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Abstract—In this paper, a model based texture classification pro-
cedure is presented. The texture is modeled as the output of a linear
system driven by a binary image. This latter retains the morpho-
logical characteristics of the texture and it is specified by its spatial
autocorrelation function (ACF). We show that features extracted
from the ACF of the binary excitation suffice to represent the tex-
ture for classification purposes. Specifically, we employ a moment
invariants based technique to classify the ACF. The resulting pro-
posed classification procedure is thus inherently rotation invariant.
Moreover, it is robust with respect to additive noise. Experimental
results show that this approach allows obtaining high correct ro-
tation-invariant classification rates while containing the size of the
feature space.

Index Terms—Moment invariants, texture analysis, texture clas-
sification.

I. INTRODUCTION

T EXTURE classification has been widely investigated
during the past decades. In fact it plays an important role

in many applications such as remote sensing, robot vision, crop
classification, automatic tissue recognition in medical imaging,
content based access to image databases, to cite only a few.

The first stage of the texture classification problem is the
training phase. It consists in the extraction of a certain number
of texture features from each texture belonging to a training set;
the extracted features are then collected in a feature vector. In
the subsequent classification stage, the feature vector of the tex-
ture to classify is evaluated and then compared to all the feature
vectors of the textures training set. Therefore, two main issues
must be coped with. The first consists in properly selecting the
texture features, which have to be chosen in order to represent
the content of each different texture in the database. Moreover
their number must be optimized. The second one is the defini-
tion of a suitable similarity function.

Several approaches for texture features extraction have been
proposed in literature. Most of them are based on statistical,
signal processing, and model-based techniques. Early works
where based on the analysis of some second order statistical
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properties of the texture [1], such as the co-occurrence matrix
[2]. The signal processing techniques are mainly based on
texture filtering followed by energy evaluation. A review of
major filtering approaches and a comparative study can be
found in [3]. In the recent literature the use of a filter bank in-
stead of a single filter has been proposed, giving rise to several
multichannel texture analysis systems [4], [5]. In particular,
Gabor filtering has been extensively studied [6], [7]. Moreover,
in the last decade, wavelet theory has been widely used for
texture classification purposes [8]–[10]. Several stochastic
models have also been proposed for texture modeling and
classification; they include Gaussian Markov random fields
models [11], [12], moving average (MA), autoregressive (AR),
and autoregressive moving average (ARMA) models [13]–[15].
In [16] a fractal model has been proposed, and in [17], [18]
statistical and harmonic features have been combined. Many of
the aforementioned methods, although allow obtaining good
classification performances, present a high misclassification
rate when the texture is rotated and contaminated with additive
Gaussian noise. In [19] and [20] rotation invariant texture
classification wavelet based methods are presented.

In this contribution we describe a novel rotation-invariant
model based texture classification method. Moreover, a per-
formance comparison is performed with respect to classifica-
tion methods using a robust rotation invariant wavelet based
approach [19] as well as the co-occurrence matrix, which are
briefly summarized in Appendices A and B respectively.

The model here employed was originally proposed in [21] for
texture synthesis purposes. This model has shown a remarkable
versatility since it has been used, in an extended form, in [22]
for the synthesis of color textures. In [23] the model has been
successfully employed for a model based texture coder scheme.
Moreover, stemming from the one proposed in [21], a hybrid
approach for texture synthesis, which operates partially in the
spatial domain and partially in a multiresolution domain, has
been presented in [24].

Hence, according to the aforementioned model, a texture can
be represented using

• a proper binary excitation, which is designed to retain the
morphological characteristics of the texture sample;

• a linear filter;
• a zero-memory nonlinearity performing a histogram

matching.

The rationale behind our approach is that the binary excitation
itself suffices to represent the texture for classification purposes.
Moreover, the use of the binary excitation makes the classifica-
tion algorithm more robust with respect to additive Gaussian
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Fig. 1. Texture formation model and texture analysis.

noise. Therefore, after “projecting” the texture onto the reduced
complexity binary space, we resort to classify the binary image
so obtained using the rotation invariant moment [25], [26] of its
ACF.

The paper is organized as follows. In Section II the employed
texture model is described. In Section III the algorithm for the
texture features extraction is detailed. The classification algo-
rithm is described in Section IV. In Section V the experimental
results are presented. Ultimately, conclusions are drawn in
Section VI.

II. TEXTURE MODEL

With reference to the scheme depicted in Fig. 1, a given tex-
ture is modeled according to the following factoriza-
tion:

(1)

where

• is a random binary excitation, tailored to retain
the zero-crossing locations of the texture prototype, thus
capturing the basic morphology of the texture;

• is a invertible shaping filter, with inverse denoted
by , that adds gray-scale details to the binary
image ;

• is an invertible zero-memory nonlinearity, with in-
verse denoted by . It performs a histogram mod-
ification, and its behavior is described by the parame-
ters collected in the vector . Specifically, for the 256
gray-scale level images under analysis, operates as a
look-up-table (LUT) of size 256 values, which transforms
each gray-scale input level in such a way that the output
image has the desired histogram. The vector simply col-
lects the 256 output values of the LUT;

• is a realization of a random field that accounts
for any possible model mismatching;

• is the reproduced texture before the final his-
togram matching operation. Note that, since the trans-
formation between and can be in-
verted, we can also write .

In essence, the model replaces usual independent and identically
distributed (i.i.d.) sources employed in linear texture models

[13]–[15] with a non i.i.d. binary source. The binary excitation
is designed in order to have the same ACF of the binarized ver-
sion of the texture sample under analysis. Thus binary field gives
the zero-crossing location of the texture prototype. Since most
of the structure of a texture is contained in its zero-crossing lo-
cations [27], the basic visual morphology of the prototype is
then captured. Specifically, the binary excitation is ob-
tained by filtering a realization of a white Gaussian
random field by a linear filter , and then by hard-lim-
iting the output. The filter is designed in order to gen-
erate a binary excitation having the same spatial ACF
of the corresponding binarized texture obtained in the analysis
stage.

The rationale behind this model relies on psycho-visual
experiments conducted on texture discrimination [28], which
have pointed out that the human visual system, although aston-
ishingly capable of discriminating between different patterns,
cannot distinguish between textures that differ only in third and
higher order statistics. The effectiveness of this model has been
discussed in [21].

As already pointed out in the Introduction, we resort to use
the binary excitation to reduce the dimensionality of the space
where the texture is represented. Therefore, the texture classifi-
cation problem reduces to the classification of the spatial ACF
of the binary image, obtained in the analysis stage, as described
in the next section.

III. TEXTURE FEATURES EXTRACTION

According to the model described in the previous section,
the texture prototype can be represented by the spatial ACF

, the filter , obtained as the inverse of the
estimation of the filter , and the zero-memory nonlin-
earity . However for classification purposes a texture can
be effectively represented by obtained assuming the
model depicted in Fig. 1 in the blind deconvolution procedure
described in Section III-A. Then, is characterized by
means of the moment invariants as described in Section III-B.

A. Texture Parameters Identification Algorithm

With reference to Fig. 1, let us denote with , , , the
column lexicographically ordered arrays associated with

, , , and with the filter coefficients
associated with the filter . Our task is to find the triplet
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( ) by maximizing the log-likelihood function ( denotes
“estimate” of the corresponding vector):

(2)

However, since the cost function of the optimization problem
expressed by (2) is highly nonlinear, the numerical search of the
solution requires a significantly heavy computational burden.
In order to reduce the overall complexity of the optimization,
we resort to a sub-optimum criterion consisting of an iterative
maximization of the log-likelihood function with respect to each
of the vectors , , , separately, that is:

(3)

(4)

(5)

To further simplify the optimization, as pointed out in [21], we
note that, in our estimation problem, can be replaced by

being the linear operator associated with the filter and
a realization of a random noise process representing the de-
convolution error (see Fig. 1). In fact, since the transformation

is invertible, and span the same population.
Using the same argumentation as in [29], we may argue that

the residual tends to be white and Gaussian distributed, un-
correlated with as soon as the iterations proceed. Therefore,
by equating the gradient of w.r.t. to zero and

solving with respect to , we obtain [21]:

(6)

where is the sample auto-correlation vector of ,

and is the sample cross-correlation matrix of and
, being the Toeplitz matrix representing the linear operator

associated to the filter with impulse response equal to .
Moreover, at the neighborhood of the desired solution,

assumes the form

(7)

Finally, note that the value that maximizes (5), maximizes also
the quantity

(8)

Therefore to achieve a good approximation the transformation
is chosen to provide a histogram matching between

and .
The iterative identification algorithm is depicted in Fig. 2

in its flow graph form, and it is summarized in the following.
The initialization step consists of assuming that the nonlinearity

and the inverse filter do not affect the orig-
inal texture, i.e., they are set equal to the identity operators,

, and , being the
bidimensional unit sample sequence.

Fig. 2. Texture sample classification procedure.

Then, at the generic th iteration the simultaneous esti-
mation of the binary excitation and of the filter

is performed by modifying the histogram of the
original texture according to the nonlinearity , and
by deconvolving the so obtained histogram modified texture

through the previously esti-

mated inverse filter . The deconvolved texture
is then hard-limited

in order to give the estimate of the binarized
version of the prototype; this latter is finally used to update
both the estimates of the inverse filter and of the
zero-memory nonlinearity .

The deconvolution algorithm reaches an equilibrium
point at the th iteration when the cross-correlation be-
tween and is proportional to the
cross-correlation between and , i.e.,

. A detailed discussion on
the convergence issue can be found in [24].

When the convergence has been reached, a sample
estimate of the statistical autocorrelation

is calcu-
lated and the moment invariants, detailed in the next section,
are evaluated on it.

B. Moment Invariants

Moment invariants were introduced by Hu in his pioneering
paper [25], where a set of seven features invariant to the rota-
tion of 2-D objects was introduced. They are summarized in
Appendix C. Several works have been done on the definition of
various kind of moment invariants, and their performances have
been investigated [30], [31]. However, the proposed invariant
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sets are algebraically dependent, and this fact is highly unde-
sirable since our goal is the definition of a low dimensionality
feature space.

In our classification method, we rely on the moment invari-
ants derived following the approach proposed in [26]. The ra-
tional behind this choice relies on the possibility of deriving mo-
ment invariants of any order and of defining “bases” of invari-
ants. The moment invariants are defined through the complex
moments. A complex moment of order ( ) of a two-di-
mensional probability density function is defined as

(9)
where denotes the imaginary unit and

(10)

is the ordinary noncentral moment of order ( ).
Following the approach proposed in [26], in order to repre-

sent the bidimensional autocorrelation function of
the deconvolved binary texture , we resort to use the
second and third order basis:

(11)

and the fourth order basis:

(12)

where , are the Hu’s moment invariants, defined
in Appendix C.

The moments , are collected in a vector ,
which represents the texture feature vector. Here we must imme-
diately point out that an increase in the dimension of the feature
vector has not led to a classification performance improvement.

IV. TEXTURE CLASSIFICATION ALGORITHM

The texture classification algorithm, which consists in the
training phase and the classification phase [32], is detailed in
the following.

Let us consider texture classes. In the training phase, the
feature vector of the th class is generated as described in
the following.

We first select “typical” finite samples of the texture, that
is different parts all capturing the same relevant character-
istics of the texture itself. In other words, these samples are
such to be considered different realizations of the stationary

TABLE I
CLASSIFICATION PROCEDURE

random field to which the texture is considered to belong to.
Hence, their dimensions are chosen in order to capture a signif-
icant number of textons composing the texture.

Then, given a texture sample belonging to a specific class,
its autocorrelation function , which summarizes the
morphological structure of the texture prototype, is estimated as
described in Section III. Then, the moment invariants with

, are evaluated from the following sequences of
samples, normalized to have unitary sum

(13)

according to the formulas (11) and (12), where are numer-
ically evaluated by discretizing (10) as follows:

(14)

Moreover, a normalization of the axes , is performed in order
to maintain the dynamic range of the moment values consistent
for images of different dimensions [32].
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Fig. 3. Texture samples. From left to right. First row: D9 (Grass lawn), D10 (Crocodile skin), D15 (Straw), D17 (Herringbone weave), D20 (French canvas).
Second row: D22 (Reptile skin), D29 (Beach sand), D37 (Water), D69 (Wood grain), D51 (Raffia woven). Third row: D68 (Wood grain), D77 (Cotton canvas),
D84 (Raffia), D93 (Fur), D103 (Loose burlap).

TABLE II
PERCENTAGE OF CORRECT CLASSIFICATION FOR ROTATED TEXTURES SAMPLES (AT DIFFERENT ANGLES) USING MOMENT INVARIANTS (MI), THE WAVELET

BASED METHOD [19] (WA), THE CO-OCCURRENCE MATRIX METHOD (CO)

The samples composing the class should be chosen to
yield each a small model mismatching error ; the ef-
fect of this latter on the features vector can be further reduced

by averaging over the samples composing the class, so fi-
nally obtaining the mean features vector , which “globally”
represents the texture class under analysis.
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The classification phase consists in extracting from the tex-
ture under analysis the feature vector and comparing it with
the representative feature map , , using a
suitable distance metric criterion. The class at minimum dis-
tance with respect to the feature vector of the analyzed texture is
decided to be the one the texture belongs to. In our approach the
Bayes classifier [32], which is the optimal one when the texture
features are assumed to have a Gaussian density distribution,
has been used. The classification procedure is summarized in
Table I.

V. CLASSIFICATION RESULTS

Specifically, for the classification experiments we have used
a set of textures extracted from the Brodatz album [33]. Fifteen
classes have been considered ( ); samples are shown in
Fig. 3. For each class, the training set was composed by tex-
tures at angles 0 , 30 , 45 , and 60 . For each angle,
non-overlapping samples of dimension 64 64 pixels were con-
sidered.

The textures to classify, having size 128 128 with 256
gray levels, are obtained both from the not rotated images and
after a rotation at angles 20 , 70 , 90 , 120 , and 150 . The
training textures set and the set composed by the textures to
classify are disjoint. For each rotation angle, 20 classification
tests have been performed. In Table II the percentages of
correct classification, using the proposed method (MI), for
rotated texture samples, are detailed both with respect to the
different textures and to the different angles. The average
percentages of correct classification for rotated texture are
reported in Table III as well as the ones for not rotated
textures.

For the sake of comparison, in the same tables, are reported
the classification results obtained using the rotation-invariant
wavelet method presented in [19] (Wa), and the ones obtained
using the co-occurrence matrix method (Co).

A rough comparison between the time required for the fea-
tures extraction, for the three considered methods, is also pro-
vided. The simulations have been performed using a nonopti-
mized C++ code on an Intel Pentium III 1.2 GHz based PC,
hosting Windows 2000. Approximately, the time required for
the extraction of a single set of features is 3.2 s/features vector
for the proposed method, 0.4 s/features vector for the wavelet
based method, and 1.1 s/features vector for the cooccurrence
based method.

A. Performance on Noisy Images

The proposed classification algorithm has been tested for
noisy images as well, since real images often contain random
noise introduced either by the transmission through a noisy
channel or by the imaging process. To this end, Gaussian
random noise, with zero mean and variance depending on
the wanted Signal to Noise Ratio (SNR), has been added
to the images of the classification set, which were at angles
20 , 70 , 90 , 120 , and 150 . Four SNR values have been
considered (30 dB, 20 dB, 15 dB, 10 dB). Some examples of

TABLE III
AVERAGE PERCENTAGE OF CORRECT CLASSIFICATION FOR NON-ROTATED AND

ROTATED TEXTURES SAMPLES USING MOMENT INVARIANTS (MI), THE

WAVELET BASED METHOD [19] (WA), THE CO-OCCURRENCE

MATRIX METHOD (CO)

noisy images, at the considered values of SNR, are given in
Fig. 4. In Table IV the percentages of correct classification
for noisy rotated textures using moment invariants (MI), the
wavelet based method [19] (Wa), and the co-occurrence matrix
method (Co) are detailed. By comparing the results presented
in Tables III and IV for the proposed method, we observe
performance degradation starting at SNR values lower that
15 dB. Therefore, the proposed approach is highly reliable even
with respect to severe degradations of the image.

VI. CONCLUSIONS

A novel model based rotation invariant texture classification
scheme has been proposed. The texture is modeled as the
output of a linear system fed by a binary excitation. The
texture feature set extraction is constituted by two steps. The
first one consists in estimating the binary excitation, which is
assumed to efficiently represent the texture for classification
purposes, by means of a blind deconvolution procedure. In
the second step, a basis of moment invariants is employed to
characterize the ACF of the binary excitation. The proposed
procedure has been tested to be robust to rotations of the
texture sample. Moreover the proposed scheme has been
shown to maintain a high correct classification rate even in
presence of noise.
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Fig. 4. Texture samples (First row: D20. Second row: D77. Third row: D93) with added noise. From left to right: original texture, 30 dB, 20 dB, 10 dB.

TABLE IV
PERCENTAGE OF CORRECT CLASSIFICATION FOR NOISY ROTATED TEXTURES SAMPLES USING MOMENT INVARIANTS (MI), THE WAVELET BASED

METHOD [19] (WA), AND THE CO-OCCURRENCE MATRIX METHOD (CO)

APPENDIX A

In this Appendix, the wavelet-based texture classification
scheme described in [19] is briefly summarized. A three-level

wavelet decomposition is performed on the texture sample,
thus obtaining, for each level, image information of low hori-
zontal frequency but low vertical frequency (LL channel), low
horizontal frequency but high vertical frequency (LH channel),
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high horizontal frequency but low vertical frequency (HL
channel), high horizontal frequency but high vertical frequency
(HH channel). Since the magnitudes of the wavelet coefficients
in a particular channel assume high values for images with
strong textural content in that channel, in [19] a feature vector
comprising the average wavelet coefficients magnitude in each
channel is considered. Specifically, the HH channels are not
used as they can degrade the classification performance since
they contain the majority of noise in the image. Moreover,
rotation invariance is achieved by jointly combining the LH
and HL channels, that is the diagonally opposite wavelet
channels, at each level of decomposition in order to obtain a
single feature. To summarize, a four dimensional feature vector
comprising the average wavelet coefficients magnitude of the
three combined LH and HL channels and of the remaining
LL channel is used. Then a minimum distance classifier using
the Mahalanobis distance [32] was employed to perform the
texture classification.

APPENDIX B

Given an image with a countable number of gray
levels, for a fixed distance in direction , the co-occurrence
matrix is the bidimensional histogram measured
on the image itself. The value assigned to the generic entry

is the percentage of the pixel pairs

and , taken such that ,
, and with values and [2].

Eight common used co-occurrence features, which have been
employed in this paper to design a classification method used
for performance comparison with the proposed approach, are
reported in Table V. It is worth mentioning that these features
depend on the inter-pixel distance , which in our experiments
has been set equal to 1, and on the angle . Therefore in order
to make the features rotation tolerant, in [2] it is suggested to
quantize the orientation in four directions: 0 , 45 , 90 , and
135 . In practice, the resulting values for the four directions are
averaged out, thus providing robustness to rotation.

APPENDIX C

In [25], Hu introduced his seven moment invariants to the
rotation of 2-D objects that have been widely used in the past
for object recognition. They are reported in the following:

(C.1)

TABLE V
EIGHT COMMON FEATURES FROM A CO-OCCURRENCE MATRIX C(i; j),

WHERE M = iC(i; j), M = jC(i; j),
S (i) = C(i; j), S (i) = C(i; j), H =

� C(i; j) log(S (i)S (j)), H = � S (i) logS (i),
AND H = � S (j) logS (j)

where

(C.2)
is the central moment of order ( ) of the object .

As stated in [26], it is possible to verify that Hu’s invariants
(C.1) can be expressed in terms of (9) as follows:

(C.3)

However, Hu’s invariants are dependent, since it is easy to prove
that

(C.4)

Moreover, they do not represent a basis for the second and third
order invariants.
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