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Abstract—Spatio-temporal patterns extracted from historical trajectories of moving 
objects reveal important knowledge about movement behavior for high quality LBS 
services. Existing approaches transform trajectories into sequences of location symbols 
and derive frequent subsequences by applying conventional sequential pattern mining 
algorithms. However, spatio-temporal correlations may be lost due to the inappropriate 
approximations of spatial and temporal properties. In this paper, we address the problem 
of mining spatio-temporal patterns from trajectory data. The inefficient description of 
temporal information decreases the mining efficiency and the interpretability of the 
patterns. We provide a formal statement of efficient representation of spatio-temporal 
movements and propose a new approach to discover spatio-temporal patterns in 
trajectory data. The proposed method first finds meaningful spatio-temporal regions and 
extracts frequent spatio-temporal patterns based on a prefix-projection approach from the 
sequences of these regions. We experimentally analyze that the proposed method 
improves mining performance and derives more intuitive patterns. 
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1. INTRODUCTION 

With the advances in mobile communication and positioning technology, large amounts of 
moving objects data from various types of devices, such as GPS equipped mobile phones or 
vehicles with navigational equipment, has been collected. From these devices, movements of 
objects are collected in the form of trajectories. Spatio-temporal patterns in trajectories which 
represent movement patterns of objects can provide useful information for high quality Loca-
tion-Based Services (LBS), such as traffic flow control or location-aware advertising, etc [1]. 

Data mining techniques, especially, sequential pattern mining has been the most intuitive and 
attractive approach to extract frequent spatio-temporal patterns. Since trajectory data stores loca-
tions of objects over time, we can reframe the problem of discovering spatio-temporal patterns 
as extracting frequent sequential patterns in trajectories [2]. Although most studies adopt a se-
quential pattern mining paradigm, straight-forward application of existing algorithms to the spa-
tio-temporal domain cannot meet the requirements in the quality of results nor the performance 
of the mining process, due to the large volume of data and complex computations. Since the 
movements of an object are simply described as a sequence of spatial locations, temporal prop-
erties are abstracted into redundant location symbols. For example, a trajectory of a tourist Alice, 
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Museum (1h)  Restaurant (40 min)  Airport can be represented as a sequence {A…AB…BC}, 
where A,B and C are location symbols. This sequential representation of temporal constraints 
not only hinders efficient processing of data, but also decreases interpretability of extracted pat-
terns. 

In this paper, we address the problem of inefficient representation of spatio-temporal proper-
ties and propose new algorithms for mining spatio-temporal patterns. First, we introduce two 
compact representations of movements of objects, which abstract original trajectories into se-
quences of regions which objects mostly visit. This spatio-temporal abstraction of data contrib-
utes to improving the mining efficiency and the interpretability of extracted patterns. The pro-
posed methods first abstract original trajectories into simplified line segments and then, cluster 
them into disjointed regions, which divide the data space regarding the movements of objects in 
the input data. These regions can be represented in two different ways: (i) multidimensional 
spatio-temporal regions or (ii) composites of spatial regions and the corresponding temporal 
values. Integrating spatial and temporal properties, such as (i), allows for efficient mining proc-
essing, but there arises a need for post processing to understand the temporal meanings of the 
extracted patterns. Therefore, we extend the representation to be able to deal with temporal con-
straints explicitly. According to these representations, we present efficient methods for discover-
ing frequent spatio-temporal patterns. Frequent spatio-temporal patterns are extracted based on a 
prefix-projection approach from the sequences of the sequences of spatio-temporal regions.  

The rest of this paper is organized as follows. In Section 2, we describe related works and 
then formally define the problem of mining spatio-temporal patterns in Section 3. Section 4 in-
troduces the proposed method in detail. We present an experimental evaluation of our approach 
in section 5. Finally, Section 6 provides concluding remarks and discussions for future works. 

 
 

2. RELATED WORK 
Existing studies on mining spatio-temporal patterns can be generally divided into two catego-

ries, according to the types of input data. [3] and [4] discover patterns from historical datasets of  
geosciences to detect significant environmental events such as temperature changes. Since we 
are interested in analyzing the movement patterns of objects, we focus on the mining trajectory 
data of moving objects. Tseng and Lin apply a tree-based structure in [5] to discover temporal 
moving patterns from sensor data, which contain both movement and time intervals. In [6], a 
mining algorithm for predicting user movements in a PCS (Personal Communication Systems) 
network was proposed, which defines the mobility pattern as a sequence of cells in the network 
and mines frequent paths based on sequential pattern mining. Similar to the work in [3], which 
employs grid-based spatial decompositions for discretizing data, [5] and [6] also uses a prede-
fined cell network or a simple mesh network for representing spatial properties in data. [7] by 
Kostov et al. transforms GPS data into sequences of location points such as starting, destination 
and crossing points. Although simple and intuitive, these methods are based on the predefined 
partitions of data space; therefore, some patterns may be lost when the grid size is too large to 
capture object movement. In contrast, very similar trajectories cannot be extracted as a pattern in 
the case of excessively small cells.  

There are recent approaches which discover spatio-temporal regions regarding the distribution 
of input data. Mamoulis et al. address the problem of mining sequential patterns from spatio-
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temporal data by considering the patterns as the form of trajectory segments [7]. They first de-
compose the original trajectories into segments then, group them according to their shape and 
closeness. They introduce a spatio-temporal pattern mining algorithm, which finds frequent se-
quential patterns based on a tree structure and an Apriori paradigm. A similar goal, but focused 
on periodic patterns, is studied in [8] and [9]. The work in [9] searches periodic patterns from 
object trajectory data. An efficient mining algorithm for retrieving a maximal periodic pattern 
was proposed and several problems including the discovering of a shifted or distorted pattern 
were addressed. For obtaining spatial approximations dynamically, they adopt a density-based 
clustering method called DBSCAN. It is different from our approach in that they focus on ex-
tracting periodic patterns during a continuous subinterval of the whole history. However, in 
these approaches, spatio-temporal information is abstracted into discrete regional symbols, thus 
temporal properties are concealed in segment symbols and the duration of object movements is 
represented as redundant symbols [9]. Moreover [7] needs a lot of complex computations for 
sorting and merging segments repeatedly and it degrades overall processing performance. Gian-
notti et al. pursued a similar goal to ours in [10]. A trajectory pattern, matched to our spatio-
temporal pattern, describes movement patterns in both spatial and temporal contexts, based on 
RoI (Region of Interest). They first identify RoIs, which are mostly visited regions, then, find 
frequent patterns from sequences of regions of interest. The sequences of RoIs not only repre-
sent the spatial movements but also the travel time of the moving objects. TAS (Temporally 
Annotated Sequences), which are an extension of sequential patterns with transition time be-
tween points, is adopted for this spatio-temporal representation [11]. Our approach here is simi-
lar in that we represent spatio-temporal movements by handling temporal properties explicitly. 
However, they find frequent trajectory patterns by identifying the RoIs dynamically intertwined 
with the mining of sequences with temporal information and then adopt the TAS concept.  

 
 

3. SPATIO-TEMPORAL PATTERNS IN OBJECTS’ TRAJECTORIES 
This section defines the problem of mining spatio-temporal patterns in trajectory data and in-

troduces some basic concepts and terminology. We briefly present definitions of spatio-temporal 
(ST) patterns and frequent ST-patterns. The trajectory of a moving object is a temporally or-
dered sequence over a long history, consisting of spatial locations which are measured in 2-
dimensional coordinates at each timestamp. The trajectory is formally stated by the following: 

 
Definition 1. A trajectory of a moving object T = {(x1,y1,t1), (x2,y2,t2),…,(xn,yn,tn)}, such that ti 
< ti+1 for all i ∈{1, … , n}; each (xi, yi, ti) is the object’s location at time ti. 
 
Even though objects follow the same routes, it is highly unlikely that trajectories have the 

identical sequences due to the noise and the deviation of the objects’ movements. In addition, to 
mine the frequent patterns using the sequential pattern mining approach, continuous location 
values should be discretized prior to the mining process [2]. To discretize trajectory data, each 
(xi, yi) at timestamp ti is transformed to the id of the spatial region describing the object’s loca-
tion. Since the interval between consecutive timestamps is fixed, a spatio-temporal sequence S is 
represented as a set of location symbols li, which contain positions (xi, yi), as shown in Fig. 1a. 
Then, a trajectory is converted to a generalized sequence of location symbols “l1l2…” and, there-
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fore temporal properties of objects are abstracted into the sequential order and redundancy of 
symbols [3]. Although grid-based partition is a simple and intuitive way to divide the data space, 
we may not obtain satisfactory results in finding spatio-temporal patterns, for several reasons. 
First, an inappropriate cell size results in losing important patterns. If the cell size is too large, 
the movements of objects inside a cell will be lost during discretization [7]. Fig. 1b shows that 
two different sequences are converted to the same sequence {A,A,A,A,A,A,A,A,B,D}. In this case, 
we may get wrong frequent patterns. On the contrary, if the space decomposition is dense, two 
very similar trajectories are discretized into completely different sequences, as shown in Fig. 1c. 
Second, small cell size and highly redundant symbols may decrease the efficiency of the mining 
process. The performance of the sequential mining process is closely associated with the length 
of sequence and the number of different items appearing in the sequences. If data space is de-
composed into overly fine granularities, the number of different cells in sequences drastically 
increases. Moreover, as the duration of the object’s movement is represented as redundant loca-
tion symbols, long sequences suffer from an inefficient mining process. Third, inaccurate and 
unintuitive patterns may be derived from input data. A sequence {A,…, A,B,…,B,C,…,C} has a 
different temporal meaning than does {A,B,C}, in that the former is intended to visit each region 
and spend some time; on the other hand, the latter appears to pass A, B and C as an intermediate 
location on its way to the destination. However, if the former is found to be a frequent pattern, 
the latter will also be frequent irrelevant to its actual support count due to the characteristics of 
the support counting step in the sequential mining process. Furthermore, long, redundant sym-
bols may limit the interpretability of the extracted patterns. Thus, we need to represent trajecto-
ries in a better way, which efficiently deals with temporal properties. 

Trajectories can be partitioned into disjointed subsequences by detecting meaningful spatio-
temporal changes in objects’ movement. A segment between two change points forms a spatio-
temporal region, which includes both a spatial and a temporal approximation of movements 
within the segment. Temporal abstraction in the regions resolves the redundancy of location 
symbols, and enables sequences to be represented spatio-temporally, not spatio-sequentially. If 
original trajectories are converted as sequences of the spatio-temporal regions, a spatio-temporal 
pattern can be defined as follows: 

 
Definition 2. A Spatio-Temporal pattern ST = 〈R1R2...Rk〉 for k < n, such that a spatio-
temporal region Ri =(si, di), si is a spatial approximation of points from tl to tm in trajectory T 
(l < m < n), and di is a duration of movements between tl to tm. 

 
Fig. 1.  Discretizing trajectories with fixed-size grids 
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Fig. 2 shows two different representations of ST-patterns. As shown in Fig. 2a, spatial 
changes in location are approximated into a 2-dimensional rectangle, and the transition time 
within the segment is abstracted into the height of a 3-dimensional hyper rectangle. Therefore, 
we can obtain spatio-temporal regions Ri by grouping similar hyper rectangles. They incorporate 
spatial and temporal information into a spherical region. On the other hand, if we abstract the 
spatial movements of objects into a 2-dimensional cluster si, then a spatio-temporal region can 
be represented as a form of [si, di] (Fig. 2b), where di means the duration value between the end 
points. Notice that different spatio-temporal regions can be generated by adjusting the degree of 
spatio-temporal approximation using threshold values; segmentation threshold δ, clustering 
threshold εc and temporal threshold εt values. Finally, the mining ST-pattern problem searches 
all frequent spatio-temporal patterns in the original trajectory T, which are frequent, given a line 
simplification threshold δ, clustering threshold εc, temporal threshold εt and minimum support 
min_sup.  

 
 

4. MINING SPATIO-TEMPORAL PATTERNS BY INCORPORATING TEMPORAL 
PROPERTIES 
In the previous section, we discussed that discovering ST-patterns from trajectories can be a 

problem of finding frequent subsequences from the sequences of spatio-temporal regions. In this 
section, in order to mine frequent spatio-temporal patterns from trajectories, we propose two 
different methods according to how the spatio-temporal region is formulated. MST-ITP (Mining 
Spatio-Temporal patterns by Incorporating Temporal Properties) is a straight forward approach 
to incorporate temporal properties into a multidimensional spherical spatio-temporal region. 
Another approach, MST-TEQ (MST with Temporal Quantities), treats temporal information 
explicitly as a form of extended pattern from the conventional sequential patterns.  

 
4.1 Discovering Spatio-Temporal Regions  

In order to discover ST-patterns from trajectories, we first partition the data space into spatio-
temporally meaningful regions. Also, we want to reduce the data size during discretization to 
improve the efficiency of the mining process. To tackle this problem, we first summarize trajec-
ories into their approximations using line simplification. Simplified segments abstract the 

 
Fig. 2.  Different representation of a spatio-temporal region 
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movements of objects as well as compress the data size. Then we cluster the simplified segments 
into the disjointed spatio-temporal regions. Finally, original trajectories are discretized into se-
quences of cluster-ids into which the points of simplified trajectories fall.  

Line simplification is a method for abstracting poly-lines within a deterministic error bound-
ary [12]. In our approach, we adopt a DP (Douglas-Peucker) algorithm, since it is mathemati-
cally superior to other line simplification algorithms, and also provides the best perceptual rep-
resentations of the original lines. The basic DP algorithm recursively decomposes a set of points 
of a trajectory T:{p1, p2,…,pn} to a subset T ′ :{p'1, p'2,…,p's} ⊆ T, s ≤ n. Starting from the line 
segments of p1 and pn, it examines whether the farthest point from a line has a distance at most δ, 
a user specified threshold. If the distance is below the given threshold, then the segment formed 
by the two end points can be accepted as an approximation of all points between them. Other-
wise, it is divided at the farthest point, and then two split parts are recursively simplified. As a 
result, the segment from p'i-1 to p'i approximates all the original points between them, such that 
the perpendicular distance from it is at most δ, as shown in Fig. 3. 

In order to intertwine spatial approximations from the previous phase with temporal informa-
tion, we derive a feature vector v, defined as a triple, v = {Pl, Pr, d}, where Pl and Pr are the two 
end points of the line segments and d is a duration value for movements along the path in the 
corresponding segments, as shown in Fig 3. As a result, feature vectors V:{v1,…vk-1} (1 < k ≤ m-
1), where vk = {Pk-1, Pk, dk}are calculated from simplified trajectory T ':{p'1,…,p'm}. Since it is 
meaningless to compare vectors with different offsets and ranges of values, we need to equalize 
the importance of all features by normalization. We adopted min-max normalization which per-
forms a linear transformation on the original data into a new range, generally [0,1]. It maps a 
value v to each v' by calculating v'=((v-min)/(max-min))×(newmax-newmin)+newmin). 

The movements of objects are not uniformly distributed in the data space. Therefore, we have 
to identify meaningful regions considering spatial movements of objects and their related tempo-
ral information, to partition the data space appropriately. In order to identify the regions consid-
ering the distributions of data, we cluster the simplified segments into a spatio-temporal region, 
as shown in Fig. 3. We can represent the spatial and temporal properties of a simplified segment 
as a feature vector, and adopt a clustering algorithm to find proper clusters from these vectors. It 
is known that the computational complexity of most clustering algorithms is at least quadratic. 
Furthermore, since we are interested in specifying the “closeness” threshold between clusters, 
we consider the pre-clustering phase of BIRCH [13] as a clustering step. The pre-clustering 
phase of BIRCH has linear time complexity in input size and stores a summary of data in a 

 
Fig. 3.  Feature vectors and spatio-temporal regions in MST-ITP 
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compact tree structure, or CF-tree. It incrementally scans data, and inserts points into the CF-
tree, building summarizations for clusters. Given the value of εc and feature vectors, our cluster-
ing phase generates groups of similar segments which divide data space into disjoint groups. 
The number of clusters and their size can vary based on the value of δ, εc and the complexity of 
original trajectories. For example, more complex trajectories tend to generate more different 
segments by line simplification; therefore, the number of clusters increases with the complexity 
of trajectories. Likewise, the size of a cluster is basically dependent upon the size of the simpli-
fied segments, but is also affected by the threshold value εc. In MST-ITP, temporal information 
is incorporated into a spatio-temporal region ri, which implicitly includes both spatial and tem-
poral approximations as shown in Fig 3. Therefore, we could describe trajectories as a sequence 
of symbols of the spatio-temporal regions’ ids. Finally, an original trajectory T is abstracted into 
a sequence 〈r1r2…rk〉 of a spatio-temporal region id ri. 

 
4.2 Mining ST-Patterns by Incorporating Temporal Properties 

Since we obtain the sequences of spatio-temporal regions from the original trajectories, we 
can discover frequent spatio-temporal patterns by applying the sequential pattern mining tech-
niques to these sequences. MST-ITP adopts a projection-based approach from [14] for the se-
quences of spatio-temporal regions. It is an extension of the pattern-growth approach to mine 
sequential patterns from a sequence database. It first generates all length-1 patterns in the data-
base. Then it recursively constructs projected databases and finds all frequent patterns. Our 
methods adopt a variant of this pattern-growth approach to mine the spatio-temporal patterns.  

Fig 4 illustrates the algorithm in detail. At first, it discovers a set of spatio-temporal segments 

 
Fig. 4.  MST-ITP algorithm
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r from input trajectory database T using line simplification and clustering (line 1-3). Then, it 
finds frequent 1-regions (i.e., frequent 1-patterns) from the sequences of regions. All the region 
ids with a support count greater than the min_sup are discovered using a depth-first traversal, by 
extending prefixes (line 5). Starting from the discovered 1-length regions, MST-ITP discovers 
longer ones in a prefix-projection style. For each frequent region ri in R, we calculate the 〈r〉-
projected database, which consists of the set of suffixes for the prefix ri in R. By scanning the 
〈r〉-projected database once, all patterns with length-2 having a prefix 〈r〉 can be generated by 
appending a new item to the last element (in Procedure Pattern_Extraction). Since a trajectory 
contains one location measurement at each time stamp, a sequence of spatio-temporal regions in 
R cannot have continued items (e.g. (_r1)). Therefore, it is not required to deal with continued 
items in constructing projection databases and in support counting. This modification enables 
the method to reduce unnecessary support counting steps in implementing the algorithm.  

 
4.3 Mining ST-Patterns with Temporal Quantities 

As described in the previous subsection, MST-ITP does not deal with temporal information 
explicitly. Therefore, while the spatial granularity of an extracted pattern could be controlled by 
parameters, the temporal granularity could not be specified. In addition, in order to analyze pre-
cisely the results from MST-ITP, the extracted patterns need to be post-processed based on the 
information of spatial and temporal approximation. In this subsection, we present another ver-
sion of mining algorithm MST-TEQ, which explicitly handles temporal properties and adjusts 
the degree of temporal approximations. 

In order to deal with temporal information, we formulate the duration values into the temporal 
quantities. In addition, to deliver the notion of temporal quantities into the pattern discovery, the 
mining process which discovers spatio-temporal regions should be modified. Since we are inter-
ested in describing movements of objects more precisely, we include a direction of the move-
ment in a vector. For instance, consider two objects located in the same area moving towards the 
opposite direction at any timestamp t. Although they are at the same location, their meanings of 
movement are apparently different. A value of relative angle between segments can be a good 
descriptive explanation of difference for line segments. Therefore, feature vectors v are defined 
as a triple, v = {Pl, Pr, θ}, where Pl and Pr are the two end points of the line segments and θ is 
the degree of angle formed by a line segment from Pl to Pr and the x-axis, as shown in Fig 5.  

MST-TEQ also adopts the pre-clustering phase of BIRCH to cluster spatial segments into 
groups. As shown in Fig. 5, groups of spatial regions form a circular cluster in R2 and temporal 
properties of the cluster are depicted by the height of the cylinders. Therefore, we could describe 
spatio-temporal regions as a pair of [sid, d]. We finally obtain sequences of the pairs after the cl-
ustering step, which abstracts movements of the objects in original trajectory T. Since we first 
decompose the original trajectories into spatial approximations, a series of regions with the same 
spatial symbol but different temporal quantities, may be generated. In order to optimize the min-
ing performance by reducing the length of sequences, we merge two consecutive spatial regions 
with the same symbol si into one, adding two duration values. For example, a sequence 〈[s1,0.1] 
[s1,0.1]…[s3,0.05]〉 could be simplified into 〈[s1,0.2]…[s3,0.05]〉 by merging duration values of s1. 

Continuous values of temporal properties have to be discretized to be applied to sequential 
pattern mining algorithms. The simplest way to discretize continuous values is to construct a 
histogram based on error minimization. However, it is still possible for similar values to be as-



 
Juyoung Kang and Hwan-Seung Yong 

 

529 

signed to different buckets. We adopt the BIRCH pre-clustering phase to discretize temporal 
properties. Our method finds a proper partition of the temporal domain by clustering similar 
values into a group based on the temporal threshold εt. Finally we have a sequence of spatio-
temporal regions ST = 〈[s1,d1][s2,d2]…[sk,dk]〉, where si is a symbolic id of spatial approximation 
and di is the discretized temporal quantity of continuous duration value, for 0 ≤ di < 1. Then, the 
problem is considered as extracting frequent quantitative sequential patterns given a sequence 
database. 

So far, although not much work has been done in the quantitative sequential pattern mining 
domain, [15] studied the discovery of frequent patterns from market basket data with quantity 
constraints. However, temporal quantity should be treated differently than the conventional 
quantity constraints, since duration values mean different things. Therefore, a performance op-
timization by pruning infrequent temporal quantities based on inclusion relationships is not pos-
sible. Although 0.01 < 0.5 is a quantitative relationship, [s1,0.01] should not be filtered even 
when [s1,0.5] is not a frequent item. Based on this observation, we have to extend a prefix pro-
jection-based algorithm in several respects. 

 
(a) Constructing a projection database: Since a spatio-temporal sequence consists of discrete 

symbols of spatial temporal quantities, the notion of an item in a conventional PrefixSpan 
algorithm should be extended into a form of [si, di]. To support this kind of extension, we 
generate projected databases for all possible combinations of frequent si and di.  

(b) Continued items: A trajectory contains one location measurement at each time stamp, the 
discretized sequence of the original trajectory cannot have continued items (e.g. (_s1)). 
Therefore, it is not required to deal with continued items in constructing projection data 
bases and in support counting.  

 
Fig. 6 describes the MST-TEQ algorithm and the Ext_Pattern_Extraction procedure in detail. 

At first, we partition the data space by finding spatio-temporal regions using line simplification 
and clustering as described in the previous subsection. Then, we merge the duration values of 
the same spatial property and discretize them into the discrete temporal values (line 4-5). Start-
ing from all extended items of [sid, d] with a support count greater than the min_sup, the 
Ext_Pattern_Extraction procedure is recursively executed to generate projection databases. 
Then we generate extended frequent patterns F'α with all possible temporal quantities. For all the 

 
Fig. 5.  Feature vectors and spatio-temporal regions in MST-TEQ 
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patterns s in S, the procedure is recursively executed with new prefixes. Finally, MST-TEQ 
finds frequent patterns based on the extended patterns based on all possible temporal quantity 
values. 

 
 

5. EXPERIMENTS 
In this section, we provide an experimental evaluation of the proposed methods. Due to the 

lack of real data from privacy issues, we use synthetic datasets for the test. The language used 
was C++ in implementing the algorithm and experiments were performed on a Pentium D 3.4 
GHz machine with 1GB memory. We used the C++ library of geometry functions for imple-
menting line simplification and several distance functions. The pre-clustering phase of BIRCH 
is implemented based on the original paper [13] and source code provided on the site: 
http://pages.cs.wisc.edu/~vganti/birchcode/ 

 

 
Fig. 6.  MST-TEQ Algorithm 
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5.1 Datasets and Experimental Settings 

In order to evaluate the performance of methods under different data distributions, we gener-
ated synthetic data using spatio-temporal data generator G-TERD [15]. It is a highly parameter-
ized and flexible generator for simulating the objects’ movements with realistic scenarios. The 
important parameters are the number of time slots (TS), which is the length of the time history in 
a trajectory, the number of scenarios (NS) describing movement patterns of objects, the number 
of objects per scenario (NO), and the distribution (D) of the center. The characteristics of data-
sets and parameter settings were summarized in Table 1. Other parameters are set to the default 
values suggested in [15]. Generated data is distributed in a workspace of 1000×1000 units. 

We used two different existing methods, GSP and PrefixSpan, in the comparison of the min-
ing results. For both cases, we discretized input data into a sequence of location symbols using 
equal width discretization (EQW), which are mostly used in existing spatio-temporal mining 
studies. The GSP [17] and PrefixSpan [12] discover sequential patterns from a transactional 
database by a breadth-first and depth-first search, respectively. The PrefixSpan binary code and 
the GSP1 open source code were used for the tests. 

 

 
 

5.2 Mining Quality 

In order to test the capability of our approach in discovering accurate frequent patterns from 
input data, we compared the extracted patterns with GSP and PrefixSpan. Fig. 7a and 7b show 
input trajectories in a 2- and 3-dimensional view, respectively. The dataset consisted of partial 
gularities and noises. We set min_sup to 0.2, δ to 0.025, εc to 0.0035, and εt to 0.1, respectively. 
As all values are normalized into vectors between 0 and 1, threshold values are also set to the 
values between them. As we mentioned earlier, data space is divided by n×n cells, we vary n to 
5 (grid5) and 20 (gird20). 

Fig. 8 shows max-patterns extracted by GSP and PrefixSpan, when the data space is parti-
tioned into grid5 and grid20 respectively. Note that, although GSP and PrefixSpan have differ-
ent execution times, they generate the same max-pattern. We plot the direction of the movement 
among cells as arrows. The max-pattern from the proposed methods is illustrated in 2 and 3-
dimensional views in Fig. 9. The movement patterns of the original trajectories are successfully 
derived by our methods and by GSP with grid20, as shown in Fig. 8b and 9a. However, with the 
coarse grid (grid5), the movement of small displacement in the cell of the left bottom corner is 
lost (Fig. 8a), while our method clearly captures the movements with segments s1s7 in Fig 9a. 
Although we can derive accurate patterns using a dense grid, the search space drastically in-
creases due to the processing of a large number of different items (cell ids) in sequences.  

We now compare the compactness of extracted patterns. As we can see in Fig. 9, MST-TEQ 
discovers regularities in data, as a compact pattern 〈s1s1s7s11s9s10〉. As we expected, segments 
                                                           
1 available at http://illimine.cs.uiuc.edu/download/ and http://cs.uwindsor.ca/~cezeife/plwapcode.tar.gz 

Table 1.  Datasets and the settings 

Datasets Size SN TS NO Description 
SN1_TS40_NO40 1.6K 1 40 40 Mining quality test 
SN5_TS1000_NO# 1K~5K 5 1000 20-100 Scalability test 
SN4_TS100_NO25 10K 4 100 25 Impact of simplification test 
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with similar movements are grouped into a region and decomposition occurs at spatio-
temporally meaningful points. On the other hand, much longer and unintuitive patterns with 

   
(a)                                  (b) 

 
Fig. 7.  Input trajectories in 2-dimensional and 3-dimensional view 

 

   

(a)                                  (b) 
 

Fig. 8.  The maximal patterns extracted from GSP and PrefixSpan 

 

   
(a)                                  (b) 

 
Fig. 9.  The maximal patterns extracted from proposed methods (MST-TEQ) 
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redundant symbols, of length-34(grid5) 〈c2 c2…c22 c17〉 and of length-28 (grid20) 〈c66 c66…c326 

c285〉 are extracted by GSP and PrefixSpan. Similarly MST-TEQ extracts a 5-length pattern 〈r8r2r 

3r 4r6〉 as a result. Almost all regions have similar temporal duration values, which include 6 to 
11 points as shown in Fig. 9b, MST-TEQ generates only two temporal clusters [0−0.2] and 
[0.2−0.25] with the given temporal threshold εt = 0.1. We observed that when we set the tempo-
ral threshold under the certain threshold, in this case 0.06, the maximal pattern cannot be de-
tected and shorter sub-patterns of the maximal are obtained. 

As MST-IPT and MST-TEQ transform the original trajectories into compact representations 
before the pattern mining process, they perform better than the existing approaches as shown in 
Table 2. Actually, in MST-TEQ, values of temporal duration are normalized to values between 
[0,1], but to analyze the results more precisely, we provide the values before the normalization, 
that is, the number of points. The execution times of GSP and PrefixSpan grow much faster than 
the proposed algorithms, especially when the trajectories are long and complex. As shown in 
Table 2., as MST-IPT extracts accurate patterns considering spatio-temporal changes in the 
original data, post-processing for calculating temporal durations of each spatio-temporal region 
is needed in order derive the exact temporal information from the extracted pattern. On the other 
hand, MST-TEQ provides the travel times of region explicitly, thus patterns from MST-TEQ 
give us more intuitive and easily understandable results.   

 
5.3 Mining Efficiency 

In the next set of experiments, we study the scalability of the proposed methods with respect 
to data size, by comparing total execution time. We use datasets SN1_TS1000_NO20~100 as 
input and run scale up experiments under two different min_sup values. We set δ to 0.06, εc to 
0.04, and εt to 0.05 and use grid10 for EQW discretization in order to obtain the running time in 
a comparable scale. With grid20, the performance difference between our methods and the oth-
ers becomes too large, and it is difficult to compare the results together. Fig. 10 plots the execu-
tion time of all methods. As we expected, our approaches show a significant increase in speed 
over the other methods as the data size increases. Since the performance of the mining process is 
highly associated with the length of the sequences and the number of different symbols in se-
quences, the abstracted representation of our methods reduce the data size and prune the search 
space in the mining process. Observe that as the min_sup value decreases, the performance gap 
between our methods and the others becomes more significant (Fig. 10b). 

 

Table 2.  Extracted maximal patterns and the execution time 

Methods Maximal patterns Length Execution 
time 

MTP-ITP {r8,r2,r3,r4,r6} 5 0.02 

MTP-TEQ {(s1,7)(s1,7)(s7,6)(s11,5)(s9,8)(s10,7)} 6 0.15 

5×5 grid {C2C2C2C7…C7(18)C8C13C13C14C14C19C19C18C18C22C22C22C22C17} 34 33.6 Prefix 
Span/ 
GSP 20×20 

grid 
{C66C66C86C85C85C85C85C105C106C106C106C106C106C106C106C107C128C171C192 
C213C254C273C310C328C347C326C285} 28 98.3 
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5.4 The Impact of Approximations 

The last experiment examines the impact of spatial and temporal approximations of the pro-
posed methods with respect to the increased threshold values δ, εc, and εt. The number of simpli-
fied segments and the size of cluster are determined by corresponding threshold values, that is δ 
and εc. In existing approaches, the size of grid affects considerably the results of discretization 
and mining. Similarly, the size of simplified segments and generated clusters is closely related to 
the accuracy of the mining results.  

Fig. 11 plots the execution time for increasing threshold values. For testing the impact of δ, 
we set min_sup to 0.2 and εc to 0.04. No change in min_sup and δ to 0.001 for testing εc. The 
settings for testing the impact of εt is that δ = 0.01, εc = 0.04 and min_sup = 0.15. As we increase 
the threshold δ, the boundary of the spatial area becomes large, thus a smaller number of simpli-
fied segments are generated for each trajectory. Consequently, the length of sequence of spatio-
temporal regions decreases as the δ grows. Therefore, as the δ increases, we expect that the run-
ning time of the mining process will decrease, which is compatible with Fig. 11a. 

Similarly, as the εc increases, more segments are grouped into one cluster and the number of 
different regions is reduced. Although they do not have a linear relationship, Fig. 11b illustrates 
that the execution time phases down as the εc increases. Finally, we observe the impact of tem-
poral threshold values on mining performance. As the temporal threshold value εt increases, the 
number of temporal segments decreases and finally becomes one, when the value is over a cer-
tain threshold. That is, when all the temporal values are assigned into the same bucket. The dras-

 
(a) min_sup = 0.5                (b) min_sup = 0.3          (c) Execution time with min_sup 

 
Fig. 10.  Mining efficiency under different data size and min_sup 

 
(a) Simplification threshold           (b) Clustering threshold          (c) Temporal Threshold 

 
Fig. 11.  The impact of approximation on mining performance 
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tic increase in the execution time around the εt value 0.06 in Fig. 11c, results from the fact that 
all the temporal approximations of spatio-temporal regions have the same value, and thus the 
possibility of finding patterns with the given min_sup is escalated. We argue that there is a 
tradeoff between mining performance and the descriptive power of extracted patterns, since pat-
terns may be lost if the approximation is overly coarse. Therefore, we have to adjust the range of 
threshold values considering the original distribution of input data. 

 
 

6. CONCLUSION 
In this paper, we presented an approach for mining spatio-temporal patterns from trajectory 

data. We introduced the problem of representing spatio-temporal properties with redundant loca-
tion symbols. Sequential descriptions of temporal properties degrade the mining efficiency and 
the compactness of extracted patterns. To address this problem, we proposed an efficient method 
for mining spatio-temporal frequent patterns. First, we defined a spatio-temporal pattern by ap-
proximating spatial and temporal properties. Regarding how to integrate spatial and temporal 
properties, spatio-temporal patterns are represented as a sequence of multidimensional regions 
of a sequence of pairs of [spatial approximation, duration]. Based on these definitions, we pro-
posed two different methods − MST-ITP and MST-TEQ − to discover frequent spatio-temporal 
patterns. The proposed methods first abstract original trajectories into simplified segments using 
line simplification then generate sequences of spatio-temporal regions using clustering from the 
simplified segments. Finally, spatio-temporal frequent patterns are extracted in a prefix-
projection approach. By abstracting spatio-temporal information into efficient representations, 
the search space for the mining process considerably decreases. In addition, by reducing the 
length of sequences and the number of different symbols appearing in sequences, our methods 
extract more intuitive patterns. Experimental results demonstrate the efficiency and effective-
ness of our methods when compared to the existing approaches. Future work is needed for se-
lecting the threshold values more intelligently based on the distribution of input data and for 
experiments with practical real data sets. 
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