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ABSTRACT

The model used to represent musical instrument sounds plays a cru-
cial role in the quality of sound transformations. Ideally, the rep-
resentation should be compact and accurate, while its parameters
should give flexibility to independently manipulate perceptually re-
lated features of the sounds. This work describes a source-filter
model for musical instrument sounds based on the sinusoidal plus
residual decomposition. The sinusoidal component is modeled as si-
nusoidal partial tracks (source) and a time-varying spectral envelope
(filter), and the residual is represented as white noise (source) shaped
by a time-varying spectral envelope (filter). This article presents es-
timation and representation techniques that give totally independent
and intuitive control of the spectral envelope model and the frequen-
cies of the partials to perform perceptually related sound transfor-
mations. The result of a listening test confirmed that, in general, the
sounds resynthesized from the source-filter model are perceptually
similar to the original recordings.

Index Terms— Source-filter model, sinusoidal models, musical
instrument, timbre, sound transformations

1. INTRODUCTION

The source-filter (SF) model was originally proposed to explain
speech production [1]. According to this model, speech is viewed
as a glottal excitation signal (source) driving a time-varying linear
filter that models the resonant characteristics of the vocal tract. The
most well known SF system is based on linear prediction (LP) of
speech [2], where the autoregressive filter is excited by either quasi-
periodic pulses (during voiced speech), or noise (during unvoiced
speech). The SF model has been applied to musical instrument
sounds [3, 4], usually for instrument recognition [5] , transcrip-
tion [6] , and source-separation algorithms [7]. In the context of
sound transformations, SF models are very attractive because they
represent source and filter independently, and therefore allow their
independent manipulation [8]. Possible transformations using the
SF model are cross-synthesis [4], formant-preserving pitch shifting
[9], and sound morphing [10].

There are many possible representations of source and filter,
from splines [3] to statistical models [6]. A popular SF model for
musical instrument sounds represents the filter as a time-varying
spectral envelope, while the source is obtained by inverse filtering
[2, 8]. There are different possible spectral envelope estimation tech-
niques, such as the channel vocoder [4], linear prediction [2], and
cepstral smoothing [9]. The quality of the results depends directly
on the accuracy of the representation. Ideally, the spectral envelope
should be a smooth curve that approximately matches the peaks of
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the spectrum [5]. The estimation of the spectral envelope is inti-
mately linked to the SF model [4, 9] because it corresponds to the
identification of the parameters of the filter via deconvolution. The
main goal of this deconvolution between source and filter by means
of spectral envelope estimation is to eliminate the harmonic struc-
ture of the spectrum, which is associated with the source. However,
a more compact and flexible representation of the excitation signal
has been proposed as sinusoidal models for both speech [11] and
musical instrument sounds [4].

This work presents an accurate source-filter (SF) model for mu-
sical instrument sounds that gives independent and intuitive control
of the spectral envelope and frequency of the partials to perform
sound transformations. The sounds are decomposed into a sinu-
soidal and a residual parts, which are modeled independently with
the SF model. The sinusoidal component comprises a time-varying
spectral envelope model (filter) and the frequencies of the partials
(source), while the residual component is modeled as white noise
(source) shaped by a time-varying spectral envelope (filter). We pro-
pose to use true envelope (TE) [9] to estimate the spectral envelope
of the sinusoidal component, and use linear prediction [2] to esti-
mate the spectral envelope of the residual. Advantages of the SF
model over traditional sinusoidal models are accurate representation
of source and filter for both the sinusoidal and residual components
(which are also independent), independent manipulation of dynamic
and spectral properties of source and filter, and a compact represen-
tation with perceptually related parameters. The SF representation
was validated with a listening test. Participants were presented the
original and SF representation of sounds and asked to assess their
perceptual similarity.

The next section presents the SF model developed in this work,
followed by the estimation of source and filter and resynthesis. Sec-
tion 4 presents the results of the listening test. Finally we present the
conclusions and future perspectives.

2. THE SOURCE-FILTER MODEL FOR MUSICAL
INSTRUMENT SOUNDS

An important assumption that is often made in the use of the SF
model for speech is the independence of source and filter. The filter
imprints its resonant characteristics on the spectrum of the source,
but the frequencies of the partials are not affected by the interaction
[2]. Independence between source and filter partially explains why
the SF model is more rarely applied to musical instruments, whose
source and filter are strongly coupled. The coupling between source
and filter for musical instruments can be understood as the filter driv-
ing the source or, in more musical terms, tuning its pitch. In other
words, the filter imposes not only its resonant characteristics to the
source, but also the frequencies at which the source will resonate.
Nevertheless, there are some special conditions under which the SF
model can be applied to model the production of musical instrument
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sounds. Slawson [12] proposes to look for subsystems of a musical
instrument that are weakly coupled to the rest of the instrument and
that may be largely responsible for the sound color of the instrument.
Under these conditions, the filter can be associated with the resonant
cavity of the instrument, and the source with the excitation method.
In this work we neglect the strongly coupled component of musical
instruments. So the source is supposed to be a quasi-periodic (or
pitched) signal x (t) that is fed into the weakly coupled component
Wc of the system, which represents the resonator.

2.1. Signal Processing Modeling of Source and Filter

The musical instrument sound y (t) is separated into a sinusoidal
component ys (t) plus a residual component yr (t) where yr (t) is
obtained by subtraction of the purely sinusoidal component ys (t)
from the original sound y (t). Both the sinusoidal and residual com-
ponents are modeled as source and filter. The filter of both is mod-
eled via spectral envelope estimation, while the sources are modeled
separately. A flexible representation of the quasi-periodic excitation
signal for speech [11] and musical instrument sounds [13, 4] is a sum
of sinusoids plus a residual component as follows

x (t) =

K(t)∑
k=0

ak (t) exp [jφk (t)] + xr (t) = xs (t) + xr (t) (1)

where ak (t) and φk (t) are the instantaneous excitation ampli-
tude and phase of the kth sinusoid, respectively, K (t) is the num-
ber of sinusoids, which may vary in time, and xr (t) is the residual
source. For most musical instrument sounds, a model where the si-
nusoids are harmonically related is a good approximation, giving

d

dt
φk (t) = 2πktf0 (t) (2)

where f0 (t) is the instantaneous fundamental frequency. For
musical instrument sounds, a further simplification of the excitation
signal is convenient, assuming that its amplitude ak (t) is constant
over time (and equal to unity, i.e., ak (t) = 1). Based on these sim-
plifications, the time-varying filter that models the resonant charac-
teristics of the body of the musical instrument also approximates the
effects of the shape of the excitation and of the transmission charac-
teristics of the resonator. The time-varying transfer function of the
filter can be written as

H (f, t) = |H (f, t)| exp [jψ (f, t)] (3)

where |H (f, t)| and ψ (f, t) are respectively the amplitude and
phase of the system. The processing of musical instrument sounds is
usually done on a frame-by-frame basis, where each frame typically
containing three periods of the waveform can be considered a sta-
tionary process [13]. In this case, inside a frame, the filter H (f, t)
is considered linear shift-invariant (LSI). Than the output of the sys-
tem can be viewed as the convolution of the impulse response of
the LSI filter and of the excitation signal as y (t) = x (t) ∗ h (t) =
[xs (t) + xr (t)] ∗ h (t) = ys (t)+ yr (t). Recognizing then that the
sinusoidal component of the excitation signal xs (t) is just the sum
of K (t) eigenfunctions of the filter H (f), the following model is
obtained

ys (t) =

K(t)∑
k=0

|H [fk (t)]| exp [j (φk (t) + ψ (fk (t)))] (4)

Fig. 1. Spectral representation of partials. The figure shows the
traditional sinusoidal representation with the frequency values and
amplitudes tied to each other in part a). Part b) depicts our represen-
tation, where the amplitudes of the partials are represented indepen-
dently with a spectral envelope model.

where fk (t) ≈ kf0 (t) are the eigenfrequencies of the filter
H (f, t). The amplitude of the kth harmonic is the system ampli-
tude |H (fk (t))|, which is also its eigenvalue. The phase of the kth

harmonic is the sum of the excitation phase φk (t) and the system
phase ψ [fk (t)] and is often referred to as the instantaneous phase
of the kth harmonic. In our model, the amplitudes of the partials
|H (fk (t))| are given by the spectral envelope curve, as shown in
part b) of figure 1. Figure 1 compares the spectral representation of
partials for the traditional sinusoidal modeling approach in part a),
and for the SF model in part b). In sinusoidal modeling, each partial
is assigned an amplitude and frequency values, while the SF model
represents the amplitudes and frequencies of the partials intrinsically
independently.

3. ESTIMATION OF SOURCE AND FILTER

The estimation of the source and filter parts for both the sinusoidal
and residual components is a key aspect of the method. The quality
of the results depends largely on the accuracy of the representation.
Each component is modeled (and processed) separately as follows.

3.1. Sinusoidal Component

For musical instrument sounds, the sinusoidal component contains
most of the acoustic energy present in the signal because musical
instruments are designed to have very steady and clear modes of vi-
bration. The sinusoidal component ys (t) is modeled as sinusoidal
tracks (source) xs (t) and the response hs (t) of the resonance cav-
ity Wc for each frame. The frequencies of the sinusoids fk (t) are
estimated from the spectrum using quadratic interpolation [11, 13].
The filter response hs (t) is estimated as the spectral envelope of the
spectrum of the sinusoidal component Ys (f). The spectral envelope
estimation method used is extremely important. Wen and Sandler
[4] propose an algorithm base on the channel vocoder to model the
filter part. However, Röbel [9] showed that “true envelope” (TE)
outperformed the other spectral envelope estimation methods tested.
TE can be interpreted as the best bandlimited interpolation of the
spectral peaks, minimizing the estimation error for the peaks of the
spectrum. Thus “true envelope” was chosen to estimate the spectral
envelope curve of Ys (f).

The proposed SF representation replaces the amplitude values
of the sinusoidal model with the spectral envelope curve. Figure 2
presents a comparison of the sinusoidal and the SF representation of
the amplitudes of partials. The top part of figure 2 shows the orig-
inal spectrum (grey) and the partials (red), i.e., the spectral peaks
selected by the peak-picking algorithm. At the bottom part, we see
the partials from sinusoidal analysis (red) and the spectral envelope

138



0 1000 2000 3000 4000 5000
0

20

40

Original French Horn
 Spectral Representation

Frequency (Hz)

A
m

pl
itu

de

spectrum
partials

Frequency (Hz)

A
m

pl
itu

de

0 1000 2000 3000 4000 5000
0

20

40

60 spectral envelope
partials

0 1000 2000 3000 4000 5000
0

50

100

150

Original Double Bass
 Spectral Representation

Frequency (Hz)

A
m

pl
itu

de

spectrum
partials

Frequency (Hz)

A
m

pl
itu

de

0 1000 2000 3000 4000 5000
0

50

100

150

spectral envelope
partials

0 1000 2000 3000 4000 5000
0

50

100

Original Viola
 Spectral Representation

Frequency (Hz)

A
m

pl
itu

de

spectrum
partials

Frequency (Hz)

A
m

pl
itu

de

0 1000 2000 3000 4000 5000
0

50

100

150

spectral envelope
partials

0 1000 2000 3000 4000 5000
0

20

40

60

Original Trumpet
 Spectral Representation

Frequency (Hz)

A
m

pl
itu

de
spectrum
partials

Frequency (Hz)

A
m

pl
itu

de

0 1000 2000 3000 4000 5000
0

20

40

60

80 spectral envelope
partials

0 1000 2000 3000 4000 5000
0

50

100

150

Original Violin
 Spectral Representation

Frequency (Hz)

A
m

pl
itu

de

spectrum
partials

Frequency (Hz)

A
m

pl
itu

de

0 1000 2000 3000 4000 5000
0

50

100

150 spectral envelope
partials

0 1000 2000 3000 4000 5000
0

20

40

60

80

Original Oboe Spectral Representation

Frequency (Hz)

A
m

pl
itu

de spectrum
partials

Frequency (Hz)

A
m

pl
itu

de

0 1000 2000 3000 4000 5000
0

20

40

60

80
spectral envelope
partials

Fig. 2. Spectral view of the source-filter model. Each figure shows
the traditional sinusoidal representation at the top and the source-
filter representation at the bottom for one analysis frame.

curve estimated with “true envelope” (black) representing the ampli-
tude of the partials. The partials now are simply the frequency values
at which we “sample” the spectral envelope curve.

Both representations retain essentially the same information
(amplitude and frequency of partials) in different ways. The spectral
envelope curve is only an interpolation of the amplitudes of the
partials using a cepstral model. The sinusoidal model has a more ac-
curate representation of the amplitudes of the partials, while the SF
representation presents small errors in the values of the amplitudes
inherited from the spectral envelope estimation procedure. On the
other hand, the SF model is very flexible when we want to transform
source and filter independently. Figure 3 shows the SF model from
a spectro-temporal perspective. The sinusoidal representation is not
very intuitive to manipulate coherently because there are too many
degrees of freedom. Changing the value of only one sinusoidal track
renders results that are not perceptually relevant. The SF model
is more perceptually intuitive to manipulate because changing the
parameters of the spectral envelope representation usually leads to a
smoother distribution of spectral energy.

3.2. Residual Component

The residual signal yr (t) is modeled as a white noise source xr (t)
driving the response of the system Wc. Thus, the response of the
resonant cavity to the excitation xr (t) is modeled as the spectral en-
velope of Yr (f) using linear prediction because it provides a better
estimate for noise. In this case, the filter is modeled using a spec-
tral envelope curve that follows the average energy of the magnitude
spectrum rather than fit the amplitudes of the spectral peaks. The SF
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Fig. 3. Comparison between the spectro-temporal view of the si-
nusoidal and SF representations. Part a) shows the waveform (top)
and spectrogram (bottom). Part b) shows the source (top) and filter
(bottom). The source is represented as the temporal variation of the
frequencies of the partials, while for the filter the higher amplitudes
are darker, like the spectrogram.

residual is mixed into the SF sinusoidal after resynthesis.

3.3. Resynthesis

The result of TE estimation is a set of cepstral coefficients repre-
senting the estimated spectral envelope curve. Next, this cepstral
based representation is converted to a linear prediction based repre-
sentation using the spectral power density method. The conversion
needs to be done to retrieve the amplitudes of the partials from the
LPC representation of the filter. The LPC representation is neces-
sary upon resynthesis because the sinusoids used to represent the
partials are the eigenfunctions of LSI systems. In other words, we
can simply “sample” the LPC representation of the filter part of the
SF model and we obtain the corresponding amplitudes. In mathe-
matical terms, the sinusoidal source xs (t) is expressed as a sum of
sinusoids as in equation 1 with ak = 1, ∀k. Then, if we express
the LPC representation of the filter by H (f), we can obtain the am-
plitudes of the partials of ys (t) from the frequency values fk and
H (f) using equations 2 and 4 as follows

K(t)∑
k=0

|H (fk (t))| = H

⎛
⎝

K(t)∑
n=1

2πfkt+ ψk

⎞
⎠ (5)

Thus ys (t) can be represented as
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ys (t) =

K(t)∑
k=0

sk (t)H (2πfkt+ ψk) (6)

where sk (t) = sin (2πfkt+ ψk) is a slowly varying sinusoid
with frequency fk in Hertz. The phase ψk is reconstructed integrat-
ing the instantaneous frequencies 2πfkt.

4. EVALUATION OF THE SF MODEL

We should consider two important aspects in the spectral modeling
part, accuracy of representation and ease of manipulation. Ideally,
the model should represent the original sound accurately and al-
low independent and coherent manipulation of different parts of the
model. One way to test the accuracy of the representation is to resyn-
thesize a sound from the parameters of the model representation and
compare it with the original sounds. An accurate model should ren-
der sounds that are perceptually similar to the original recordings (or
at least close enough depending on the intended application). On the
other hand, the ease of manipulation is essential when performing
sound transformations. If a representation has too many indepen-
dent parameters, it becomes cumbersome to manipulate all of them
coherently to obtain a certain result. Perceptually speaking, a coher-
ent manipulation of the amplitude values of a spectral representation
would change the values of the amplitudes in such a fashion that the
balance of the distribution of spectral energy is changed, rather than
the amplitudes of isolated partials independently from the partials
around it.

The result of a simple listening test that aimed to evaluate how
perceptually similar the sounds resynthesized from the SF rep-
resentation are to the original recordings is explained next. The
listening test presented 20 pairs of musical instrument sounds from
the Vienna symphonic library (http://www.vsl.co.at/en/
65/71/84/1349.vsl) and asked the participant to rate the
perceptual similarity between them using a scale from 1 to 5 (5
being identical). The Vienna sound database contains samples
from most musical instruments commonly found in an orchestra
recorded under controlled conditions and played by professional in-
strumentalists. There are woodwind, brass, plucked and bowed
string instrument samples in the database covering the normal
pitch range of each instrument. The listening test is available on-
line http://recherche.ircam.fr/anasyn/caetano/
survey/similarity.html. In total, the results of 80 partici-
pants aged between 22 and 67 were used.

In general, the implementation of SF model used in this work
was rated between 4 and 3. Except for the bass trumpet sound, which
was very “brassy”. Thus the results of the similarity test validate the
SF model as perceptually similar to the original sounds. Interest-
ingly, most listeners reported using the noisy residual to assess the
differences. Some listeners even referred to the sounds as coming
from particular instruments, even though this information was not
given.

5. CONCLUSIONS AND FUTURE PERSPECTIVES

This work presented a source-filter (SF) model for musical instru-
ment sound transformation that is accurate, compact and flexible.
The SF model is based on sinusoidal plus residual decomposition of
the original sounds. The sinusoidal source is modeled as sinusoidal
tracks driving a time-varying filter estimated with “true envelope”.
The residual is represented as white noise (source) shaped by a time-
varying autoregressive filter. The SF model is very appropriate for

sound transformations because of its independent and compact spec-
tral representation. Most sound transformation techniques found in
the literature apply sinusoidal models in part due to the quality of
the representation of a broad class of sounds. However, a drawback
of using sinusoidal models in sound transformations is that the num-
ber of parameters is proportional to the number of partials. The SF
representation, in turn, models the amplitude of the partials with a
spectral envelope curve, which has a limited number of parameters
that depend solely on the fundamental frequency of the spectrum, not
on the number of partials. The parameters of spectral envelope mod-
els normally give smooth continuous transformed spectral envelope
curves when manipulated. The SF representation was validated with
a perceptual similarity test. Participants were presented the original
and SF representation of sounds and asked to assess their perceptual
similarity. In general the SF representation was judged perceptually
similar to the original recordings. Future perspectives of this work
would include using the SF model developed here in musical instru-
ment modeling for instrument recognition, transcription, and sound
source separation.
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