
Search-and-compute on Encrypted Data

Jung Hee Cheon1, Miran Kim1, and Myungsun Kim2

1 Department of Mathematical Sciences, Seoul National University
{jhcheon,alfks500}@snu.ac.kr

2 Department of Information Security, The University of Suwon
msunkim@suwon.ac.kr

Abstract. Private query processing on encrypted databases allows users
to obtain data from encrypted databases in such a way that the user’s
sensitive data will be protected from exposure. Given an encrypted
database, the users typically submit queries similar to the following ex-
amples:

– How many employees in an organization make over $100,000?

– What is the average age of factory workers suffering from leukemia?

Answering the above questions requires one to search and then com-
pute over the encrypted databases in sequence. In the case of privately
processing queries with only one of these operations, many efficient so-
lutions have been developed using a special-purpose encryption scheme
(e.g., searchable encryption). In this paper, we are interested in effi-
ciently processing queries that need to perform both operations on fully
encrypted databases. One immediate solution is to use several special-
purpose encryption schemes at the same time, but this approach is as-
sociated with a high computational cost for maintaining multiple en-
cryption contexts. The other solution is to use a privacy homomorphic
scheme. However, no secure solutions have been developed that meet the
efficiency requirements.

In this work, we construct a unified framework so as to efficiently and
privately process queries with “search” and “compute” operations. To
this end, the first part of our work involves devising some underlying cir-
cuits as primitives for queries on encrypted data. Second, we apply two
optimization techniques to improve the efficiency of the circuit primi-
tives. One technique is to exploit SIMD techniques to accelerate their
basic operations. In contrast to general SIMD approaches, our SIMD
implementation can be applied even when one basic operation is exe-
cuted. The other technique is to take a large integer ring (e.g., Z2t) as
a message space instead of a binary field. Even for an integer of k bits
with k ą t, addition can be performed with degree 1 circuits with lazy
carry operations. Finally, we present various experiments by varying the
parameters, such as the query type and the number of tuples.

Keywords: Encrypted databases, Private query processing, Homomor-
phic encryption.

2

1 Introduction

Privacy homomorphism is an important notion for encrypting clear data while
allowing one to carry out operations on encrypted data without decryption. The
concept was first introduced by Rivest et al. [17], and much later, Feigenbaum
and Merritt’s question [12] affirmed the concept: Is there an encryption func-
tion Ep¨q such that both Epx ` yq and Epx ¨ yq are easy to compute from Epxq
and Epyq? Since then, there had been very little progress made in determin-
ing whether such efficient and secure encryption schemes exist until 2009, when
Gentry constructed such an encryption scheme [13].

While the use of Gentry’s scheme and other HE schemes (e.g., [22,7,6]) allows
us to securely evaluate any function in a theoretical sense, the evaluation cost is
still far from being practical for many functions. Among the important functions,
we restrict our interest to a set of functions for databases, which raises the
following question: Given a set of fully encrypted databases, can we construct a
set of efficient functions to process queries over the encrypted databases? If so,
what is the computational cost of the functions?

Although this question is the starting point of this work, to facilitate a better
understanding of the approach, we describe the motivation for our work from a
different perspective. Currently, perhaps the simplest way to search for records
satisfying a particular condition over encrypted databases is via searchable en-
cryption (e.g., [21,3,2,10]). However, privately processing sum and avg aggrega-
tion queries in the same condition is performed using homomorphic encryption
(e.g., [11,16] and [5]). Thus, the private processing of a query that includes both
matching conditions and aggregate operations requires the use of two distinct
encryption techniques in parallel, i.e., searchable encryption and homomorphic
encryption.

Recently, Ada Popa et al.’s CryptDB [1] processed general types of database
queries using layers of different encryption schemes: deterministic encryption for
equality condition queries, order-preserving encryption for range queries, and
homomorphic encryption for aggregate queries. The disadvantage of their work is
that in the long run, it downgrades to the lowest level of data privacy provided by
the weakest encryption scheme. This observation leads to the natural question:
Can we construct a solution to efficiently address such a database query without
maintaining multiple contexts of encryption? However, there exists no solutions
for expressing and processing various queries on fully encrypted databases in an
efficient way.

1.1 Our Results

Our main results are as follows:

– A unified framework for private query processing: We provide a com-
mon platform so that database users may work on a single underlying cryp-
tosystem, represent their query as a function in a conceptually simpler man-
ner, and efficiently carry out the function on fully encrypted databases.

3

– Optimizing circuits and their applications to compact expressions
of queries: The foundation of our simple framework is a set of optimized cir-
cuits: equality, greater-than comparison and integer addition. We call these
circuit primitives. Our optimizations of circuit primitives have been taken in
such a way as to minimize the circuit depth and the number of homomorphic
operations. To do this, we make extensive use of single-instruction-multiple-
data (SIMD) techniques to move data across plaintext slots. In general,
SIMD technology allows for basic operations to be performed on several
data elements in parallel. On the contrary, our proposal works on packed
ciphertexts of several data elements and thus enables one to improve the
efficiency of the basic operations of circuit primitives. Furthermore, we find
that all circuit primitives have Oplogµq depth for µ-bit data.
We then express more complicated queries by a composition of the optimized
circuit primitives. The resulting query functions are conceptually simpler
than other representations of database queries and are compact in the sense
that retrieval queries require at most Oplogµq depth.

– Further improvements in the performance of query processing: HE
schemes usually use Z2 as a message space so that their encryption algo-
rithm encrypts each bit of message. While our circuit primitives efficiently
work on bit encryptions, we can achieve further improvements by adopting
a large integer ring (e.g., Z2t), especially in the case of computing on en-
crypted numeric-data. Even for an integer of k bits with k ą t, addition
can be performed with degree 1 circuits by processing lazy carry operations.
Although this rectification requires to amend our circuit primitives, we can
again preserve their optimality by SIMD operations. In other words, search-
and-compute queries can be processed with only Oplogµq-depth circuits.

– Comprehensive experiments: We conduct comprehensive experiments
for evaluating the performance of various queries expressed by our techniques
from a theoretical as well as practical perspective.

1.2 A High-level Overview of Our Approach

query Q

PSnC Pre/post-Processor

SWHE pk, sk

PSnC Processor

SWHE

Q̄˚

pk

transformed
retrieve/modify

query Q̄

Encrypted DB

table ¨ ¨ ¨...

Fig. 1: Our PSnC Framework

Assuming a database con-
sisting of N blocks, i.e.,
R1 ‖ R2 ‖ ¨ ¨ ¨ ‖ RN , to en-
crypt the record Ri, a DB
user prepares a pair of pub-
lic/private keys ppk, skq for
a HE scheme and publishes
the public key to a DB
server. The users store their
encrypted records R̄i “

EpkpRiq for 1 ď i ď N
in the same way as nor-
mal write queries (e.g., us-

4

ing the insert-into statement). Suppose that the user wants to submit a re-
trieval query Q to the DB server. Before being submitted, the query Q needs
to be properly pre-processed so that all clear messages, such as constant values,
are encrypted under the public key pk. We denote this transformed query by Q̄.

Upon receiving Q̄, the DB server compiles it into Q̄˚ by applying our tech-
niques. The readers can consider a dedicated module for performing this task.3

Hereafter, we call the module a Private Search-and-compute (PSnC) processor.
Next, the DB server homomorphically evaluates Q̄˚ over the fully encrypted
databases and returns the resulting ciphertexts to the user. The DB user can
decrypt the output using his private key sk while learning no additional data
except for the records satisfying the where conditions.

Figure 1 graphically illustrates the high-level architecture of our approach.

1.3 Closely Related Work

A few results closely related to our work can be found in the literature. First,
Lauter et al. in [15] showed how to privately compute avg and var functions
using a variant of Brakerski et al.’s SWHE scheme [8]. However, their work only
focused on applying homomorphic encryption to compute aggregate functions in
query statements. Thus, it is not clear how to address their where clauses in a
private manner.

Recently, Boneh et al. [4] proposed a way to privately process the where clause
in a select statement and produce a set of matching indices. Their technique
uses private set intersection together with homomorphic encryption. It also has
the following drawbacks: (1) their scheme only allows conjunctive and disjunctive
conditions; (2) the equality test is restricted to comparisons with a constant
value; and (3) the users must revisit the server to obtain a list of real tuples
because they only know the indices of those tuples.

Our work differs in several ways from prior efforts. First, our solution can
privately process the select clause and the where clause all at once. Second,
our solution supports a wide range of query types–from simple search queries
to join queries. In particular, our solution allows the DB users to express rich
conditions, including ă,ď,ą,ě, and ăą.

Oraganization. The remainder of the paper is structured as follows. In Section 2,
we briefly review the BGV-type homomorphic encryption scheme. In Section 3,
we construct the optimized circuits for expressing queries. Then, in Section 4, we
show how to construct database queries having search and/or compute opera-
tions using our circuit primitives. Section 5 presents our optimization techniques
for further improvements in performance, and Section 6 shows the experimental
evaluations of our constructions.

3 Alternatively, one may imagine that Q̄˚ transformed by the DB user directly is sent
to the DB server. However, considering optimization and performance, we believe
that the better choice involves the module becoming part of the DBMS.

5

2 Preliminaries

In this section, we focus on describing the efficient variant of the Brakerski-
Gentry-Vaikuntanathan(BGV)-type cryptosystem [6,14], which is our underlying
encryption scheme. In what follows, we give a description of the security model
that our constructions assume.

2.1 The BGV-type SWHE Scheme

For a security parameter κ, we choose an m P Z that defines the m-th cyclo-
tomic polynomial ΦmpXq. For a polynomial ring A “ ZrXs{xΦmpXqy, we set the
message space to At :“ A{tA for some fixed t ě 2 and the ciphertext space to
Aq :“ A{qA for an integer q. We choose a chain of moduli q0 ă q1 ă ¨ ¨ ¨ ă qL “ q
whereby the SWHE scheme can evaluate a depth-L arithmetic circuit. Here is
the RLWE-based SWHE scheme:

– pa, b; sq Ð Kgp1κ, h, σ, qLq: The algorithm Kg chooses a weight h secret key s
and generates a RLWE instance pa, bq relative to that secret key. We set the
secret key sk “ s and the public key pk “ pa, bq.

– c Ð Epkpxq: To encrypt a message x P At, the algorithm chooses a small
polynomial v and two Gaussian polynomials e0, e1 (with variance σ2). It
outputs the ciphertext c “ pc0, c1q by computing

pc0, c1q “ px, 0q ` pbv ` te0, av ` te1q mod qL.

– xÐ Dskpcq: Given a ciphertext c “ pc0, c1q at level l, the algorithm outputs
x “ rc0 ´ s ¨ c1sql mod t.

– cf Ð Evekpf ; c, c1q: If the function f is an addition over ciphertexts, the algo-
rithm outputs the ciphertext performed by simple component-wise addition
of the two ciphertexts. If f is a multiplication over ciphertexts, it outputs
the one performed using a tensor product.

2.2 Security Model

We will consider the following threat model. First, we assume that an SQL server
is semi-honest. Thus, it should follow all specifications of our scheme. However,
an adversary is allowed to access all databases maintained by a corrupted SQL
server. Moreover, a corrupted DBA may become such an attacker. It is fairly
plausible for an attacker to legally login to the SQL server, to make an illegal
copy of interesting data, and to hand it over to any malicious buyer. Therefore,
the DB server should learn nothing about a query beyond what is explicitly
revealed (e.g., the number of tuples).

Second, we assume that a DB user is also semi-honest but is not allowed
to collude with an SQL server. Some corrupted DB users can create an illegal
copy of sensitive data; however, the volume of illegally copied data leaked at any
given time is assumed to be negligible. The DB user should not be given access
to data that are not part of the query result.

6

To formulate our security model, we follow Boneh et al.’s security defini-
tion [4]. Specifically, the dishonest DB server should not be able to distinguish
between Q̄0 and Q̄1, where two transformed queries Q̄0 and Q̄1 have the same
syntactical form. Moreover, the adversarial DB user should not be able to dis-
tinguish two encrypted DBs ĎDB0 and ĎDB1 for every fixed query Q and for all
pairs of DBs pDB0,DB1q such that QpĎDB0q “ QpĎDB1q.

3 Circuit Primitives

We devise three primitives: equality, comparison (for the where clauses) and
an integer addition circuit (for the select clauses). We focus on a method of
optimizing these circuits with respect to the depth and required homomorphic
operations. To do this, we make use of SIMD along with automorphism opera-
tion.

When input messages are decomposed and encrypted in a bitwise manner,
the encryption x̄ of a message x “ xµ´1 ¨ ¨ ¨x1x0 means tx̄0, x̄1, . . . , x̄µ´1u, where
xi P t0, 1u. We use “+” to denote homomorphic addition and A to denote the
number of additions. Similarly, for homomorphic multiplication, we use “ ¨ ” and
M.

3.1 Equality Circuit

For two µ-bit integers x and y, we define an arithmetic circuit for the equality
test as follows:

equalpx̄, ȳq “
µ´1
ź

i“0

p1` x̄i ` ȳiq . (1)

The output of equalp¨, ¨q is 1̄ in the case of equality and 0̄ otherwise. In the bit-
sliced implementation, we assume that one ciphertext is used per bit; therefore,
we have 2µ ciphertexts in total for evaluating the equality test. Instead of regular
multiplication, if we multiply each term after forming a binary-tree structure,
the depth of the equal circuit becomes log µ. Specifically, the algorithm requires
two homomorphic additions for computing 1` x̄i` ȳi and that µ ciphertexts be
multiplied by each other while consuming log µ depth.

Optimizations. Our optimizations are focused on minimizing the number of
homomorphic operations, especially for homomorphic multiplication. As shown
by Smart and Vercauteren [20], we can pack each bit xi into a single ciphertext.
Next, we expand the right-hand side of Equation (1) and rearrange each term
so as to fit in well with the SIMD executions. Then, we repeatedly apply SIMD
operations to a vector of SIMD words. This is the key to reducing the number of
homomorphic multiplications from µ´1 to log µ. We provide a better description
of the complexity in Table 1.

7

Table 1: Complexity of Circuit Primitives

Circuits Complexity

Depth

equal logµ

comp 1` logµ

fadd 1` log pν ´ 2q

Comp.:
equal 2A` plogµqM

comp pµ` 1` logµqA` p2µ´ 2qM

fadd νA` p3ν ´ 5qM

:Comp.: Computational complexity during homomorphic evaluations

3.2 Greater-than Comparison Circuit

For two unsigned µ-bit integers, the circuit comppx̄, ȳq outputs 0̄ if x ě y and 1̄
otherwise. This operation can be recursively defined as follows:

comppx̄, ȳq “ c̄µ´1, (2)

where c̄i “ p1` x̄iq ¨ ȳi ` p1` x̄i ` ȳiq ¨ c̄i´1 for i ě 1 with an initial value
c̄0 “ p1` x̄0q ¨ ȳ0.

Optimizations. As the first step of optimization, we express Equation (2) in
the following closed form

c̄µ´1 “ p1` x̄µ´1q ¨ ȳµ´1 `

µ´2
ÿ

i“0

p1` x̄iq ¨ ȳi ¨ di`1di`2 ¨ ¨ ¨ dµ´1,

where dj “ p1 ` x̄j ` ȳjq. Because it has degree µ ` 1, we can deduce that the
depth of the circuit is logpµ`1q. Next, it is easy to see that a naive construction
of the circuit incurs Opµ2q homomorphic multiplications.

The key observation is that the closed form is expressed by a sum of products
of p1` x̄iq ¨ ȳi and p1` x̄i ` ȳiq terms for i P r0, µ´ 1s. We are able to compute
p1` x̄iq ¨ ȳi for all i using only 1 homomorphic multiplication due to the use of

the SIMD technique. Now, we have to compute
śµ´1
k“i dk for each i P r1, µ´ 2s.

As mentioned above, a naive method incurs Opµ2q, but using SIMD operations
requires one to perform only 2µ ´ 4 homomorphic multiplications, consuming
logµ depth. Finally, we need to multiply p1` x̄iq ¨ ȳi by the result of the above
computation, which also incurs only 1 homomorphic multiplication. Thus, the
total number of homomorphic multiplications equals 2µ´ 2.

Remark 1 We can address the signed numbers by slightly modifying the circuit.
Assume that we place a sign bit in the leftmost position of a value (e.g., 0 for
a positive number and 1 for a negative number) and use the two’s complement
system. Then, for two µ-bit values x and y, comppx̄, ȳq “ c̄µ´1` x̄µ´1` ȳµ´1. It
is clear that the case of two positive numbers corresponds to x̄µ´1 “ ȳµ´1 “ 0̄.

8

3.3 Integer Addition Circuit

Suppose that for two µ-bit integers x and y and for an integer ν ą µ, we construct
two ν-bit integers by padding zeros on the left. Then, a size-ν full-adder faddν
is recursively defined as follows: faddν px̄, ȳq “ ps̄0, s̄1, ¨ ¨ ¨ , s̄ν´1q where a sum
s̄i “ x̄i` ȳi` c̄i´1 and a carry-out c̄i “ px̄i ¨ ȳiq`ppx̄i ` ȳiq ¨ c̄i´1q for i P r1, ν´1s
with initial values s̄0 “ x̄0` ȳ0 and c̄0 “ x̄0 ¨ ȳ0. The main reason for considering
such a large full-adder is to cover SQL aggregate functions with many additions.

Optimizations. Our strategy for optimization is the same as above. Namely,
we express each sum and carry in the closed form and find a way to minimize the
number of homomorphic operations using SIMD operations. As a result, s̄i’s are
written as follows: s̄i “ x̄i`ȳi`

ři´1
j“0 tij where tij “ px̄j ¨ ȳjq

ś

j`1ďkďi´1 px̄k ` ȳkq
for j ă i´ 1 and ti,i´1 “ x̄i´1 ¨ ȳi´1. When i “ ν ´ 1 and j “ 0, because ν ´ 2
homomorphic multiplications are required, we see that the circuit has logpν´ 2q
depth. However, we need to perform an additional multiplication by x̄j ¨ ȳj .
Thus, the total depth amounts to logpν´2q`1. As before, the use of SIMD and
parallelism by automorphism allows us to evaluate the integer addition circuit
with only 3ν ´ 5 homomorphic multiplications, while a naive method requires
pν3 ´ 3ν2 ` 8νq{6 homomorphic multiplications.

4 Search-and-compute on Encrypted Data

In this section, we show how to efficiently perform queries on encrypted data
using the circuit primitives. We first describe our techniques in a general setting
and then show how our ideas are applied to database applications.

4.1 General-Purpose Search-and-Compute

We begin by describing our basic idea for performing a search operation over
encrypted data. We assume that a collection of data is partitioned into N µ-bit
items denoted by R1 ‖ ¨ ¨ ¨ ‖ RN and that the data have been encrypted and
stored in the form of R̄1 ‖ ¨ ¨ ¨ ‖ R̄N .

For a predicate ϕ on a ciphertext C, a search on encrypted data outputs R̄i
if ϕpR̄iq “ 1̄ and 0̄ otherwise. More formally, let ϕ : C Ñ t0̄, 1̄u be a predicate on
encrypted data. Then, we say that Sϕ : CN Ñ CN is a search on the encrypted
data and define SϕpR̄1, . . . , R̄N q :“ pϕpR̄1q ¨ R̄1, . . . , ϕpR̄N q ¨ R̄N q.

We then extend this operation to a more general operation on encrypted data,
i.e., search-and-compute on encrypted data, as follows. Let F : CN Ñ C be an
arithmetic function on encryptions. Then, for restricted search Sϕ : CN Ñ CN ,
we say that pF ˝ SϕqpR̄1, . . . , R̄N q is search-and-compute on encryptions.

Further, we measure the efficiency of the search-and-compute operations on
encrypted data in Theorem 1. The theorem states that if we can perform a search
on encrypted data restricted by ϕ, which specifies only the equality operator,
then the search queries on encrypted data require Np2A` logµMq homomorphic

9

operations in total. If a predicate ϕ allows one to specify all the comparison
operators in the set tă,ď,ą,ě,‰u, then we can perform SϕpR̄1, . . . , R̄N q with
OpµNq homomorphic multiplications.

Theorem 1 Let Mpϕq and MpF q be the total number of homomorphic multipli-
cations for ϕ and F , respectively. Then, we can perform pF ˝ SϕqpR̄1, . . . , R̄N q
with OpNpMpϕqq`MpF qq homomorphic operations. Specifically, we can perform
a search on encrypted data restricted by ϕ using at most OpNpMpϕqqq homo-
morphic operations.

Proof. Because homomorphic multiplication dominates the performance of the
operation, we might only count it. Because a predicate ϕ requires OpMpϕqq
homomorphic operations, we see that Sϕ requires OpNpMpϕqqq homomorphic
operations to compute the predicate N times. Then, the operation uses OpMpF qq
homomorphic operations to evaluate an arithmetic function F on encrypted data.
Therefore, we can conclude that the total computation complexity of search-and-
compute on encryptions is OpNpMpϕqq ` MpF qq. In particular, if we consider
the search on encrypted data, F can be considered to be the identity map.
Therefore, we can perform a search on encrypted data restricted by ϕ using at
most OpNpMpϕqqq homomorphic operations. [\

Security. Secrecy against a semi-honest DB server is ensured because encrypted
data cannot be leaked due to the semantic security of our underlying SWHE
scheme. Secrecy against a semi-honest DB user follows because the result of
queries expressed by our circuit primitives is equivalent to 0̄ if specified conditions
do not hold; therefore, the resulting ciphertext is equal to 0̄. This implies that
the evaluated ciphertexts do not leak anything else except for the number of
unsatisfied tuples.

4.2 Applications to Encrypted Databases

We denote RpA1, . . . , Adq as a relation schema R of degree d consisting of at-
tributes A1, . . . , Ad, and we denote by Āj the corresponding encrypted attribute.

As mentioned above, we use A
piq
j to denote the j-th attribute value of the i-th

tuple, and for convenience, we assume that each of them has a length of µ bits.

4.2.1 Search Queries

Simple Selection Queries. Consider a simple retrieval query as follows:

select Aj1 , . . . , Ajs
from R
where Aj0 “ α;

(Q.1)

where α is a constant value. An efficient construction of (Q.1) using our equal

circuit is as follows:

equal
´

Ā
piq
j0
, ᾱ

¯

¨

´

Ā
piq
j1
, . . . , Ā

piq
js

¯

(Q̄˚.1)

10

Table 2: Complexity of Search Queries

Queries Complexity

Depth
(Q̄˚.1) 1` logµ

(Q̄˚.2) 1` logµ` log τ

Comp.
(Q̄˚.1) 2NA`N p1` logµqM

(Q̄˚.2) 2τNA` τN p1` logµqM

for each i P r1, N s. It follows from Theorem 1 that (Q̄˚.1) has the complexity
evaluation given in Table 2.

Conjunctive & Disjunctive Queries. The query (Q.1) is extended by adding one
or more conjunctive or disjunctive conditions to the where clause. Consider a
conjunctive query as follows:

select Aj1 , . . . , Ajs
from R
where Aj11 “ α1 and ¨ ¨ ¨ and Aj1τ “ ατ ;

(Q.2)

The query (Q.2) is expressed as the following: For each i P r1, N s,

τ
ź

k“1

equal
´

Ā
piq
j1k
, ᾱk

¯

¨

´

Ā
piq
j1
, . . . , Ā

piq
js

¯

. (Q̄˚.2)

A disjunctive query whose logical connectives are all ors is also evaluated by

changing the predicate into
´

1`
śτ
k“1

´

equal
´

Ā
piq
j1k
, ᾱk

¯

` 1
¯¯

. Denoting by τ

the number of connectives, (Q̄˚.2) additionally requires log τ in depth to compute
the multiplications among the τ equality tests in comparison with (Q̄˚.1). Table 2
reports the complexity analysis.

4.2.2 Search-and-compute Queries

We continue presenting important real constructions as an extension of Theo-
rem 1, in which F is one of the built-in SQL aggregate functions–sum, avg, count
and max. We begin with the case F “ sum.

Search-and-sum Query. Consider the following sum query:

select sumpAj1q
from R
where Aj0 “ α;

(Q.3)

As mentioned above, due to our plaintext space being Z2, repeatedly applying
simple homomorphic additions does not ensure correctness. This is the motiva-
tion for our integer addition circuit (See Section 3.3). Now, we can efficiently

11

perform (Q.3), expressed as follows:

faddµ`logN

´

equal
´

Ā
piq
j0
, ᾱ

¯

¨ Ā
piq
j1

¯

. (Q̄˚.3)

Because the result of the search-and-sum query is less than 2µN , it suffices to
use a full adder of size ν “ µ`logN for adding all the values. Using our optimized
equality circuit, (Q̄˚.3) requires N equality tests in total and N homomorphic
multiplications for each result of the test. Thus, the total computation cost is
p2N`νpN´1qqA`pN p1` logµq`pN´1q p3ν ´ 5qM with the depth 1` logµ`
logN p1` logpν ´ 2qq based on Theorem 2 below.

Theorem 2 Let |R| denote the cardinality of a set of tuples from a relation
schema R. Suppose that all the keyword attributes in the where clause and the
numeric attributes in the select clause have }kwd} bits and }num} bits, respec-
tively. Then, a search-and-sum query can be processed with the depth

1` rlogp}kwd}qs` rlog |R|s ¨ p1` rlog p}num} ` rlog |R|s´ 2qsq .

Proof. The query (Q̄˚.3) consumes 1 ` rlogp}kwd}qs levels to compute all the
equality tests. Then, it performs p|R| ´ 1q full-adder operations on the results,
each of which is of size p}num}`rlog |R|sq and which consumes p1`rlogp}num}`
rlog |R|s´ 2qsq levels. [\

Search-and-Count Query. We observe that search-and-count queries can be pro-
cessed in a similar manner. For example, assume a search-and-count query with
countp˚q in place of sumpAj1q in (Q.3). The query can also be efficiently pro-

cessed by faddlogN

´

equal
´

Ā
piq
j0
, ᾱ

¯¯

.

Search-and-Avg Query. To process a search-and-compute query with the avg

aggregate function, it suffices to compute search-and-sum queries because an
average can be obtained using one division after decryption.

Search-and-Max(Min) Query. It is clear that one can obtain the max (or min)
aggregate function by repeatedly applying the comp circuit primitive.

4.2.3 Join Queries

Now, we design the join queries within the search-and-compute paradigm. Sup-
pose that we have the other relation SpB1, . . . , Beq consisting of M tuples for
M ď N . First, we consider a simple join query as follows:

select r.Aj1 , . . . , r.Ajs , s.Bj11 , . . . , s.Bj1s1
from R as r,S as s
where r.Ajk “ s.Bj1

k1
;

(Q.4)

12

Then this type of query is expressed as the following: For each i P r1, N s, i1 P
r1,M s,

equal
´

r.Ā
piq
jk
, s.B̄

pi1q
j1
k1

¯

¨

´

r.Ā
piq
j1
, s.B̄

pi1q
j11
, . . .

¯

. (Q̄˚.4)

For fixed i and i1, we suppose that each numeric-type attribute is packed in only
one ciphertext. Then, the only difference from (Q̄˚.1) is that (Q̄˚.4) requires
two homomorphic multiplications by the result of search operations; thus, we
need to perform NM equality tests in total. Hence, the depth of circuit needed
to process (Q̄˚.4) is 1 ` logµ, and the computation complexity is p2NMqA `
NM p2` logµqM.

Next, we consider an advanced join query pQ.5q with two aggregate func-
tions sumpr.Ajq, countp˚q and the same simple condition as (Q.4). Assuming
sumpr.Ajq ă 2µNM , we use a full adder of size ν “ µ` log pNMq. By contrast,
the result of countp˚q ă NM , and it suffices to use a full adder of size log pNMq.
Thus, one candidate of circuit construction for pQ.5q is as follows:

faddµ`logNM

´

equal
´

r.Ā
piq
jk
, s.B̄

pi1q
j1
k1

¯

¨ r.Ā
piq
j

¯

faddlogNM

´

equal
´

r.Ā
piq
jk
, s.B̄

pi1q
j1
k1

¯¯

.
(Q̄˚.5)

With respect to sumpr.Ajq, this is the same as (Q̄˚.3), except for the number
of operands for additions. Therefore, the depth for evaluation amounts to 1 `
logµ ` logpNMq p1` logpν ´ 2qq and the computation complexity is p2NM `

νpNM ´ 1qqA` pNM p1` logµq ` pNM ´ 1q p3ν ´ 5qqM.

5 Performance Improvements

There is still room to further improve the performance of the circuit primitives
in Section 3. Our strategies are composed of three interrelated parts: Switch the
message space Z2 into Zt, adapt the circuit primitives to Zt, and fine-tune the
circuit primitives using SIMD operations again.

5.1 Larger Message Spaces with Lazy Carry Processing

If we encrypt messages in a bit-by-bit manner, the primary advantage is that two
comparison operations are very cheap, but running an integer addition circuit
on encrypted data is expensive (see Table 3). On the contrary, it would be of
substantial benefit to take the message domain as a large integer ring if one can
quite efficiently evaluate the addition circuit with much lesser depth. One of the
important motivations of using such a large message space is that the bit length
of keyword attributes (e.g., ď 20 bits) in the where clause is generally smaller
than that of numeric-type attributes (e.g., ě 30 bits) in the select clause.

13

Table 3: Running-time Comparisons in Z2 and Z214

Message Space
equal comp add

(10-bits) (10-bits) (30-bits)

Z2 2.2621 ms 8.5906 ms 228.5180 ms

Z214 208.6543 ms 307.5200 ms 0.0004 ms

Specifically, if we represent a numeric-type attribute A in the radix 2ω, then
we have

ÿ

i

Apiq “
ÿ

k

ÿ

i

rApiqsk ¨ p2
ωqk;

therefore, it suffices to compute
ř

irA
piqsk over the integers. Assuming that the

plaintext modulus t is sufficiently large, we are able to perform addition without
overflow in Zt. We should note that we only have to process carry operations
after computing each of them over the large integer ring.

To verify the performance gained by integer encoding, we report the running
time of each circuit primitive in Table 3. We suspect that integer encoding yields
more benefits in performing search-and-compute queries because aggregate func-
tions extensively rely on addition.

5.2 Calibrating Circuit Primitives

It is clear that the use of a different message space results in modifications of
our circuit primitives. Before discussing our modifications in detail, we need
to determine some lower bounds of depth for homomorphic multiplication as a
function of t. We have two types of homomorphic multiplications: multiplying
a ciphertext either by another ciphertext or by a known constant. We formally
state this in Theorem 3.

Theorem 3 Suppose that the native message space of the BGV cryptosystem
is a polynomial ring ZtrXs{xΦmpXqy and that a chain of moduli is defined by a
set of primes of roughly the same size, p0, ¨ ¨ ¨ , pL, that is, the i-th modulus qi
is defined as qi “

śi
k“0 pk. For simplicity, assume that p is the size of the pk’s.

Let us denote by h the Hamming weight of the secret key. For i ď j, let c and c1

be normal ciphertexts at level i and j, respectively. Then, the depth, denoted by
d̃, for multiplying c and c1 is the smallest nonnegative integer that satisfies the
following inequality:

t2 ¨ φpmq ¨ p1` hq ¨ prq´1
i stq

2 ă 6p2¨d̃.

In addition, the depth, denoted by d̃c, for multiplying c by a constant is the
smallest nonnegative integer for which the following inequality holds:

φpmq ¨ pt{2q2 ă p2¨d̃c .

14

Proof. Before multiplying two ciphertexts, we set their noise magnitude to be
smaller than the pre-set constant B “ t2φpmqp1 ` hq{12 by modulus switch-
ing. Subsequently, we obtain a tensor product of the ciphertexts, and the re-
sult has the noise magnitude as 2Bprq´1

i stq
2. Next, the scale-down is performed

by removing small primes pk’s from the current prime-set of the tensored ci-
phertext; we say that ∆ is the product of the removed primes. We then have
2B2prq´1

i stq
2{∆2 ă B. By assumption, it may be considered that ∆ “ pd̃, which

means that d̃ is the smallest nonnegative integer that satisfies the inequality
2Bprq´1

i stq
2 ă p2¨d̃.

We now consider the case in which c is multiplied by a constant. As above,
the result has approximately the same noise estimate as B ¨ φpmq ¨ pt{2q2. Thus,
we see that d̃c is the smallest nonnegative integer that satisfies the inequality
φpmq ¨ pt{2q2 ă p2¨d̃c . [\

As a concrete example, we have d̃ “ 2 and d̃c “ 1 in Z214 with the assumption
that h “ 64 and m “ 13981.

We now describe a basic idea that underlies our modifications. It is well
known that for x, y P t0, 1u, the following properties hold:

x‘ y “ x` y ´ 2 ¨ x ¨ y and x^ y “ x ¨ y,

where `, ´, and ¨ are arithmetic operations over integers. Based on this obser-
vation, our equality test can be rewritten as follows:

equalpx̄, ȳq “
µ´1
ź

i“0

p1´ x̄i ´ ȳi ` 2 ¨ x̄i ¨ ȳiq .

We then see that with only a small extra cost, we can construct a new arithmetic
circuit for an equality test working on Zt. Next, consider the comp circuit on Zt.
Recall that the closed form of c̄µ´1 is

c̄µ´1 “ p1´ x̄µ´1q ¨ ȳµ´1 `

µ´2
ÿ

i“0

p1´ x̄iq ¨ ȳi ¨ pdi`1di`2 ¨ ¨ ¨ dµ´1q.

Rather than dj “ p1`x̄j`ȳjq, we set dj “ p1`2¨x̄j ¨ȳj´ȳj´x̄jq¨p1`2¨x̄j ¨ȳj´2ȳjq.
As a result, Table 4 shows the complexity results of the search-and-compute
queries on encrypted databases of N tuples with µ-bit attributes from using the
new message space Zt.

6 Experimental Results

This section demonstrates the performance of query processing expressed by our
optimized circuit primitives. The essential goal of the experiments in this section
is to verify the efficiency of our solution in terms of performance.

All experiments reported in our paper were performed on a machine with an
Intel Xeon 2.3 GHz processor with 192 GB of main memory running a Linux

15

Table 4: Complexity of Search-and-sum Queries

Search Complexity

Depth

equal p2` logµq d̃` d̃c

conjτ p2` logµ` log τq d̃` d̃c

comp p4` logµq d̃` d̃c

Comp.

equal p4N ´ 1qA`N p3` logµqM

conjτ pp3τ ` 1qN ´ 1qA` τN p3` logµqM

comp pN pµ` 5` logµq ´ 1qA`N p2µ` 1qM

3.2.0 operating system. All methods were implemented using the GCC com-
piler version 4.2.1. In our experiments, we used a variant of a BGV-type SWHE
scheme [14] with Shoup’s NTL library [18] and Shoup-Halevi’s HE library [19].
Throughout this section, when we measured the average running times, we ex-
cluded computing times used in data encryption and decryption.

6.1 Adjusting the Parameters

Without a loss of generality, we assume that the bit length of keyword attributes
in the where clause is 10-bit and that of numeric-type attributes in the select

clause is 30-bit. The keyword attributes are expressed in a bit-by-bit manner, and
each bit is an element of Z2r . In addition, numeric-type attributes are expressed
by the radix 2ω but are still in the same space Z2r .

We begin by observing the following relation among the parameters. At this
point, we consider the selectivity of a selection condition, which means the frac-
tion of tuples that satisfies the condition, and we denote it by ε.

Theorem 4 Let A be a numeric-type attribute. For a positive integer ω ě 1,
suppose that each attribute is written as A “

ř

krAsk ¨ p2
ωq
k

with 0 ď rAsk ă 2ω.
Then, to process a search-and-sum query, one can take a plaintext modulus with
r “ Θpω ` logpεNqq.

Proof. The goal of the theorem is to provide a bound for the size of a plaintext
modulus; therefore, we simply omit an overhead bar for all variables. Let us
denote by ϕ a predicate on encrypted data and by A˚ a keyword attribute.
Then, a search-and-sum query can be written as

ÿ

i

SϕpA
˚, αq ¨Apiq “

ÿ

k

˜

ÿ

i

SϕpA
˚, αq ¨ rApiqsk

¸

¨ p2ωq
k
.

We then have that
ř

i SϕpA
˚, αq ¨ rApiqsk ă 2ω

ř

i SϕpA
˚, αq “ 2ω ¨ pεNq. Thus,

for a database with N records, it is sufficient to choose r such that 2ω ¨pεNq ď 2r.
Note, the larger we make the plaintext modulus 2r, the more noise there is in

16

the ciphertexts and thus the faster we consume the ciphertext level. Therefore,
it appears that ω ` logpεNq is the tight bound for the parameter r. [\

One may wonder why Sϕp¨, . . .q does not take multiple keyword attributes in
the proof. Because we consider the selectivity ratio, it does not need to do so.
In our experiments, we varied the selectivity ratio from 5 to 40% and plotted
the average running time of queries over a database with N “ 102, 103, and 104

tuples.

6.2 Experiments for Search

We measured the running time per query while varying the number of numeric-
type attributes. We take the ring modulus m “ 8191, and each of the ciphertexts
has 630 plaintext slots. For N “ 1, the experiment of (Q̄˚.1) query is given in
the top three rows of Table 5a and that of (Q̄˚.2) is in the bottom three rows in
Table 5a, where s is the number of attributes and L is the number of ciphertext
moduli.

6.3 Experiments for Search-and-sum

We conducted a series of additional experiments to measure performance of
search-and-sum queries. Because each of the ciphertexts can hold ` plaintext
slots of elements in Z2r and because a numeric-type attribute with a length
of 30 bits is encoded into ω̃ (“ r30{ logp2ωqs “ r30{ωs) slots, we can process ˜̀

(“ t`{ω̃u) attributes per ciphertext. At first glance, a larger ω seems to be better.
However, if ω is too large, by Theorem 4, a plaintext modulus 2r becomes large.
This results in an increased depth of circuits. Therefore, we need to choose a
sufficiently large ω whereby the resulting plaintext space is not too large.

We divided our experiment into four cases by types of predicates: (1) Single
equality, (2) Single comparison, (3) Multiple equality, and (4) Multiple compar-
ison. In this paper, we only report the experiment results of Case I in Table
5b. We recommend that the readers review the original reference [9] for other
experiments in more details.

Case I: Single equality. This case contains one equality test in the where clause.
We chose a plaintext space so that the number of plaintext slots is divisible by
10. Then, the entire keyword attribute is packed in only one ciphertext. We used
m “ 13981 so that each of the ciphertexts holds 600 plaintext slots.

Acknowledgements. The authors would like to thank the anonymous review-
ers of WAHC 2015 for their valuable comments. Jung Hee Cheon and Miran
Kim were supported by Samsung Electronics, Co., Ltd. (No. 0421-20140013).
Myungsun Kim was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Edu-
cation (2014R1A1A2058377).

17

Table 5: Experiment Results

(a) (Q̄˚.1) and (Q̄˚.2)

Message Space τ L s Timing

Z2 1 6

5 0.38s

10 0.76s

20 1.51s

Z2 4 7

5 2.04s

10 4.09s

20 8.17s

(b) Case I

N ε Message Space Radix L Timing

102 ă 16% Z214

210 14 3.69s

ă 32% Z215 15 3.89s

103 ď 6%
Z216

210

15
38.78s

ď 25% 28 51.64s

104

ď 10%

Z216

26

15

681.05s

ď 20% 25 817.26s

ď 40% 24 1089.68s

References

1. R. Ada Popa, C. Redfield, N. Zeldovich, and H. Balakrishnan. CryptDB: protecting
confidentiality with encrypted query processing. In T. Wobber and P. Druschel,
editors, SOSP, pages 85–100, 2011.

2. M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic and efficiently searchable
encryption. In A. Menezes, editor, Advances in Cryptology-Crypto, LNCS 4622,
pages 535–552, 2007.

3. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryp-
tion with keyword search. In C. Cachin and J. Camenisch, editors, Advances in
Cryptology-Eurocrypt, LNCS 3027, pages 506–522, 2004.

4. D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. Wu. Private database queries
using somewhat homomorphic encryption. In M. Jacobson Jr., M. Locasto, P. Mo-
hassel, and eihaneh Safavi-Naini, editors, ACNS, LNCS 7954, pages 102–118, 2013.

5. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF formulas on ciphertexts.
In J. Kilian, editor, TCC, LNCS 3378, pages 325–341, 2005.

6. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In S. Goldwasser, editor, ITCS, pages 309–325,
2012.

18

7. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In R. Ostrovsky, editor, FOCS, pages 97–106, 2011.

8. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
LWE and security for key dependent messages. In P. Rogaway, editor, Advances
in Cryptology-Crypto, LNCS 6841, pages 505–524, 2011.

9. J. H. Cheon, M. Kim, and M. Kim. Search-and-compute on encrypted data. IACR
Cryptology ePrint Archive, 2014(812), 2014.

10. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: Improved definitions and efficient constructions. Journal of Computer
Security, 19(5):895–934, 2011.

11. T. El Gamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology-
Crypto, LNCS 196, pages 10–18, 1984.

12. J. Feigenbaum and M. Merritt. Open questions, talk abstracts, and summary of
discussions. DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 2:1–45, 1991.

13. C. Gentry. Fully homomorphic encryption using ideal lattices. In M. Mitzenmacher,
editor, STOC, pages 169–178, 2009.

14. C. Gentry, S. Halevi, and N. Smart. Homomorphic evaluation of the AES circuit.
In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology-Crypto, LNCS
7417, pages 850–867, 2012.

15. K. Lauter, M. Naehrig, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In C. Cachin and T. Ristenpart, editors, CCSW, pages 113–124, 2011.

16. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In J. Stern, editor, Advances in Cryptology-Eurocrypt, LNCS 1592, pages 223–238,
1999.

17. R. Rivest, L. Adleman, and M. Dertouzos. On data banks and privacy homomor-
phisms. Foundations of Secure Computation, pages 165–179, 1978.

18. V. Shoup. NTL: A library for doing number theory. In http://www.shoup.net/ntl/,
2009.

19. V. Shoup and S. Halevi. Design and implementation of a homomorphic-encryption
library. Technical report, IBM Technical Report, 2013.

20. N. Smart and F. Vercauteren. Fully homomorphic SIMD operations. IACR Cryp-
tology ePrint Archive, 2011(133), 2011.

21. D. Song, D. Wagner, and A. Perrig. Practical techniques for searching on encrypted
data. In IEEE Symposium on Security and Privacy, pages 44–55, 2000.

22. M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic en-
cryption over the integers. In H. Gilbert, editor, Advances in Cryptology-Eurocrypt,
LNCS 6110, pages 24–43, 2010.

	Search-and-compute on Encrypted Data

