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Abstract

There are many factors to consider in carrying out a hyperspectral data classification,

perhaps chief among them are class training sample size, dimensionality, and distribution

separability. The intent of this study is to design a classification procedure which is robust and

maximally effective, but which provides the analyst with significant assists, thus simplifying the

analyst’s task. The result is a quadratic mixture classifier based on Mixed-LOOC2 regularized

discriminant analysis and Nonparametric Weighted Feature Extraction. This procedure has the

advantage of providing improved classification accuracy compared to typical previous methods

but requires minimal need to consider the factors mentioned above. Experimental results

demonstrating these properties are presented.

                                                  

1 The work described in this paper was sponsored in part by the National Imagery and Mapping Agency under
grant NMA 201-01-C-0023
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1 Introduction

Hyperspectral data holds great potential compared to more conventional multispectral data

in terms of its information-bearing properties. However, if this potential is to be realized, two

areas of advancement are required. On the one hand, sound, fundamentally based data analysis

technology must be defined that is quantifiably optimal in the sense of its information extraction

capabilities. On the other, such optimal analysis methods must be straightforward to apply.

Among the ways to approach hyperspectral data analysis, a useful processing model that

has evolved in the last several years [1] is shown schematically in Figure 1. Research has shown

that achieving high precision in modeling the desired classes quantitatively is the critical element

to the most effective analysis. Given the availability of data (box 1), the process begins by the

analyst specifying what classes are desired, usually by labeling training samples for each class

5 Feature
Selection

1 Multispectral
Data

6 Classifier4 Class Conditional
Feature Extraction

2 Label Training
Samples

3 Determine Quantitative
Class Descriptions

Figure 1. A schematic diagram for a hyperspectral data analysis procedure.



- 3 -

February 17, 2003

(box 2). New elements to class modeling that have proven important in the case of high

dimensional data are those indicated by boxes in the diagram marked 3 and 4. These are the

focus of this work and will be discussed in more detail shortly, however the reason for their

importance in this context is as follows. Classification techniques in pattern recognition typically

assume that there are enough training samples available to obtain reasonably accurate class

descriptions in quantitative form. Unfortunately, the number of training samples required to train

a classifier for high dimensional data is much greater than that required for conventional data,

and gathering these training samples can be difficult and expensive. Therefore, the assumption

that enough training samples are available to accurately estimate the class quantitative

description is frequently not satisfied for high dimensional data. Small training sets usually cause

Hughes phenomenon [16] and singularity problems. There are several ways to overcome these

problems. In [2], these techniques are categorized into three groups:

a. Dimensionality reduction by feature extraction or feature selection.

b. Regularization of sample covariance matrix (e.g. [3], [4], [9]).

c. Structurization of a true covariance matrix described by a small number of parameters [2].

There are many types of classification algorithms. Perhaps the most common is the

quadratic maximum likelihood classifier. Sometimes the data distribution is not so simple that

using a normal distribution to describe it is enough. The Gaussian mixture density, which models

the density as the sum of one or more weighted Gaussian components, is a compromise between

a simple single Gaussian and non-parametric densities. It allows more flexibility than the single

Gaussian density, yet requires fewer parameters to be estimated than non-parametric densities.

Most methods in this area usually assume that, if one class can be divided into several normally
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distributed subgroups, then the sample size of each subgroup should not be less than the

dimensionality.

The purpose of this paper is to design a classification procedure using a mixture classifier

based on Mixed-LOOC2 and nonparametric weighted feature extraction (NWFE) [9], which can

mitigate the effects of Hughes phenomenon and covariance singularity and is suitable for

complex and high dimensional data.

2 Previous Works

2.1 Mixed-LOOC2

Many regularized covariance estimators have been developed to solve the singularity

problem, for example: RDA [3], LOOC [6], BLOOC [7], and Mixed-LOOC2 [9]. In [9] it is

shown that Mixed –LOOC2 has the advantages of both LOOC and BLOOC when it is applied to

the uni-mode Gaussian quadratic classifier. The procedure, DAFE (or LDA) based on Mixed-

LOOC2, overcomes the shortcoming that DAFE cannot be used when the training sample size is

less than the dimensionality, and can provide higher accuracy when the sample size is limited.

 The Mixed-LOOC2 was proposed as the following form:
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1. Si is the sample estimate of the covariance matrix for class i, and S is the covariance estimated

from the training samples of all classes. B= Si or diag(S) is chosen because if a class sample size
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is large, Si will be a better choice. If the total training sample size is less than the dimensionality,

then the common (pooled) covariance S is singular, but otherwise it has much less estimation

error than Si. For reducing estimation error and avoiding singularity, diag(S) will be a good

choice. The selection criteria is the log leave-one-out likelihood function:
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where f is the probability density function of each class.

2.2 Quadratic Mixture Classifiers

In order to model non-Gaussian classes, consider the quadratic mixture density, which is

the weighted summation of K Gaussian density functions:
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, and p is the dimensionality of

data. Each term f in the summation is called a component of the mixture density.  The weights

αk, which must sum to unity, are a priori probabilities of the components.  In practice the

parameters of the mixture density function (K, ακ, mk, and Σκ for k = 1, 2, …K)) are usually

unknown and must be estimated from the training samples. Multimode classes can be

represented by a mixture density with one or more components representing each mode. Since

the covariance matrix of each component should be invertible, ordinarily the sample size of each
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component should not be less than the dimensionality of the data. In this paper, the new mixture

classifier will relieve this limitation.

There are two steps to design a quadratic mixture classifier. The first is parameter

estimation and the second is model selection. In this study, NM (nearest means or K-mean)

clustering and EM (expectation-maximization) clustering are used in the parameter estimation

part. There are many indices for model selection. In this research, only the performances of AIC,

BIC, NEC, and ICLBIC, described below, are tested.

In the multivariate mixture model, data nxx ,...,1  in pR are assumed to be a sample from a

probability distribution with density

∑
=

=
K

k
kk axfxp

1
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where the kα ’s are the mixing proportions )10( << kα  for all K,...,1=k  and 11 =Σ = k
K
k α .

),( kaxf  denotes the p-dimensional Gaussian density with mean km and covariance matrix kΣ

with ),( kkk ma Σ= . The maximized log likelihood of )),(),...,,(( 11 KK aa αα=Ψ  for the sample

nxx ,...,1  is denoted
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with kα  and ka  denoting the maximum likelihood estimates of the corresponding parameters.

The Akaike information criterion (AIC; [10]) is defined as
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where )(Ψv  is the number of free parameters in the mixture model Ψ .

The Bayesian information criterion (BIC) [11] is given by
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The entropy of the classification matrix t  gives rise to several classification criteria [12],

which are )(ΨE , its normalized version
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where )(1 ΨL denotes the maximized log-likelihood for a single Gaussian distribution.

And ICL-BIC in [13] is

nELBICICL log)()(2)(2)( Ψ+Ψ+Ψ−=Ψ− ν



- 8 -

February 17, 2003

It was observed that AIC is order inconsistent and tends to overfit models [12]. BIC based on the

Bayes factor could improve the overfitting problem by using the sample size in the penalized

term. NEC and ICL-BIC are attempted to overcome the shortcomings of classification likelihood

criterion and BIC [13].

2.3 Nonparametric Weighted Feature Extraction (NWFE)2

Discriminant Analysis Feature Extraction (DAFE) or Linear Discriminant Analysis (LDA)

is often used for dimension reduction in classification problems. The advantage of DAFE is that

it is distribution-free but there are three major disadvantages in DAFE. One is that it works well

only if the distributions of classes are normal-like distributions [8]. When the distributions of

classes are nonnormal-like or multi-modal mixture distributions, the performance of DAFE is not

satisfactory. The second disadvantage of DAFE is the rank of the within-scatter matrix bS  is

number of classes (L) –1, so generally only L-1 features can be extracted. From [8], we know

that unless a posterior probability function is specified, L–1 features are suboptimal in a Bayes

sense, although they are optimal based on the chosen criterion. In real situations, the data

distributions are often complicated and not normal-like, therefore only using L-1 features is not

usually sufficient for real data. The third limitation is that if the within-class covariance is

singular, which often occurs in high dimensional problems, DAFE will have a poor performance

on classification. NWFE is developed to solve those problems [9]. The results of simulated and

                                                  

2 NWFE has been implemented into MultiSpec© which is available at
http://dynamo.ecn.purdue.edu/~biehl/MultiSpec/.
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real data experiments show that the performance of NWFE is better than those of DAFE, aPAC-

LDR [14], and NDA [15].

The main ideas of NWFE are putting different weights on every sample to compute the

“local means” and defining new nonparametric between-class and within-class scatter matrices

to obtain more features. In NWFE, the nonparametric between-class scatter matrix is defined as
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where xk
i( ) refers to the k-th sample from class i, and Pi is the prior probability of class i.

The scatter matrix weight λk
i j( , ) is a function of xk
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The weight ),( ji
klw for computing local means is a function of )(i

kx and )( j
lx  If the distance between

)(i
kx  and )( )(i

kj xM  is small then its weight ),( ji
kλ  will be close to 1; otherwise, ),( ji

kλ  will be close to

0 and sum of total ),( ji
kλ  for class i is 1.

The nonparametric within-class scatter matrix is defined as
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The optimal features are determined by optimizing the criteria given by

J trNWFE w b= −( )S S1

To reduce the effect of the cross products of between-class distances and prevent the singularity,

we will regularizeSw by

S S Sw w wdiag= +0 5 0 5. . ( )

Finally the NWFE algorithm is

1. Compute the distances between each pair of sample points and form the distance matrix.

2. Computewl
i j( , )  using the distance matrix

3. Use wl
i j( , ) to compute local means M xj k

i( )( )

4. Compute scatter matrix weight λk
i j( , ).
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5. Compute Sb and Sw.

6. Select the m eigenvectors of S Sw b
−1 , ψ ψ ψ1 2, , ,L m, which correspond to the m largest

eigenvalues to form the transformation matrix Am m= [ , , , ]ψ ψ ψ1 2 L

3 Gaussian Mixture Classifier Based on Mixed-LOOC2

3.1 Mixture Classifier Using Mixed-LOOC2 and Nearest Means Clustering

The algorithm of a mixture classifier using Mixed-LOOC2 and nearest means (NM)

clustering is

Step 1. Compute Mixed-LOOC2 of each class and for each class, use nearest means clustering to

find the components.

Step 2. Compute Mixed-LOOC2 of each component in the classes.

Step 3. Compute the model selection index using Mixed-LOOC2 to replace ML covariance

estimate.

Step 4. If the number of components in classes is 1, then use the Mixed-LOOC2 of this class as

its covariance estimator.

Step 5. Compute the mixture density function to form the Bayesian mixture classifier.

3.2 Mixture Classifier Using Mixed-LOOC2 and EM clustering

The algorithm of a mixture classifier using Mixed-LOOC2 and EM clustering is

Step 1 Compute Mixed-LOOC2 of each class.
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Step 2 For each class, use EM clustering to find the components. But, in the estimating

covariance step of EM clustering, the ML estimator of each component should be

replaced by Mixed-LOOC2.

Step 3 Compute the model selection index using Mixed-LOOC2 to replace ML covariance

estimate.

Step 4 If the number of components in classes is 1, then using the Mixed-LOOC2 of this class as

its covariance estimator.

4 Simulated and Real Data Experiments for Mixture Classifier Based on Mixed-LOOC2

4.1 Simulation Data Experiment Design

In simulation experiments, the performances of mixture classifiers based on NM and EM

clustering with model selection indices AIC, BIC, NEC, ICL-BIC and their Mixed-LOOC2

versions are compared.

I n  c l a s s i f i c a t i o n

problems, there are two kinds

of mixture situations. One is

the components of each class

are grouped together and do

not mix significantly with

those of other classes as seen in

Figure 2(a). The other is that

Class2 Class2

Class2Class2 Class1

Figure 2(a) Class 1 is not between subcomponents of class 2.

Figure 2(b) Class 1 is between subcomponents of class 2
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the components of different classes mix together, as in Figure 2(b). In first case, the mixture

classifier may have performance similar to a simple quadratic classifier if the class sample sizes

are large enough. But when the class sample is small then the performance of a mixture classifier

may not be as good as that of simple quadratic classifier due to estimation error. In second case,

the mixture classifier would be expected to do a better job when the class sample sizes are large

enough, but if class sample is small then the mixture classifier may have more severe problems.

The simulation study will focus on the second situation and try to find out which

combination of parameter estimation and model selection will give a better result. The class

sample sizes and the class mean vectors and covariance matrices of simulated data are in Table

1(a). The clustering algorithm used in experiments 1 and 2 is NM clustering and that used in

experiments 3 and 4 is EM clustering. Five different dimensionality (2,4,10,20,60) and three

different class sample sizes are tested. In each situation (Table 1(b)), 10 random training and

testing data sets are generated for computing the accuracies of algorithms, and the standard

deviations of the accuracies.

Table 1(a) The class mean vectors and covariance matrices of simulated data
class 1 class 2

Dim=2,4,10,20,60 component 1 component 1 component 2
Mean Vector [0,0,…,0] [1,1, …,1] [-1,-1, …,-1]

Exp 1 and 3 I 0.1I 0.1I
Covariance

Exp 2 and  4 I I I
Training Class Sample Size(Ni) 30, 60, 300 15,30,150 15,30,150

Testing Class Sample Size 30, 60, 300 15,30,150 15,30,150

Table 1(b) The dimensionality and class sample size of simulated data
Situation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Dim 2 4 10 20 60 2 4 10 20 60 2 4 10 20 60
Ni 30 60 300 30 60 300 30 60 300 30 60 300 30 60 300
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4.2 Real Data Experiment Design

Hyperspectral data from the Washington, DC Mall is used in real data experiments, and the

better clustering algorithm, chosen from the results of simulation studies, is used. Two different

class sample sizes (20 and 100) and two different dimensionalities (20 and 7) are used in

Experiment 5.  There are 191 bands in the DC Mall image data, and every 10-th band and 30-th

band, which begins from the first one, are selected for the 20 and 7 bands cases. At each

situation, 10 random training and testing data sets are generated for computing the testing sample

accuracies of algorithms, and the number of subcomponents in each class.

5. Experiment Results

For convenience, denote the mixture classifier built on the original model selection index

as the index itself (for example: AIC) and the mixture classifier built on the model selection

index based on Mixed-LOOC2 as the index itself with a “Mix” suffix in tables and figures.

5.1 Simulation Experiment Results

The partial results of experiments 1 to 4 are displayed in tables 2(a), (b), (c), (d) and figures

3(a), and (b). Detailed results are in [9]. The results displayed in the figures are the accuracies

using BIC_Mix in situations, 1 to 15 (in table 1(b)). They show that

1. Generally speaking, the mixture classifier BIC_Mix gave better performance than the

others.

2. The shadowed parts in the tables indicate those cases that the performance of the

mixture classifier BIC_Mix is significantly better than that of the 1-mode quadratic



- 15 -

February 17, 2003

classifier. In those unmarked situations, these two classifiers have equivalent

performances.

3. From tables 2(a), (b), (c), (d), the performance of the mixture classifier using NM

clustering was better than that of the mixture classifier using EM clustering.

4. The tables 2(a) and (b) (NM cases) show that if the subcomponents are well separated

(I-0.1I case) then mixture classifiers (with/without using Mixed-LOOC2) have

advantages in low dimensionality situations. When the dimensionality goes up, only the

mixture classifiers using Mixed-LOOC2 have similar results to a simple quadratic

classifier. Those not using Mixed-LOOC2 yield poorer results due to estimation error

increasing. If the subcomponents are well separated (I-I case) then increasing the

dimensionality will help the mixture classifiers using Mixed-LOOC2 to obtain better

performance but will reduce the accuracy of those not using Mixed-LOOC2.
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Table 2(a) Accuracies of experiment 1 (I-0.1I case) using NM clustering
Model Selection

Situation Dimensionality Sample Size 1 mode AIC AIC_Mix BIC BIC_Mix NEC NEC_Mix ICLBIC ICLBIC_Mix
1 2 30 0.7333 0.8333 0.8567 0.8433 0.8567 0.7383 0.7583 0.735 0.7417
2 2 60 0.7742 0.8617 0.8608 0.8617 0.8608 0.8042 0.8233 0.7708 0.7742
3 2 300 0.7758 0.8788 0.88 0.8788 0.88 0.8717 0.8702 0.8717 0.869
4 4 30 0.9167 0.83 0.9617 0.8333 0.9617 0.9167 0.9183 0.9167 0.89
5 4 60 0.9158 0.9408 0.9625 0.9475 0.9625 0.9092 0.9325 0.9167 0.9142
6 4 300 0.9225 0.968 0.9703 0.968 0.9703 0.9655 0.9663 0.9655 0.9668
7 10 30 0.9683 0.7233 0.9017 0.755 0.9617 0.9683 0.9517 0.9683 0.95
8 10 60 0.99 0.8075 1 0.8075 0.99 0.99 0.99 0.99 0.99
9 10 300 0.9945 0.9995 0.9997 0.9995 0.9997 0.9975 0.9997 0.9945 0.9947
10 20 30 0.945 0.7567 0.985 0.7567 0.97 0.945 0.97 0.71 0.74
11 20 60 0.9967 0.6892 0.9933 0.7342 0.9933 0.9967 0.9933 0.8975 0.8958
12 20 300 1 0.9228 1 0.9228 1 0.9995 1 1 1
13 60 30 0.5 0.5 0.9983 0.5 1 0.5 0.9983 0.5 0.9983
14 60 60 0.5 0.5 0.9992 0.5 1 0.5 0.9992 0.5 0.9992
15 60 300 1 1 1 1 1 1 1 1 1

Table 2(b) Accuracies of experiment 2 (I-I case) using NM clustering
Model Selection

Situation Dimensionality Sample Size 1 mode AIC AIC_Mix BIC BIC_Mix NEC NEC_Mix ICLBIC ICLBIC_Mix
1 2 30 0.6333 0.6233 0.645 0.6333 0.6467 0.6033 0.64 0.6333 0.6467
2 2 60 0.6575 0.6583 0.6608 0.6575 0.6575 0.6658 0.6608 0.6575 0.6575
3 2 300 0.6773 0.6815 0.6842 0.679 0.682 0.6138 0.6167 0.6773 0.6795
4 4 30 0.6767 0.6983 0.6933 0.6583 0.6867 0.6767 0.6917 0.6767 0.6867
5 4 60 0.7358 0.7058 0.7467 0.6967 0.7425 0.6767 0.7467 0.73 0.7425
6 4 300 0.7785 0.7848 0.7887 0.7848 0.7813 0.7663 0.7733 0.7785 0.7823
7 10 30 0.71 0.66 0.835 0.63 0.835 0.71 0.835 0.6983 0.805
8 10 60 0.745 0.7333 0.8433 0.685 0.8433 0.745 0.8275 0.745 0.8433
9 10 300 0.8735 0.8632 0.9193 0.8537 0.9032 0.8832 0.9137 0.8735 0.9032
10 20 30 0.665 0.5983 0.9233 0.5983 0.9233 0.665 0.9233 0.655 0.885
11 20 60 0.7483 0.655 0.935 0.6442 0.935 0.7483 0.935 0.7483 0.935
12 20 300 0.8878 0.8607 0.9832 0.805 0.9417 0.8438 0.9648 0.8878 0.9417
13 60 30 0.5 0.5 0.9717 0.5 0.9717 0.5 0.9717 0.5 0.9717
14 60 60 0.5 0.5 0.9683 0.5 0.9683 0.5 0.9683 0.5 0.9683
15 60 300 0.8147 0.8147 0.9683 0.8147 0.9683 0.8147 0.9683 0.8147 0.9683
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Table 2(c) Results of experiment 3 (I-0.1I case) using EM clustering
Model Selection

Situation Dimensionality Sample Size 1 mode AIC AIC_Mix BIC BIC_Mix NEC NEC_Mix ICLBIC ICLBIC_Mix
1 2 30 0.7333 0.745 0.705 0.8067 0.8167 0.815 0.8217 0.8433 0.8267
2 2 60 0.7742 0.7858 0.825 0.8483 0.8542 0.8583 0.8583 0.8533 0.855
3 2 300 0.7758 0.833 0.8743 0.8383 0.8778 0.8782 0.8782 0.8782 0.869
4 4 30 0.9167 0.83 0.8333 0.9167 0.9183 0.915 0.8983 0.92 0.925
5 4 60 0.9158 0.825 0.9158 0.9383 0.9492 0.93 0.9467 0.9458 0.935
6 4 300 0.9225 0.9667 0.9622 0.922 0.9683 0.9633 0.9685 0.963 0.9683
7 10 30 0.9683 0.8717 0.8117 0.9683 0.9683 0.9283 0.9283 0.9683 0.9683
8 10 60 0.99 0.9567 0.9325 0.99 0.99 0.9658 0.9775 0.99 0.99
9 10 300 0.9945 0.9787 0.9947 0.9995 0.9988 0.9995 0.9992 0.9985 0.9985
10 20 30 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945 0.945
11 20 60 0.9967 0.9158 0.9092 0.9967 0.9975 0.9617 0.9925 0.9967 0.9967
12 20 300 1 0.9997 0.9997 1 1 0.9998 1 1 1
13 60 30 0.5 0.5 0.9983 0.5 0.9983 0.5 0.9983 0.5 0.9983
14 60 60 0.5 0.5 0.9992 0.5 0.9992 0.5 0.95 0.5 0.9992
15 60 300 1 1 1 1 1 1 1 1 1

Table 2(d) Results of experiment 4 (I-I case) using EM clustering
Model Selection

Situation Dimensionality Sample Size 1 mode AIC AIC_Mix BIC BIC_Mix NEC NEC_Mix ICLBIC ICLBIC_Mix
1 2 30 0.6333 0.5617 0.5633 0.6117 0.615 0.62 0.6267 0.6267 0.6267
2 2 60 0.6575 0.5983 0.5875 0.6575 0.6575 0.6333 0.6383 0.6575 0.6575
3 2 300 0.6773 0.6693 0.6735 0.6802 0.6802 0.6773 0.6773 0.6773 0.6773
4 4 30 0.6767 0.6033 0.7615 0.6617 0.7782 0.6433 0.782 0.6767 0.7785
5 4 60 0.7358 0.655 0.6483 0.7358 0.7358 0.6817 0.7158 0.7358 0.7358
6 4 300 0.7785 0.766 0.7615 0.7782 0.7782 0.7825 0.782 0.7785 0.7785
7 10 30 0.71 0.6583 0.625 0.71 0.71 0.66 0.6417 0.71 0.71
8 10 60 0.745 0.7408 0.7008 0.745 0.745 0.69 0.6842 0.745 0.745
9 10 300 0.8735 0.8953 0.891 0.8735 0.8735 0.8892 0.882 0.8735 0.8735
10 20 30 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665 0.665
11 20 60 0.7483 0.7242 0.7317 0.7483 0.7483 0.6725 0.6767 0.7483 0.7483
12 20 300 0.8878 0.9023 0.9023 0.8878 0.8878 0.8282 0.8282 0.8878 0.8878
13 60 30 0.5 0.5 0.9717 0.5 0.9717 0.5 0.7783 0.5 0.9717
14 60 60 0.5 0.5 0.9683 0.5 0.9683 0.5 0.6775 0.5 0.9683
15 60 300 0.8147 0.8033 0.9387 0.8033 0.8147 0.9733 0.7935 0.8033 0.8147



- 18 -

February 17, 2003

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Different Situations

A
cc

u
ra

cy 1 mode

BIC

BIC_Mix

Figure 3(a) Some results of experiment 1 (I-0.1I case) using NM clustering
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Figure 3(b) Some results of experiment 2 (I-I case) using NM clustering
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5.2 Real Data Experiment Results

The results of the simulation study suggests that NM clustering is a better choice to build a

mixture classifier, so NM clustering is used on real data experiments. The results are in Table 3.

It shows that BIC_Mix has better performance than the others in almost all cases.

Table 3 Results of experiment using NM clustering
Accuracy

Model Selection 1 mode AIC AIC_Mix BIC BIC_Mix NEC NEC_Mix ICLBIC ICLBIC_Mix

Dimensionality Sample Size

20 100 0.949 0.9024 0.951 0.925 0.9475 0.7065 0.9199 0.949 0.9312

7 100 0.7394 0.8315 0.8365 0.8314 0.8384 0.7667 0.7503 0.7366 0.7408

20 20 0.4154 0.4154 0.7789 0.4154 0.7789 0.4154 0.6822 0.4154 0.6822

7 20 0.7011 0.6484 0.7163 0.6959 0.7163 0.7011 0.7056 0.7011 0.7056

The above results show that sometimes an original mixture classifier outperforms a simple

quadratic classifier but sometimes not. The proposed mixture classifier using BIC_Mix has the

advantages of both classifiers and outperforms those two in some situations. Before classifying

hyperspectral image data, feature extraction is usually a preprocessing step. The effect of

combining feature extraction and mixture classification will be discussed in the next section.

6 Using Mixture Classifier Based on Mix-LOOC2 after Feature Extraction

From the above results, it appears that a mixture classifier based on Mix-LOOC2 is a good

choice for classifying data in the original space. But using that mixture classifier in

hyperdimensional data is not efficient and will suffer from the Hughes phenomenon more

seriously. Before classifying hyperdimensional data, feature extraction is usually used to

transform the data from the original hyperdimensional space into a lower dimensional feature

space. This section is to explore the performances of combining feature extraction and the

mixture classifier based on Mixed-LOOC2 procedures.
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6.1 Experiment Design

In this section, the performances of the following four classification procedures are

compared.

1. Using DAFE features applied to the simple Gaussian quadratic classifier (DAFE+GC).

This is the previous, conventionally used approach and serves as a baseline for

comparison.

2.  Using DAFE features applied to the mixture classifier based on BIC and Mixed-

LOOC2 covariance estimator (DAFE+MC-Mix2).

3. Using NWFE applied to the simple Gaussian quadratic classifier (NWFE+GC).

4. Using NWFE features applied to a mixture classifier based on BIC and Mixed-LOOC2

covariance estimator (NWFE+MC-Mix2).

The experiment data are again in two parts, simulated and real data. Ten simulated data sets

with 30 and 60 dimensions and mixture distributions are used in Experiment 6 to compute the

average accuracy of four different procedures. The mean vectors and covariance matrices used to

generate the data are shown in Table 4. Ten randomly sampled DC Mall and Purdue campus data

sets are used in Experiment 7 to compute the average accuracy of the four different procedures.

The dimensionality of the DC Mall data sets is 191 and that of the Purdue campus data sets is

126. The class training sample sizes of all real data experiments are 40 pixels.
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Table 4 Design of Experiment 6
class 1 class 2 class 3

Dim=30, 60, 120 component 1 component 2 component 1 component 2 component 1 component 2

Mean Vector [2,2,0,…,0] [0,0,…,0] [2,4,…,0] [4,-2,0,…,0] [-2,0,…,0] [6,0,…,0]

Covariance 0.1I

Training Sample Size 20 20 20 20 20 20

Testing Sample Size 200 200 200 200 200 200

class 4 class 5 class 6

Dim=30, 120 component 1 component 2 component 1 component 2 component 1 component 2

Mean Vector [-2,-2,0,…,0] [0,6,…,0] [2,-4,…,0] [-4,2,0,…,0] [2,0,…,0] [-6,0,…,0]

Covariance 0.1I

Training Sample Size 20 20 20 20 20 20

Testing Sample Size 200 200 200 200 200 200

6.2 Experiment Results

The results of experiment 6 are displayed in figures 4(a), (b). The results of experiment 7

are displayed in figures 5(a), (b). They show the following.

1. Figures 4(a) and (b) show that using 2 features from NWFE and the mixture classifier

based on Mixed-LOOC2 yields the best performance. It implies that NWFE may

preserve the original data distribution situation better than DAFE does.

2. Figure 5(a) shows that the performances of NWFE+GC and NWFE+MC-Mix2 are

similar but the performance of DAFE+MC-Mix2 is much better than that of

DAFE+GC.

3.  Figure 5(b) shows that the performances of DAFE+GC and DAFE+MC-Mix2 are

similar but the performance of NWFE+MC-Mix2 is better than that of NWFE+GC.

4. Generally speaking, using the procedure NWFE+MC-Mix2 yielded better results and

reduced the Hughes phenomenon. However, it requires more computation time.
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Mixture Distributions (NC=6, Ni=40, Dim=30)
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Figure 4(a) Mean of accuracies of simulated data sets (dim=30)

Mixture Distributions (NC=6, Ni=40, Dim=60)
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Figure 4(b) Mean of accuracies of simulated data sets (dim=60)
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DC Mall (NC=7, Ni=40, Dim=191)
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Figure 5(a) Mean of accuracies of DC Mall data sets (dim=191)

Purdue Campus (NC=6, Ni=40, Dim=126)
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Figure 5(c) Mean of accuracies of Purdue campus data sets (dim=126)
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7 Concluding Comments

It has long been known that modeling each class in a data set with a single mode Gaussian

density is frequently not a good model. The use of “Gaussian subclasses” to provide a better

class model has long been in use, and has shown itself to be an effective way to proceed. This is

basically what has been called here a mixture classifier. The problem has been that deciding just

how many “subclasses” to use for each class and how to train each has been a substantial

challenge to the analyst. Devising an effective scheme for doing this should be a significant aid

to the analyst.

In this paper, Mixed-LOOC2 is used with the parameter estimation and model selection

steps of mixture classifiers. Experimental results show that the proposed mixture classifier using

nearest mean clustering and BIC_Mix has the advantages of both quadratic and original mixture

classifier and outperforms those two in some situations.

The performances of combining feature extraction (DAFE and NWFE) and the mixture

classifier based on Mixed-LOOC2 procedures are tested. The simulated and real data results

show that using NWFE then the mixture classifier based on nearest mean clustering and

BIC_Mix index is a robust classification procedure for hyperspectral data.

Estimating mixture distributions and regularized covariance are time consuming. This

procedure, which combined these two approaches together, needs more computational time.

While computational load is not a major concern, this procedure should be widely applicable.
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