instantaneous channel gain
ℎ𝑘 changes, because the upper bound 𝑃𝑈

𝑏 (ℎ1, ℎ2) depends on
ℎ𝑘. Also, for Amplifying Scheme II, each relay requires the
instantaneous CSI for the first hop. Thus, Amplifying Scheme
II has higher computational complexity and signaling overhead
than Amplifying Scheme I.

3) Amplifying Scheme III with closed-form solution: In a
fast-fading environment, it may be hard to numerically per-
form the minimization in (35) whenever ℎ𝑘 changes. Thus, we
develop another amplifying scheme which determines 𝛼𝑘 by
still exploiting ℎ𝑘, but requires much less computational loads
than Amplifying Scheme II. This is achieved by analyzing the
property of the instantaneous SNR 𝛾(𝛼1, 𝛼2) in (21). It can be
shown that, when 0 < 𝛼1 < ∣ℎ1∣2, 𝛾(𝛼1, 𝛼2) is independent
of 𝛼1; while, when 𝛼1 ≥ ∣ℎ1∣2, 𝛾(𝛼1, 𝛼2) is decreasing with
𝛼1 if and only if

𝐸𝑟2∣𝑓2∣2
(∣ℎ2∣2 − ∣ℎ1∣2

)− 𝐸𝑠∣ℎ1∣2 max(∣ℎ2∣2, 𝛼2)− ∣ℎ1∣2𝜎2
𝑛

< 0. (36)

A sufficient condition for the inequality (36) is ∣ℎ1∣2 > ∣ℎ2∣2,
and hence, the first relay must set 𝛼1 = ∣ℎ1∣2 when ∣ℎ1∣2 >
∣ℎ2∣2 in order to maximize 𝛾(𝛼1, 𝛼2).

Then we show how the second relay should decide 𝛼2 after
the first relays sets 𝛼1 = ∣ℎ1∣2. When ∣ℎ1∣2 > ∣ℎ2∣2 and 𝛼1 =
∣ℎ1∣2, it can be shown that, if 0 < 𝛼2 < ∣ℎ2∣2, 𝛾(∣ℎ1∣2, 𝛼2)
is independent of 𝛼2; while, if 𝛼2 ≥ ∣ℎ2∣2, 𝛾(∣ℎ1∣2, 𝛼2) is
decreasing with 𝛼2 if and only if

𝛾𝑠,1𝛾1,𝑑
𝛾𝑠,1 + 𝛾1,𝑑 + 1

< 𝛾𝑠,2, (37)

where 𝛾𝑠,𝑘 = 𝐸𝑠∣ℎ𝑘∣2/𝜎2
𝑛 and 𝛾𝑘,𝑑 = 𝐸𝑟𝑘∣𝑓𝑘∣2/𝜎2

𝑛. That is,
when the inequality (37) is satisfied, the maximum value of
𝛾(∣ℎ1∣2, 𝛼2) is 𝛾(∣ℎ1∣2, ∣ℎ2∣2) and it is achieved by setting
𝛼2 = ∣ℎ2∣2; while, when the inequality (37) is not satisfied,
the maximum value of 𝛾(∣ℎ1∣2, 𝛼2) is 𝛾(∣ℎ1∣2,∞) and it is
achieved by setting 𝛼2 = ∞. However, the second relay
can not use (37) to decide 𝛼2, because it requires 𝛾1,𝑑 or
equivalently 𝑓1 which is not available at the second relay.

Although (37) can not be directly used to decide the value
of 𝛼2, it implies that, if 𝛾𝑠,2 is very large, 𝛾(∣ℎ1∣2, 𝛼2) is
decreasing with 𝛼2 with a higher probability, and hence, we
should try to make its value close to 𝛾(∣ℎ1∣2, ∣ℎ2∣2). On the
other hand, when 𝛾𝑠,2 is very small, 𝛾(∣ℎ1∣2, 𝛼2) is increasing
with 𝛼2 with a higher probability, and hence, we should try
to make its value close to 𝛾(∣ℎ1∣2,∞). Therefore, we let
𝛾(∣ℎ1∣2, 𝛼2) equal to a combination of 𝛾(∣ℎ1∣2, ∣ℎ2∣2) and

4Note that the upper bounds 𝑃𝑈
𝑏 and 𝑃𝑈

𝑏 (ℎ1, ℎ2) are not used to evaluate
the BER performance of the distributed Alamouti’s code, and hence, their
tightness is not of our greatest concern. Those two bounds might not be tight
bounds, but they enable us to propose Amplifying Schemes I and II, which
can greatly improve the performance of the distributed Alamouti’s code as
suggested by numerical results.

𝛾(∣ℎ1∣2,∞) as follows:

𝛾(∣ℎ1∣2, 𝛼2) =
(
1− 𝑒−𝛾𝑠,2

)
𝛾(∣ℎ1∣2, ∣ℎ2∣2)

+ 𝑒−𝛾𝑠,2𝛾(∣ℎ1∣2,∞). (38)

It can be easily seen from (38) that the instantaneous SNR
𝛾(∣ℎ1∣2, 𝛼2) will be very close to 𝛾(∣ℎ1∣2, ∣ℎ2∣2) when 𝛾𝑠,2
is very large. On the other hand, when 𝛾𝑠,2 is very small,
𝛾(∣ℎ1∣2, 𝛼2) will converge to 𝛾(∣ℎ1∣2,∞).5

The value of 𝛼2 can be solved from (38) and it equals to
𝛼∗
2 that is given by

𝛼∗
2 = ∣ℎ2∣2 +

𝜎2
𝑛

𝐸𝑠(𝑒𝛾𝑠,2 − 1)

(
1 + 𝛾𝑠,2 +

𝛾2,𝑑(1 + 𝛾𝑠,1)

𝛾𝑠,1 + 𝛾1,𝑑 + 1

)
.

(39)
Note that 𝛼∗

2 still depends on 𝑓𝑘 through 𝛾𝑘,𝑑. This dependence
can be removed by simply taking the expectation of 𝛼∗

2 over
𝑓𝑘 and it gives us

�̄�∗
2 = E𝑓1,𝑓2 [𝛼

∗
2]

= ∣ℎ2∣2 +
𝜎2
𝑛

𝐸𝑠(𝑒𝛾𝑠,2 − 1)

[
1 + 𝛾𝑠,2

+ (1 + 𝛾𝑠,1)
𝐸𝑟2Ω𝑓2

𝐸𝑟1Ω𝑓1

𝑒
𝜎2
𝑛(1+𝛾𝑠,1)

𝐸𝑟1Ω𝑓1 Ei
(𝜎2

𝑛(1 + 𝛾𝑠,1)

𝐸𝑟1Ω𝑓1

)]
.

(40)

Therefore, our amplifying scheme to determine 𝛼𝑘 is given
as follows:

Amplifying Scheme III:

(𝛼1, 𝛼2) =

{
(∣ℎ1∣2, �̄�∗

2), ∣ℎ1∣2 > ∣ℎ2∣2,
(�̄�∗

1, ∣ℎ2∣2), ∣ℎ2∣2 > ∣ℎ1∣2, (41)

where �̄�∗
1 can be obtained similarly as in (39) and (40).

The scheme given in (41) is called Amplifying Scheme III
in this paper. As in Amplifying Scheme II, for Amplifying
Scheme III, each relay also requires the instantaneous CSI for
the first hop. Compared to Amplifying Scheme II, however,
Amplifying Scheme III has similar performance, because it is
given in closed form, requiring no numerical computation.

4) Amplifying Scheme IV given instantaneous CSI for entire
network: We finally consider the scenario where the relays
have the CSI for the first and second hops; that is, both ℎ𝑘
and 𝑓𝑘 are known at the relays. In this case, the inequality
(37) can be used by the relays to optimize 𝛼𝑘. Based on (36)
and (37), we have a new amplifying scheme as follows:

Amplifying Scheme IV:

(𝛼1, 𝛼2)

=

⎧⎨
⎩

(∣ℎ1∣2,∞), ∣ℎ1∣2 > ∣ℎ2∣2, 𝛾𝑠,1𝛾1,𝑑
𝛾𝑠,1+𝛾1,𝑑+1 > 𝛾𝑠,2,

(∞, ∣ℎ2∣2), ∣ℎ2∣2 > ∣ℎ1∣2, 𝛾𝑠,2𝛾2,𝑑
𝛾𝑠,2+𝛾2,𝑑+1 > 𝛾𝑠,1,

(∣ℎ1∣2, ∣ℎ2∣2), otherwise.
(42)

5Instead of (38), one can let 𝛾(∣ℎ1∣2, 𝛼2) equal to a combination of
𝛾(∣ℎ1∣2, ∣ℎ2∣2) and 𝛾(∣ℎ1∣2,∞) in many other different ways. They may
also make 𝛾(∣ℎ1∣2, 𝛼2) very close to 𝛾(∣ℎ1∣2, ∣ℎ2∣2), when 𝛾𝑠,2 is very
large, and make 𝛾(∣ℎ1∣2, 𝛼2) converge to 𝛾(∣ℎ1∣2,∞), when 𝛾𝑠,2 is very
small. In this paper, however, we use (38), because it enables us to analytically
derive 𝛼2 and its expectation in closed-form. Moreover, using (38) also
achieves very good performance as suggested by numerical results.
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Fig. 2. Comparison of the lower bound 𝑃𝐿
𝑏 of (12) and the average BER

𝑃𝑏, 4-QAM. Channel Setting 1(a): 𝑑𝑠,1 = 0.5, 𝑑𝑠,2 = 0.5; Channel Setting
1(b): 𝑑𝑠,1 = 0.3, 𝑑𝑠,2 = 0.7; Channel Setting 1(c): 𝑑𝑠,1 = 0.7, 𝑑𝑠,2 = 0.8.

This method is referred to as Amplifying Scheme IV in this
paper and it is optimum in the sense that it maximizes the
instantaneous SNR 𝛾(𝛼1, 𝛼2) given instantaneous CSI for
the entire network. Note that for Amplifying Scheme IV,
each relay requires the instantaneous CSI for entire network.
Compared to Amplifying Schemes I–III, Amplifying Scheme
IV achieves the best performance and it can be used as the
performance benchmark. However, Amplifying Scheme IV
may not be practical, because it requires a large amount of
feedback overhead from the destination to the relays.

V. NUMERICAL RESULTS

We present some numerical results in this section. We
use 𝑀 -QAM as the modulation scheme. The source and the
two relays have the same transmission powers, i.e. 𝐸𝑠 =
𝐸𝑟1 = 𝐸𝑟2 = 𝐸. Thus, the average SNR per bit equals to
𝐸/(𝜎2

𝑛 log2 𝑀). In Subsection II-A, we modeled the channels

ℎ𝑘 and 𝑓𝑘 as follows: ℎ𝑘 = ℎ̄𝑘

√
𝑑
−𝛽𝑠,𝑘

𝑠,𝑘 and 𝑓𝑘 = 𝑓𝑘

√
𝑑
−𝛽𝑘,𝑑

𝑘,𝑑

with ℎ̄𝑘 ∼ 𝒞𝒩 (0, 1) and 𝑓𝑘 ∼ 𝒞𝒩 (0, 1). We assume that
the source, the relays, and the destination are located in
a straight line. Furthermore, we let the reference distance
equal to the distance from the source to the destination, and
hence, 𝑑𝑠,𝑘 = 1 − 𝑑𝑘,𝑑. We set the path loss exponents as
𝛽𝑠,𝑘 = 𝛽𝑘,𝑑 = 4 in order to model the wireless channels in an
urban area. As a result, the channel variances Ωℎ𝑘

and Ω𝑓𝑘 are
purely decided by the locations of the relays, i.e. Ωℎ𝑘

= 𝑑−4
𝑠,𝑘

and Ω𝑓𝑘 = 𝑑−4
𝑘,𝑑.

In Fig. 2, we compare the lower bound 𝑃𝐿
𝑏 in (12) with

the average BER 𝑃𝑏. In order to test the tightness of 𝑃𝐿
𝑏 , we

consider three channel settings by placing the relays at three
different locations. It can be seen that 𝑃𝐿

𝑏 is very tight to
𝑃𝑏 in all channel settings. In Fig. 3, we set 𝑑𝑠,1 = 𝑑2,𝑑 and
consider a wide range of channel settings by changing the
distance 𝑑𝑠,2 − 𝑑𝑠,1 between the two relays. One can see that
𝑃𝐿
𝑏 is very tight in all channel settings, but 𝑃𝑈

𝑏 is not very
tight when the two relays are at the center of the source and
the destination.
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0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
10

−5

10
−4

10
−3

10
−2

10
−1

d
s,1

A
ve

ra
ge

 S
E

R

 

 
Average BER P

b

Lower bound P
b
L by eq. (12)

Upper bound P
b
U by eq. (19)

5 dB

15 dB

25 dB

Fig. 4. Comparison of the lower bound 𝑃𝐿
𝑏 of (12), the upper bound of 𝑃𝑈

𝑏
(19), and the average BER 𝑃𝑏, 16-QAM and 𝑑𝑠,2 − 𝑑𝑠,1 = 0.3.

In Fig. 4, we fix the distance between the two relays by
setting 𝑑𝑠,2 − 𝑑𝑠,1 = 0.3 and change the value of 𝑑𝑠,1. At
high SNR range, 𝑃𝐿

𝑏 is still very tight. At low SNR range,
𝑃𝐿
𝑏 is not close to 𝑃𝑏 when 𝑑𝑠,1 is small. However, 𝑃𝑈

𝑏 is
tight to 𝑃𝑏 for this case. Note that, when 𝑑𝑠,1 is small and
𝑑𝑠,2 − 𝑑𝑠,1 = 0.3, it actually implies that the value of Ωℎ𝑘

is
much larger than that of Ω𝑓𝑘 . Therefore, as we have discussed
in Subsection III-B, 𝑃𝑈

𝑏 is a tight bound when the value of
Ωℎ𝑘

is much larger than that of Ω𝑓𝑘 .
From Fig. 4, one may argue that, when 𝑑𝑠,1 = 0.2, 𝑃𝑈

𝑏

is not very close to 𝑃𝑏 neither. We consider this special case
as Channel Setting 2(c) in Fig. 5. We can see that 𝑃𝑈

𝑏 is
at most 1 dB away from 𝑃𝑏, and hence, it still bounds the
error performance of the distributed Alamouti’s code well.
Furthermore, in Channel Setting 2(a), we place the relays very
close to the source, and hence, the value of Ωℎ𝑘

is much larger
than that of Ω𝑓𝑘 . For this special case, 𝑃𝐿

𝑏 may not be tight to
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Fig. 5. Comparison of the upper bound 𝑃𝑈
𝑏 of (19) and the average BER

𝑃𝑏, 16-QAM. Channel Setting 2(a): 𝑑𝑠,1 = 0.2, 𝑑𝑠,2 = 0.2; Channel Setting
2(b): 𝑑𝑠,1 = 0.8, 𝑑𝑠,2 = 0.5; Channel Setting 2(c): 𝑑𝑠,1 = 0.2, 𝑑𝑠,2 = 0.5.
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Fig. 6. Diversity order of the DSTBCs proposed by [2], BPSK, 𝑑𝑠,𝑘 = 0.5,
𝛼𝑘 = Ωℎ𝑘

.

𝑃𝑏 as we have discussed in Subsection III-A and seen in Fig.
4; but Fig. 5 suggests that 𝑃𝑈

𝑏 is very tight to 𝑃𝑏. In all, our
simulation results in Figs. 2–5 demonstrate that, irrespective
of the values of Ωℎ𝑘

and Ω𝑓𝑘 , we can always use either 𝑃𝐿
𝑏 or

𝑃𝑈
𝑏 in order to tightly bound 𝑃𝑏. Furthermore, the tightness of

our bounds, especially the lower bound 𝑃𝐿
𝑏 , increases with the

value of average SNR. At high SNR range, 𝑃𝐿
𝑏 is extremely

close to 𝑃𝑏 even when the value of Ωℎ𝑘
is much larger than

that of Ω𝑓𝑘 . Thus, it precisely evaluates the diversity order
of the distributed Alamouti’s code as we have discussed in
Subsection III-C.

In Fig. 6, we examine the diversity order of the DSTBCs
proposed by [2]. When the relays use the conventional am-
plifying coefficient 𝜌𝑘, it can be easily seen that the codes
achieve only diversity order one. When the relays use our
proposed amplifying coefficient 𝜌𝑘, however, Fig. 6 suggests
that the codes achieve the full diversity order in the number
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𝑑𝑠,2 = 0.5.
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Fig. 8. Comparison of Amplifying Schemes I–IV, 8-QAM, 𝑑𝑠,1 = 1/3,
𝑑𝑠,2 = 2/3.

of relays.
Lastly, in Figs. 7 and 8, we compare the performance

of Amplifying Schemes I–IV proposed in Subsection IV-B.
As performance benchmark, we include the average BER
of the distributed Alamouti’s code when the relays use the
conventional amplifying coefficient 𝜌𝑘. We also present the
average BER of the distributed Alamouti’s code when the
relays use the proposed amplifying coefficient 𝜌𝑘 and adopt
𝛼𝑘 = Ωℎ𝑘

. In Figs. 7 and 8, when the relays use 𝜌𝑘,
the code has the worst performance, because it achieves
only diversity order one. When the relays use 𝜌𝑘, the code
achieves the full diversity order two even by simply letting
𝛼𝑘 = Ωℎ𝑘

. Furthermore, Amplifying Scheme I achieves much
better performance compared to the case that the relays adopt
𝛼𝑘 = Ωℎ𝑘

. Amplifying Scheme III further improves the
performance by exploiting the CSI at the relays. Amplifying
Scheme III has a similar performance as Amplifying Scheme
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II and it has much lower computational loads. Among all the
proposed schemes, Amplifying Scheme IV achieves the best
performance; but it requires a large feedback overhead.

VI. CONCLUSION

In this paper, we analyze the average BER and the di-
versity order of the distributed Alamouti’s code in dissimilar
cooperative networks with CSI-assisted relays. We first let the
relays adopt the amplifying coefficient 𝜌𝑘 proposed in [1].
We derive lower and upper bounds of the average BER of
the distributed Alamouti’s code. The proposed bounds only
contain integrations over finite range, and hence, can be easily
calculated. Moreover, they can tightly bound the average BER
irrespective of the values of the channel variances. Then we
show that the code achieves only diversity order one when
the relays use 𝜌𝑘. To address this problem, we propose a new
threshold-based amplifying coefficient 𝜌𝑘 for the distributed
Alamouti’s code based on the work in [3]. This new amplify-
ing coefficient enables the code achieve the full diversity order
two. Based on three different CSI assumptions, we develop
four amplifying schemes in order to determine the value of
the threshold used in 𝜌𝑘. Numerical results demonstrate that
the proposed schemes can enhance the performance of the
distributed Alamouti’s code substantially.

APPENDIX A

Proof of Lemma 1

We start the proof by rewriting the function (𝑌1 +
𝑌2)/max(𝑌1/𝑋1, 𝑌2/𝑋2) as

𝑌1 + 𝑌2

max
(
𝑌1

𝑋1
, 𝑌2

𝑋2

) = min

((
1 +

𝑌2

𝑌1

)
𝑋1,

(
1 +

𝑌1

𝑌2

)
𝑋2

)
.

(A.1)
Let 𝑇 = 𝑌2/𝑌1 and 𝑍 = min((1+𝑇 )𝑋1, (1+1/𝑇 )𝑋2). The
probability density function (PDF) 𝑓𝑇 (𝑡) of 𝑇 is given by

𝑓𝑇 (𝑡) =
𝑏1𝑏2

(𝑏2 + 𝑏1𝑡)2
. (A.2)

When 𝑇 is fixed, the conditional PDF 𝑓(1+𝑇 )𝑋1∣𝑇 (𝑥, 𝑡) of
(1 + 𝑇 )𝑋1 is given by

𝑓(1+𝑇 )𝑋1∣𝑇 (𝑥, 𝑡) =
1

(1 + 𝑡)𝑎1
𝑒
− 𝑥

(1+𝑡)𝑎1 . (A.3)

Similarly, the conditional PDF 𝑓(1+ 1
𝑇 )𝑋2∣𝑇 (𝑥, 𝑡) of (1 +

1/𝑇 )𝑋2 is given by

𝑓(1+ 1
𝑇 )𝑋2∣𝑇 (𝑥, 𝑡) =

1(
1 + 1

𝑡

)
𝑎2

𝑒
− 𝑥

(1+ 1
𝑡 )𝑎2 . (A.4)

Thus, the conditional PDF 𝑓𝑍∣𝑇 (𝑧, 𝑡) of 𝑍 is given by

𝑓𝑍∣𝑇 (𝑧, 𝑡) =
𝑎2 + 𝑎1𝑡

𝑎1𝑎2(1 + 𝑡)
𝑒
− 𝑎2+𝑎1𝑡

𝑎1𝑎2(1+𝑡)
𝑧
. (A.5)

By taking the expectation over 𝑇 , we can obtain the
unconditional PDF 𝑓𝑍(𝑧) of 𝑍

𝑓𝑍(𝑧) = E[𝑓𝑍∣𝑇 (𝑧, 𝑡)]

=
𝑏1𝑏2
𝑎1𝑎2

[
𝑎1 − 𝑎2
𝑏1 − 𝑏2

𝑓1
𝑍(𝑧) +

𝑎2𝑏1 − 𝑎1𝑏2
𝑏1 − 𝑏2

𝑓2
𝑍(𝑧)

]
.

(A.6)

By using [15, pp. 337, 3.352.3], we obtain 𝑓1
𝑍(𝑧) as follows:

𝑓1
𝑍(𝑧) =

𝑒
𝑎1𝑏2−𝑎2𝑏1

𝑎1𝑎2(𝑏1−𝑏2)
𝑧

𝑏1 − 𝑏2

[
Ei

(
𝑏2(𝑎1 − 𝑎2)

𝑎1𝑎2(𝑏1 − 𝑏2)
𝑧

)

− Ei

(
𝑏1(𝑎1 − 𝑎2)

𝑎1𝑎2(𝑏1 − 𝑏2)
𝑧

)]
. (A.7)

By integration by parts and using [15, pp. 337, 3.352.1], the
function 𝑓2

𝑍(𝑧) is given by

𝑓2
𝑍(𝑧)

=
𝑒−

𝑧
𝑎1

𝑏2(𝑏1 − 𝑏2)
− 𝑒−

𝑧
𝑎2

𝑏1(𝑏1 − 𝑏2)

+

(
1

𝑎2
− 1

𝑎1

)
𝑧

(𝑏2 − 𝑏1)2
𝑒

𝑎1𝑏2−𝑎2𝑏1
𝑎1𝑎2(𝑏1−𝑏2)

𝑧
Ei

(
𝑏1(𝑎1 − 𝑎2)

𝑎1𝑎2(𝑏1 − 𝑏2)
𝑧

)

+

(
1

𝑎1
− 1

𝑎2

)
𝑧

(𝑏2 − 𝑏1)2
𝑒

𝑎1𝑏2−𝑎2𝑏1
𝑎1𝑎2(𝑏1−𝑏2)

𝑧
Ei

(
𝑏2(𝑎1 − 𝑎2)

𝑎1𝑎2(𝑏1 − 𝑏2)
𝑧

)
.

(A.8)

By definition, the MGF ℳ1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) is given by

ℳ1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) =
𝑏1𝑏2
𝑎1𝑎2

[
𝑎1 − 𝑎2
𝑏1 − 𝑏2

∫ ∞

0

𝑒𝑠𝑧𝑓1
𝑍(𝑧)𝑑𝑧

+
𝑎2𝑏1 − 𝑎1𝑏2

𝑏1 − 𝑏2

∫ ∞

0

𝑒𝑠𝑧𝑓2
𝑍(𝑧)𝑑𝑧

]
.

(A.9)

With the help of [15, pp. 632, 6.227.1] and [15, pp. 633,
6.228], the integration involved in (A.9) can be solved and
the final expression of ℳ1(𝑠; 𝑎1, 𝑎2, 𝑏1, 𝑏2) is given by (8).

APPENDIX B

Proof of Theorem 3

We first present an upper bound of the exact SNR 𝛾(𝜌1, 𝜌2)
of (1) as follows:

𝛾(𝜌1, 𝜌2) <
𝐸𝑠

𝜎2
𝑛

⎛
⎝ 𝐸𝑟1∣𝑓1∣2

𝐸𝑠
+ 𝐸𝑟2∣𝑓2∣2

𝐸𝑠

𝐸𝑟1∣𝑓1∣2
𝐸𝑠∣ℎ1∣2+𝜎2

𝑛
+ 𝐸𝑟2∣𝑓2∣2

𝐸𝑠∣ℎ2∣2+𝜎2
𝑛

⎞
⎠ (B.1)

<
𝐸𝑠

𝜎2
𝑛

⎛
⎝ 𝐸𝑟1∣𝑓1∣2

𝐸𝑠
+ 𝐸𝑟2∣𝑓2∣2

𝐸𝑠

𝐸𝑟1∣𝑓1∣2
𝐸𝑠∣ℎ1∣2+𝜎2

𝑛

⎞
⎠ (B.2)

=

(
1 +

𝐸𝑟2∣𝑓2∣2
𝐸𝑟1∣𝑓1∣2

)(
1 +

𝐸𝑠∣ℎ1∣2
𝜎2
𝑛

)
=: 𝛾𝑈𝑃 . (B.3)

We let 𝑋 , 𝑌1, and 𝑌2 denote exponential random variables
with means 𝑎, 𝑏1, and 𝑏2, respectively. We now derive the
MGF ℳ𝐵(𝑠; 𝑎, 𝑏1, 𝑏2) of the function (1 + 𝑌2/𝑌1)(1 + 𝑋).
It can be shown that the PDF 𝑓1+𝑋(𝑥) of 1 + 𝑋 is given
by 𝑓1+𝑋(𝑥) = 𝑒−(𝑥−1)/𝑎/𝑎 for 𝑥 ≥ 1; using (A.2), it can
be shown that the PDF 𝑓1+𝑌2/𝑌1

(𝑡) of 1 + 𝑌2/𝑌1 is given
by 𝑓1+𝑌2/𝑌1

(𝑡) = 𝑏/(𝑡 − 1 + 𝑏)2 with 𝑏 = 𝑏2/𝑏1 for 𝑡 ≥ 1.
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Therefore, the MGF ℳ𝐵(𝑠; 𝑎, 𝑏1, 𝑏2) is given by

ℳ𝐵(𝑠; 𝑎, 𝑏1, 𝑏2)

=

∫ ∞

𝑡=1

∫ ∞

𝑥=1

𝑒𝑠𝑡𝑥𝑓1+𝑋1(𝑥)𝑓1+𝑌2/𝑌1
(𝑡)𝑑𝑥𝑑𝑡 (B.4)

=

∫ ∞

1

𝑒𝑠𝑡

1− 𝑎𝑠𝑡
𝑓1+𝑌2/𝑌1

(𝑡)𝑑𝑡 (B.5)

=
𝑒𝑠

(𝑎𝑠− 𝑎𝑏𝑠− 1)2

(
𝑎𝑠− 𝑎𝑏𝑠− 1− 𝑎𝑏𝑠𝑒

1
𝑎−𝑠Ei

(
𝑠− 1

𝑎

)
− 𝑏𝑠(𝑎𝑠− 𝑎𝑏𝑠− 1− 𝑎)𝑒−𝑏𝑠Ei(𝑏𝑠)

)
. (B.6)

Using (B.3) and (B.6), the MGF ℳ𝑈𝑃 (𝑠) of 𝛾𝑈𝑃 can be
easily derived, and it is given by

ℳ𝑈𝑃 (𝑠) = ℳ𝐵

(
𝑠

𝜎2
𝑛

;𝐸𝑠Ωℎ1 , 𝐸𝑟1Ω𝑓1 , 𝐸𝑟2Ω𝑓2

)
. (B.7)

With a simple modification of [17. eq. (8)], one can obtain
a lower bound of the Q-function as follows:

𝑄(𝑥) ≥
𝑁∑
𝑖=1

𝜃𝑖 − 𝜃𝑖−1

𝜋
𝑒

(
− 𝑥2

2 sin 𝜃2
𝑖−1

)
, (B.8)

where 0 = 𝜃0 ≤ 𝜃1 ⋅ ⋅ ⋅ ≤ 𝜃𝑁 = 𝜋/2. For 𝑁 = 2 and
𝜃1 = 𝜋/4, 𝑄(𝑥) of (B.8) is lower-bounded by 𝑄(𝑥) ≥ 1

4𝑒
−𝑥2

.
Taking a step similar to (12), the average BER 𝑃𝑏 can be
lower-bounded by

𝑃𝑏 ≥ 𝑃𝐿𝐵
𝑏 =

1

2𝜋
√
𝑀 log2 𝑀

log2
√
𝑀∑

𝑗=1

(1−2−𝑗)
√
𝑀−1∑

𝑖=0

𝐴𝑗,𝑖(𝑀)ℳ𝑈𝑃

(
−3(2𝑖+ 1)2

𝑀 − 1

)
. (B.9)

For simplicity, we assume 𝐸𝑠 = 𝐸𝑟1 = 𝐸𝑟2 = 𝐸 and 𝜎2
𝑛 = 1.

Note that this assumption does not change the diversity order
of the code. When 𝐸 goes to infinity, we have

lim
𝐸→∞

𝐸ℳ𝑈𝑃

(
−3(2𝑖+ 1)2

𝑀 − 1

)
= 𝐶1, (B.10)

where 0 < 𝐶1 < ∞. That is, ℳ𝑈𝑃
(−3(2𝑖+ 1)2/(𝑀 − 1)

)
behaves like 1/𝐸, when 𝐸 is large. Thus, when 𝐸 is large,
the lower bound 𝑃𝐿𝐵

𝑏 decays with 𝐸 as 1/𝐸. Since 𝑃𝐿𝐵
𝑏 is a

lower bound of 𝑃𝑏, the average BER 𝑃𝑏 also decays with 𝐸 as
1/𝐸. That is, the diversity order of the distributed Alamouti’s
code is just one when the relays use 𝜌𝑘 as the amplifying
coefficient.

APPENDIX C

Proof of Lemma 3

Let 𝑇 = 𝑌1/(𝑌1 + 𝑌2 + 1) and the cumulative density
function (CDF) 𝐹𝑇 (𝑡) of 𝑇 is given by

𝐹𝑇 (𝑡) =

⎧⎨
⎩ 1− 𝑒

− 𝑡
𝑏1(1−𝑡)

𝑏2𝑡

𝑏1(1−𝑡)+1
, 0 ≤ 𝑡 ≤ 1

1, 𝑡 ≥ 1
. (C.1)

Furthermore, we find the following integration

∫ 1

0

𝑒−𝑧
𝑡

(1−𝑡)

𝑥𝑡
(1−𝑡) + 1

1

(1− 𝑦𝑡)2
𝑑𝑡

𝑡
1−𝑡=𝑤
=

∫ ∞

0

𝑒−𝑧𝑤

(𝑥𝑤 + 1)((1− 𝑦)𝑤 + 1)2
𝑑𝑤

= 𝐻 (𝑥, 𝑦, 𝑧) , (C.2)

where the last step is done by partial fraction and using [15,
pp. 337, 3.352.4, 3.353.3]. Let 𝑓𝑇 (𝑡) denote the PDF of 𝑇 ,
then ℳ3(𝑠; 𝑎, 𝑏1, 𝑏2) is given by

ℳ3(𝑠; 𝑎, 𝑏1, 𝑏2) =

∫ 1

0

∫ ∞

0

𝑒𝑠𝑥𝑡
1

𝑎
𝑒−

𝑥
𝑎 𝑓𝑇 (𝑡)𝑑𝑥𝑑𝑡 (C.3)

=

∫ 1

0

1

1− 𝑎𝑠𝑡
𝑑𝐹𝑇 (𝑡) (C.4)

=
𝐹𝑇 (𝑡)

1− 𝑎𝑠𝑡

∣∣∣1
𝑡=0

−
∫ 1

0

𝐹𝑇 (𝑡)𝑑
1

1− 𝑎𝑠𝑡
(C.5)

= 1 + 𝑎𝑠𝐻

(
𝑏2
𝑏1

,−𝑎𝑠,
1

𝑏1

)
, (C.6)

where the last step is done by integration by parts and using
(C.2).

APPENDIX D

Proof of Lemma 4

Since 𝐸𝑠max(∣ℎ1∣2, 𝛼1) + 𝜎2
𝑛 > 𝐸𝑠max(∣ℎ1∣2, 𝛼1) and

𝐸𝑠max(∣ℎ1∣2, 𝛼1)+𝜎2
𝑛 > 𝐸𝑠𝛼1 for 𝑖 = 1, 2, the instantaneous

SNR 𝛾(𝛼1, 𝛼2) of (21) can be lower-bounded by

𝛾(𝛼1, 𝛼2) >
𝐸𝑠

(
𝐸𝑟1∣𝑓1ℎ1∣2

𝐸𝑠 max(∣ℎ1∣2,𝛼1)
+ 𝐸𝑟2∣𝑓2ℎ2∣2

𝐸𝑠 max(∣ℎ2∣2,𝛼2)

)
𝜎2
𝑛

(
𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1
)

=: 𝛾𝐿. (D.1)

As a result, the average BER 𝑃𝑏 is upper-bounded by
E
[
𝑃𝑏(𝛾

𝐿)
]
. It is hard to obtain the exact value of E

[
𝑃𝑏(𝛾

𝐿)
]
;

but, in order to show the diversity order, it is sufficient to
derive an upper bound of this expectation. To this end, we
first develop the following inequality

E
[
𝑄
(
𝑔
√

𝛾𝐿
)]

< E
[
𝑄
(
𝑔
√

𝛾𝐿-1
)]

+ E
[
𝑄
(
𝑔
√

𝛾𝐿-2
)]

+ E
[
𝑄
(
𝑔
√

𝛾𝐿-3
)]

+ E
[
𝑄
(
𝑔
√

𝛾𝐿-4
)]

,

(D.2)

where 𝑔 can be any positive constant. The inequality in (D.2)
is obtained by making all the integration limits from zero to
∞. Moreover, 𝛾𝐿-𝑖 is given by

𝛾𝐿-1 =
𝐸𝑠

(
𝐸𝑟1∣𝑓1ℎ1∣2

𝐸𝑠𝛼1
+ 𝐸𝑟2∣𝑓2ℎ2∣2

𝐸𝑠𝛼2

)
𝜎2
𝑛

(
𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1
) ,

𝛾𝐿-2 =
𝐸𝑠

(
𝐸𝑟1∣𝑓1ℎ1∣2

𝐸𝑠𝛼1
+ 𝐸𝑟2∣𝑓2∣2

𝐸𝑠

)
𝜎2
𝑛

(
𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1
) ,
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𝛾𝐿-3 =
𝐸𝑠

(
𝐸𝑟1∣𝑓1∣2

𝐸𝑠
+ 𝐸𝑟2∣𝑓2ℎ2∣2

𝐸𝑠𝛼2

)
𝜎2
𝑛

(
𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1
) ,

𝛾𝐿-4 =
𝐸𝑠

(
𝐸𝑟1∣𝑓1∣2

𝐸𝑠
+ 𝐸𝑟2∣𝑓2∣2

𝐸𝑠

)
𝜎2
𝑛

(
𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1
) .

Secondly, we solve the expectations in (D.2) by analyzing
the MGF of 𝛾𝐿−𝑖. We rewrite 𝛾𝐿-1 as

𝛾𝐿-1

=
𝐸𝑠

𝜎2
𝑛

⎛
⎝ 𝐸𝑟1∣𝑓1ℎ1∣2

𝐸𝑠𝛼1

𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1
+

𝐸𝑟2∣𝑓2ℎ2∣2
𝐸𝑠𝛼2

𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1

⎞
⎠

=: 𝛾𝐿-1𝑎 + 𝛾𝐿-1𝑏. (D.3)

The MGFs of 𝛾𝐿-1𝑎 and 𝛾𝐿-1𝑏 can be easily obtained by using
Lemma 3.

Due to the common two random variables 𝑓1 and 𝑓2, two
expressions 𝛾𝐿-1𝑎 and 𝛾𝐿-1𝑏 are dependent, which makes the
analysis extremely difficult. In this paper, therefore, we ignore
the dependency to make the analysis tractable. Then the MGF
ℳ𝛾𝐿-1(𝑠) of 𝛾𝐿-1 is approximated by the product of the MGFs
of 𝛾𝐿-1𝑎 and 𝛾𝐿-1𝑏 as in (25).

Then we rewrite 𝛾𝐿-2 in the following way

𝛾𝐿-2

=
𝐸𝑠

𝜎2
𝑛

⎛
⎝ 𝐸𝑟1∣𝑓1ℎ1∣2

𝐸𝑠𝛼1

𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1
+

𝐸𝑟2∣𝑓2∣2
𝐸𝑠

𝐸𝑟1∣𝑓1∣2
𝐸𝑠𝛼1

+ 𝐸𝑟2∣𝑓2∣2
𝐸𝑠𝛼2

+ 1

⎞
⎠

=: 𝛾𝐿-2𝑎 + 𝛾𝐿-2𝑏. (D.4)

The MGF of 𝛾𝐿-2𝑎 can be easily obtained by using Lemma
3. The MGF ℳ𝛾𝐿-2𝑏(𝑠) of 𝛾𝐿-2𝑏 can be upper-bounded by

ℳ𝛾𝐿-2𝑏(𝑠) =

∫ 1

0

𝑒𝑠𝑥𝑓(𝑥)𝑑𝑥

<

∫ 1

0

1

1− 𝑠𝑥
𝑑𝐹 (𝑥)

= ℳ3

(
𝑠
𝐸𝑠𝛼2

𝜎2
𝑛

; 1, 𝑏2, 𝑏1

)
, (D.5)

where 𝑓(𝑥) and 𝐹 (𝑥) are the PDF and CDF of 𝛾𝐿-2𝑏, respec-
tively. In (D.5), the inequality is due to 𝑒𝑠𝑥 < 1/(1−𝑠𝑥) when
𝑠 < 0 and the last step is by using Lemma 3. We still ignore
the dependency between 𝛾𝐿-2𝑎 and 𝛾𝐿-2𝑏. Thus, the MGF
ℳ𝛾𝐿-2(𝑠) of 𝛾𝐿-2 is upper-bounded by (26). By following
a similar way, the MGFs ℳ𝛾𝐿-3(𝑠) and ℳ𝛾𝐿-4(𝑠) of 𝛾𝐿-3

and 𝛾𝐿-3 are upper-bounded by (27) and (28), respectively.
Lastly, based on (30), (D.2), and (25)–(28), the expectation

E
[
𝑄
(
𝑔
√

𝛾𝐿
)]

can be upper-bounded as follows:

E
[
𝑄
(
𝑔
√

𝛾𝐿
)]

≤ ℳ̃𝐿

(
−1

2
𝑔2
)
, (D.6)

where we use the Chernoff-Rubin bound for the Q-function
[17. eq. (4)] : 𝑄(𝑥) ≤ 𝑒−𝑥

2/2. In the above equation, ℳ̃𝐿(𝑠)
is given by ℳ̃𝐿(𝑠) =

∑4
𝑖=1 ℳ𝛾𝐿-𝑖(𝑠). Based on (2)–(4),

(D.6), and Craig’s formula, the expectation E
[
𝑃𝑏(𝛾

𝐿)
]

can be
upper-bounded by E

[
𝑃𝑏(𝛾

𝐿)
] ≤ 𝑃𝑈𝑃

𝑏 . Moreover, since 𝑃𝑏 is
upper-bounded by E

[
𝑃𝑏(𝛾

𝐿)
]
, we conclude that the average

BER 𝑃𝑏 is upper-bounded by 𝑃𝑈𝑃
𝑏 as well.
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