
Particle Swarm Optimization for collision-free 4D
trajectory planning in Unmanned Aerial Vehicles

D. Alejo, J. A. Cobano, G. Heredia and A. Ollero
Robotics, Vision and Control Group

Engineering School, University of Seville
41092 Seville, Spain

[dalejo,jacobano,guiller,aollero]@cartuja.us.es

Abstract—This paper presents a new system which
automatically identifies conflicts between multiple UAVs
(Unmanned Aerial Vehicles) and proposes the most effec-
tive solution considering the available computation time.
The system detects conflicts using an algorithm based on
axis-aligned minimum bounding box and resolves them
cooperatively using a collision-free trajectory planning
algorithm based on a simple one-at-a-time strategy to
quickly compute a feasible but non-optimal initial so-
lution and a stochastic optimization technique named
Particle Swarm Optimization (PSO) to improve the initial
solution. PSO modifies the 4D trajectories of the UAVs
with an overall minimum cost. Determining optimal
trajectories with short time intervals during the execution
of the mission is not feasible, hence an anytime approach
using PSO is applied. This approach yields trajectories
whose quality improves when available computation time
increases. Thus, the method could be applied in real-
time depending on the available computation time. The
method has been validated with simulations in scenarios
with multiple UAVs in a common workspace.

I. INTRODUCTION

Cooperative missions with multiple UAVs
present important advantages to carry out different
missions such as surveillance, mapping, explo-
ration, data collection, fire detection and moni-
toring, etc. [1]. In these missions the problem is
to maintain as much as possible the trajectories
planned and meet the Estimated Time of Arrival
(ETA) of each UAV to perform coordinated mis-
sions. Therefore a system of collision-free 4D
trajectory planning is required to ensure the safety
of the mission.

General concepts and methods on path planning
could be applied in order to solve the problem.
A review of these methods with a comprehen-
sive mathematical discussion is presented in [2].
Among these methods could be highlighted: po-
tential fields [3], graph search like A* and D* [4]
and Rapidly-exploring Random Trees (RRT) [5].
Other kind of methods have been proposed such as
evolutionary techniques [6] [7] [8], particle swarm
optimization [9] and multi-objective evolutionary
algorithms [10].

The problem of trajectory planning is NP-hard
[11] [12]. Some differential constraints given by
the model of the UAV should be considered
to make the problem tractable. Sampling-based
techniques, as opposed to combinatorial planning,
are usually preferred in these NP-hard problems.
These planning schemes are appropiated when the
solution space is hard to model or unknown a priori
because of its dynamic nature.

Furthermore, planning optimal collision-free tra-
jectories for multiple UAV leads to optimization
problems with multiple local minimum in most
cases and, thus, local optimization methods as
gradient-based techniques are not well suited to
solve it. The application of evolutionary techniques
or particle swarm optimization is an efficient and
effective alternative for this problem, since they
are global optimization methods.

The Conflict Detection and Resolution (CDR)
problem has also been studied extensively and
different types of techniques have been proposed

2013 International Conference on Unmanned Aircraft Systems (ICUAS)
May 28-31, 2013, Grand Hyatt Atlanta, Atlanta, GA

978-1-4799-0817-2/13/$31.00 ©2013 IEEE 298

2

[13]. One method to resolve conflicts is based
on the speed assignment [14]. In this method the
speed profile for all the aerial vehicles involved
in a collision is computed in a centralized way
to solve the conflict. A method based on mixed-
integer linear programming (MILP) is presented
in [15]. It resolves the conflict by changing speed
to a large number of aerial vehicles subject to
velocity change constraints, but some conflicts
cannot be solved. Other method resolves pairwise
conflicts [16] but do not consider more UAVs.
More methods based on MILP to avoid collisions
are presented in [17] and [18]. The method for
multiple-UAV conflict avoidance proposed in [19]
assumes that UAVs fly at constant altitude with
varying velocities and that conflicts are resolved in
the horizontal plane using heading change, velocity
change, or a combination thereof. Methods based
on Ant Colony Optimization (ACO) algorithms
have also been proposed [20]. In [21], the ap-
plication of a game theory approach to airborne
conflict resolution is presented. These techniques
present a disadvantage: they are not well suited for
applications that require a high level of scalability
for the application to many UAVs.

The ARCAS FP7 European Project [22] is de-
veloping a cooperative free-flying robot system
for assembly and structure construction. The AR-
CAS system will use aerial vehicles (helicopters
and quadrotors) with multi-link manipulators for
assembly tasks [23]. The aerial vehicles carry
structure parts that will be assembled at the tar-
get destination. An important part in ARCAS is
cooperative assembly planning and safe trajectory
generation to perform the coordinated missions,
assuring that neither the aerial vehicles nor the
manipulators or the objects carried collide with
each other.

This paper presents a system to plan collision-
free 4D trajectories, which automatically identifies
conflicts between multiple UAVs and proposes
the most effective solution considering the avail-
able computation time. The detection algorithm
is based on axis-aligned minimum bounding box.
The cooperative 4D trajectory planning algorithm
is based on a stochastic global optimization tech-
nique named Particle Swarm Optimization (PSO).

Moreover, a simple one-at-a-time strategy is con-
sidered to quickly compute a feasible but non-
optimal solution, which is taken as the initial
point. The choice of PSO is based on its low
computational overheads and faster solution con-
vergence compared to genetic algorithms and other
evolutionary algorithms [24]. Each UAV changes
its trajectory to solve the detected conflicts col-
laborating with the rest of UAVs. The approach
to solve the conflicts is to add an intermediate
waypoint to the initial trajectory and/or change the
speed to meet the ETA. This system presents two
main advantages: its low execution time and its
scalability.

On the other hand, computing time of most op-
timization methods is not deterministic, and most
published works either do not consider computing
time or simply show that in average it is much
less than the available time to get a solution, thus
wasting available computing time. The proposed
system adopts an anytime approach to resolve the
conflicts, it is able to provide a flyable solution at
any time, and it will be more or less close to the
optimum depending on the available time. Thus,
valid trajectories whose quality improves when
available computation time increases are yielded.
Therefore, this system can be used with low avail-
able computation time although the quality of the
solution will not be optimal.

The paper is organized into five sections. The
formulation of the problem and requirements of
the ARCAS project are presented in Section II.
The proposed system is described in Section III.
Section IV presents the simulations performed.
Finally the conclusions are detailed in Section V.

II. PROBLEM FORMULATION

The problem considered in this paper is the
collision-free 4D trajectory planning of multiple
UAVs to perform the coordinated missions pro-
posed by the ARCAS project (http://www.arcas-
project.eu). Figure 1 shows the inputs and output
considered in the corresponding task to perform in
the project.

Firstly an initial assembly planning is generated
to build the structure and spatial trajectories are
computed to implement this plan. The deviations

299

3

Figure 1. Cooperative assembly planning in the ARCAS project.

of aerial robots from these trajectories could be
significant due to perturbations (i.e. wind). Fur-
thermore, the planned trajectories for assembly are
spatial trajectories. Then, the system should com-
pute collision-free 4D trajectories when a conflict
is detected during the execution of the mission.
A trajectory is defined by a sequence of way-
points and the ETA to the last waypoint. UAVs
share a common workspace and the separation
between them should be greater than a given safety
distance. It is assumed that heading and velocity
changes are allowed to solve the conflicts. There-
fore, the solution considers the addition of inter-
mediate waypoints to the trajectory and changes
of speed to meet the ETA. This latter is important
to meet it in coordinated missions. The proposed
system detects potential conflicts and computes
a collision-free 4D trajectory for each UAV. All
UAVs cooperate to solve the problem. The infor-
mation that the system needs in order to solve the
problem is the following:

1) Initial flight plan of each UAV.
2) Parameters of the model of each UAV
3) Location of each UAV
4) ETA of each UAV
5) The available computation time
The objective is to find collision-free 4D tra-

jectories that minimize the probability of having a
collision while minimizing the changes of way-
points and speed for each UAV. Moreover, the
Estimated Time of Arrival (ETA) will be met to
perform the mission of the ARCAS project.

III. DESCRIPTION OF THE SYSTEM

This section describes the blocks of the pro-
posed system to resolve the detected conflicts
(see Figure 2). First, a detection algorithm based

on axis-aligned minimum bounding box is imple-
mented to detect possible conflict from all the 4D
trajectories. Then, a collision-free 4D trajectory
planning algorithm based on a fast initial feasible
solution and PSO is implemented to solve the de-
tected conflicts. The available computation time is
considered and the quality of the solution improves
when this time increases.

Figure 2. Description of the system.

A. Axis-aligned minimum bounding box for detec-
tion

The detection algorithm is based on axis-aligned
minimum bounding box. This technique presents
as advantages the low execution time and the need
of few parameters to describe the system. On the
other hand, it presents two disadvantages: it is not
very accurate and it depends on the coordinate
axes.

The ARCAS project uses aerial robots (au-
tonomous quadrotors or helicopters) with a multi-
link arm attached to the bottom of the aerial robot
to carry out the manipulation and assembly tasks.
These UAVs should grasp different structural parts
and transport them to the corresponding assembly
location. To avoid collisions between the UAVs
(including the arms and the grasped objects), a
security envelope is defined around each one.
Each UAV security envelope is approximated by
two boxes joined together: a horizontal box that
covers the aerial robot and its rotors and a vertical
box, which surrounds the arm and the transported
object (see Figure 3). Each box is defined by the
intersection of three intervals, one by axis. The
measurement of the horizontal box is related to
the minimum horizontal separation between UAV
considering the arm and the grasped object, and the
vertical box is related to the vertical separation.

300

4

Therefore, the minimum separation, S, between
two UAVs is defined by the dimension of both
joined boxes. A collision is detected when there
is an overlapping between the intervals that define
each box (see Figure 3). Thus, the 3D problem is
reduced to three problems of overlapping, one in
each coordinate axis. Let us consider the intervals
in one coordinate A = [Ai, Ae] and B = [Bi, Be].
The condition of overlapping for this coordinate is
given by:

(Ae > Bi) Λ (Ai < Be) (1)

Figure 3. Detection algorithm based on axis-aligned minimum
bounding box: A and B overlap (collision).

B. 4D trajectory planning algorithm

The collision-free 4D trajectory planning al-
gorithm is based on obtaining a feasible initial
solution very fast, and then optimizing the solution
using the PSO method, which is an heuristic global
optimization algorithm. PSO is iterative, and the
solution improves with time. Thus, it is guaranteed
that a feasible solution is available at any time, and
that this solution will improve its quality if there
is more execution time available.

The initial solution can be obtained with a
simple one-at-a-time strategy: when there is a
possible conflict between several UAVs, one of
them moves to its destination point while the
others stay hovering at the initial position, then
the next UAV goes to its target position, and so on.
By moving only one UAV at a time, the conflict
is avoided. On the other hand, the solution is far
from the optimum since the total time will be
much higher than the ETA. Other velocity planning
methods to quickly compute initial solutions have

been also implemented using the two velocities
and the greedy approach described in [25].

There are some situations in which the conflict
cannot be solved only by changing the speeds of
the involved UAVs. This is the case when a frontal
collision is detected, for example. In these cases,
the path must be changed and the roundabout
technique can be a good candidate [26]. The main
idea is to make the involved aircrafts circle the
conflict in the same direction. The radius of the
circle should be long enough to ensure collision-
free trajectories and to provide flyable trajectories.

The PSO algorithm was first proposed in [27]. It
is developed from swarm intelligence and is based
on the research of bird and fish flock movement
behavior. It works by maintaining a swarm of
particles that move around in the search-space
influenced by both the improvements discovered
by the other particles (social behavior) and the
improvements made by the particle so far (greedy
behavior). Its main advantages are its simplicity,
easy implementation and the existence of few
parameters to tune when comparing with other
evolutionary algorithms.

In this paper, we consider that the initial position
is known and the final waypoint of each UAV
should be the same as the one in the initial
trajectory. Moreover, the ETA to the final waypoint
should be met. Therefore, the goal of this algo-
rithm is to obtain collision-free 4D trajectories by
adding one intermediate waypoint in the trajectory
of each UAV and changing the speed to meet the
ETA while minimizing the following cost function:

J =
N∑
i=1

(Li + k∆v2i) + ωc (2)

where N is the total number of UAVs in the
system, Li is the total length of ith trajectory, ∆vi
is the change of speed of each UAV to meet its
ETA, k is a factor to convert to distance, and
ωc is the collision penalty that will be added
if the new trajectories still lead to collisions in
the system or if at least one unfeasible plan is
generated. This function can be easily modified
in order to take into account energy analysis and
other operational costs. Note that the approach
considered is centralized.

301

5

The implemented algorithm is based on [28].
Let S be the number of particles in the swarm,
each particle is defined by a state vector xi in the
search-space and a velocity vector vi. This state
vector contains the information about the location
of the intermediate waypoint and the velocity in
the first sector of the trajectory of each UAV. Note
that the speed in the second sector is calculated so
the ETA to the final waypoint is the same as in the
original trajectory.

In first place, the swarm is initialized by ran-
domly assigning initial locations and velocities
with an uniform distribution. Then a special parti-
cle containing the initial solution is added to ensure
the existence of one conflict-free solution at any
time.

Let pi be the best known state vector of particle
i and let g be the best known state vector of the
entire swarm. These are recalculated whenever a
new iteration is obtained.

Then the exploration loop is executed. In each
iteration, both the state vector and the velocity of
each particle are updated by applying the expres-
sions indicated in steps 10 and 11 (see Algorithm
1):

The most important parameters in this formula
are the social weight, φg, and the local weight, φp.
ω is the inertia weight. rg and rp are vectors where
each component is generated at randomly with an
uniform U(0, 1) distribution. Local and global best
state vectors are also updated if necessary (steps
13-15).

The exploration loop can be finished by using
many different termination criteria. Among these
criteria a timeout condition and a convergence
condition (most of the individuals lay in to a
tight region of the search space) are the common
approaches. In this paper, the algorithm concludes
when the available computation time is reached.

The parameters φg and φp have been tuned by
performing several tests with the same conditions
and only changing one parameter at a time. These
parameters are usually selected in the interval
[0, 1]. In our case, the best values found were
φg = 0.9 and φp = 0.1.

Algorithm 1 Basic PSO algorithm
1. for Each particle do
2. Initialize each particle’s state vector xi

with the desired probability function
3. Initialize particle best state vector pi ←

xi
4. If f(pi) < f(g) update the swarm best

state vector g ← xi
5. Initialize each particle’s velocity vector

vi. An uniform distribution is usually
used.

6. end for
7. repeat
8. for Each particle do
9. Pick random numbers rg rp with

U(0, 1)
10. Update the particle’s velocity:

vi ← ωvi +φprp(pi−xi) +φgrg(g−
xi)

11. Update the particle’s state vector:
xi ← xi + vi

12. if f(xi) < f(pi) then
13. Update the particle’s best

known state vector
14. if f(xi) < f(g) then
15. Update the swarm’s best

known state vector g ← xi
16. end if
17. end if
18. end for
19. until A termination criterion is met

IV. SIMULATIONS

A comprehensive set of simulations have been
carried out to validate the proposed system. Also,
a random generation process of the test considered
has been performed to evaluate the system.

A. Test set design
The definition of a metric plays an important

role to evaluate the results. In cases of motion
planning problems for only one mobile object,
there are some de facto benchmark standards in the
academic context, like the bug trap or the alpha test
[29]. However, this is not the case when dealing
with planning of multiple mobile objects.

302

6

In the work presented in this paper, a test set has
been developed in a given scenario to validate the
ASCDR system and to provide a way to measure
the properties of the system regarding time of
execution, optimization and level of scalability
with number of vehicles. Furthermore, the test
set and the design methodology can be useful for
comparison with other methods.

The considered scenario has a base of 10x10
dimensional units. Different problems are defined
by considering a random generation process. Each
problem is formulated as a set of entry and exit
points located in one of the lateral sides of the
scenario.

The adopted strategy is regressive. Random can-
didate solutions are generated and the problem is
defined using them when they are found.

The random generation process of the tests is
performed following the Algorithm 2. For each
vehicle, an entry side is randomly chosen, selecting
a uniformly random number between 1 and 4 (line
4). Then, the exit side is randomly selected from
the resting 3 sides (line 5). Entry and exit points
are randomly selected from the corresponding side
(line 6). A certain number, M, of intermediate
waypoints inside of the scenario along with the
entry and exit points define the initial trajectory.

Algorithm 2 Random test generation algorithm
1: for each test do
2: while test is not valid do
3: for each aircraft do
4: Choose a random entry side
5: Choose a random exit side from the

resting 3
6: Choose entry and exit points from the

corresponding entry and exit sides
7: Add M random intermediate way-

points
8: Check for the flight plan validity
9: end for

10: end while
11: end for

The algorithm should ensure the following (see
line 8):

1) The solution is valid, i.e. vehicles do not
collide

2) The initial trajectories should ensure that
generating a conflict

The test set consists of 40,000 different prob-
lems grouped by the number of vehicles involved,
from 2 to 5, in subsets of 10,000 tests. This
classification, using the number of vehicles, is
useful to study the scalability characteristics of the
method. The number of vehicles is from 2 to 5
because is the number used in the experiments of
ARCAS project.

B. Simulation results

Simulations have been carried out from the
test set to check the properties of the proposed
system. The tests have been performed in the same
computer and under the same conditions.

The algorithms have been run in a PC with a
2GHz Dual Core processor and 2 GB of RAM.
The operating system used was Kubuntu Linux
with kernel 2.6.32. The code was written in C++
language and compiled with the gcc-4.4. 1.

The minimum horizontal and vertical separation
between UAVs is shown in Figure 3. These separa-
tion distance have to be calculated according to the
dimension of each vehicle and their localization
and control errors. The dimensions of the scenario
are 10m × 10m. Two hundred tests have been
performed for each subset. The number of inter-
mediate waypoints, M , is set to 1. Therefore, each
solution trajectory is composed of two segments.
Each UAV should meet its ETA to perform the
coordinated mission. The allowed speed for each
UAV is between 0.3m/s and 2m/s, and k = 5.
The speed in the first segment is chosen randomly
and in the second one is computed to meet the
ETA. If a particle does not meet the ETA, it is
penalized.

Table I shows the mean time of execution and
the mean minimum cost considering two hundred
tests and one hundred iterations in each test. The
relation between the time of execution and the
number of iterations performed is shown in Figure
4. The dependence with the number of UAVs
shows the scalability characteristics of the method.

303

7

Table I
MEAN AND STANDARD DEVIATION OF THE TIME OF EXECUTION

AND THE COST CONSIDERING 200 SIMULATIONS FOR EACH
NUMBER OF VEHICLES.

UAVs Mean Time (s) Mean Cost (m)
2 13.843±2.104 19.935±2.907
3 23.603±3.385 28.082±4.244
4 32.599±4.691 37.092±4.934
5 38.925±7.231 46.063±6.467

Figure 4. Time of execution vs. number of iterations depending
on the number of vehicles.

Figure 5 shows the evolution of the median of
the minimum cost with the number of iterations
considering different number of UAVs. The pro-
posed system finds a better solution as time passes.

Figure 5. Median of minimum cost throughout successive itera-
tions.

The speed should be changed in order to meet
the ETA of each UAV. Figures 6, 7, 8 and 9
show the information on the speed of each UAV
involved. Each box of the figure depicts statistics
of the two hundred tests performed for a given
number of UAVs. The central mark is the median,
the edges of each box are the 25th and 75th
percentiles, and the whiskers extend to the extreme
data points.

Note that the mean change of speed of each
UAV is low and it increases as the number of UAVs
increases. Moreover, the mean change of speed of
each UAV involved in a test is similar.

Figure 6. Speeds with two UAVs by considering 200 tests.

Figure 7. Speeds with three UAVs by considering 200 tests.

Figure 8. Speeds with four UAVs by considering 200 tests.

The median of the minimum costs computed in
all the tests has been chosen as statistical indicator.
This indicator indicates how much time it would
cost to achieve a solution with certain level of
optimality. This relates the cost in a given iteration
to the obtained minimum cost in the corresponding
problem.

304

8

Figure 9. Speeds with five UAVs by considering 200 tests.

Figure 10 shows a normalization of the cost
against the number of iterations. A line that marks
the required number of iterations to compute for
a 90% level of optimality is drawn. If the test set
is executed in the same computer where the user
has installed the proposed method, Figure 4 will
provide an estimation of the time needed for that
number of iterations, and therefore, that level of
optimality.

For the cost normalization, a linear transforma-
tion, f(x) = ax + b, is applied to the actual cost
values to set them in the range [0,1]. Therefore a
and b are chosen in such a way that the maximum
cost equals to 1 and the minimum cost equals to
0. Therefore,

a =
1

Costmax − Costmin

(3)

b =
Costmin

Costmin − Costmax

(4)

Figure 10. Normalized cost throughout successive iterations. The
line marks the 90% optimality.

Depending on the number of UAVs, a solution
of great quality, 90%, is computed between 20 or

47 iterations. This means that this kind of solutions
can be computed between three and sixteen sec-
onds by depending on the number of UAVs. This
characteristic is important to apply this collision-
free 4D trajectory planning algorithm in real-time
applications. Moreover, the algorithm based on
PSO presents better results than the algorithm
based on genetic algorithms presented in [30].

Next, an anytime approach is considered. Fig-
ures 11, 12, 13 and 14 show how the quality of the
solution improves as the time increases by using
PSO. Two hundred simulations are considered for
each number of UAVs. The quality of the solution
is reported each ten iterations. The advantage of
this approach can be noted because a good quality
of solution of 75% is achieved on two or six
seconds for 2 and 4 UAVs, and on eight seconds
for 5 UAVs. Obviously, the quality of solution
improves as the time increases.

Figure 11. Anytime approach with two UAVs.

Figure 12. Anytime approach with three UAVs.

V. CONCLUSIONS

In this paper, we have presented a system to plan
collision-free 4D trajectories based on an anytime

305

9

Figure 13. Anytime approach with four UAVs.

Figure 14. Anytime approach with five UAVs.

stochastic optimization approach. The proposed
system detects conflicts in trajectories of multiple
UAVs using an algorithm based on axis-aligned
minimum bounding box, and resolves them co-
operatively using a collision-free 4D trajectory
planning algorithm based on a simple one-at-a-
time strategy to quickly compute a feasible but
non-optimal initial solution and Particle Swarm
Optimization to improve incrementally the initial
solution. The system provides a valid collision-free
set of 4D trajectories at any time, so it can be used
with low available computation times, although a
sub-optimal solution will be obtained. Thus, the
proposed system is well suited to situations with
variable available computation times, depending
on the number of UAVs and the distance to po-
tential conflicts.

Other requirement to meet in coordinated mis-
sions is the ETA. The proposed system computes
solution trajectories meeting the ETA of each to
perform the mission.

The system has been validated with many simu-
lations performed in different scenarios and several
studies to analyze the characteristics of the system.

The main advantages of the proposed system
with respect to the one presented in [9] are: it
considers mulitple vehicles in the space and could
be applied in real-time.

Future work will include the validation of the
proposed system experimentally with UAVs.

VI. ACKNOWLEDGEMENT

This work was supported by the European
Commission FP7 ICT Programme under the
project ARCAS 287617 and the CLEAR project
(DPI2011-28937-C02-01) funded by the Spanish
Research and Development Program. Also it has
been partially funded by the Junta de Andalucia
project P09-TEP- 5120. David Alejo has been
granted with a FPU fellowship by the Ministerio de
Educación y Ciencia of the Spanish Government.

REFERENCES

[1] J. A. Cobano, J. R. Martı́nez-de Dios, R. Conde,
J. M. Sánchez-Matamoros, and A. Ollero, “Data retrieving
from heterogeneous wireless sensor network nodes using
uavs,” Journal of Intelligent and Robotic Systems,
vol. 60, no. 1, pp. 133–151, 2010. [Online]. Avail-
able: http://www.springerlink.com/index/10.1007/s10846-
010-9414-y

[2] S. M. LaValle, Planning Algorithms. Cambridge,
U.K.: Cambridge University Press, 2006, available at
http://planning.cs.uiuc.edu/.

[3] O. Khatib, “Real-time obstacle avoidance for manipulators
and mobile robots,” Int. J. Rob. Res., vol. 5,
no. 1, pp. 90–98, Apr. 1986. [Online]. Available:
http://dx.doi.org/10.1177/027836498600500106

[4] A. Stentz and I. C. Mellon, “Optimal and Efficient Path Plan-
ning for Unknown and Dynamic Environments,” International
Journal of Robotics and Automation, vol. 10, pp. 89–100,
1993.

[5] S. M. Lavalle, J. J. Kuffner, and Jr., “Rapidly-Exploring
Random Trees: Progress and Prospects,” in Algorithmic and
Computational Robotics: New Directions, 2000, pp. 293–308.

[6] J. A. Cobano, R. Conde, D. Alejo, and A. Ollero, “Path
planning based on genetic algorithms and the monte-carlo
method to avoid aerial vehicle collisions under uncertainties,”
in Proc. IEEE Int Robotics and Automation (ICRA) Conf,
2011, pp. 4429–4434.

[7] R. Vivona, D. Karr, and D.Roscoe, “Pattern-based genetic
algorithm for airborne conflict resolution,” in AIAA Guidance,
Navigation and Control Conference and Exhibit, Keystone,
Colorado, August 2006.

[8] N. Durand and J. Alliot, “Optimization resolution of en
route conflicts,” in First USA/Europe Air Traffic Manage-
ment Research and Development Seminar (ATM1997), Saclay
(France), 17-19 June 1997.

[9] M. Pontani and B. A. Conway, “Particle Swarm Optimization
Applied to Space Trajectories,” Journal of Guidance Control
and Dynamics, vol. 33, pp. 1429–1441, 2010.

306

10

[10] A. J. Pohl and G. B. Lamont, “Multi-objective UAV
mission planning using evolutionary computation,” in Winter
Simulation Conference, 2008, pp. 1268–1279. [Online].
Available: http://dx.doi.org/10.1109/WSC.2008.4736199

[11] J. F. Gilmore, “Autonomous vehicle planning analysis
methodology,” in AIAAA Guidance Navigation Control Con-
ference, 1991, pp. 2000–4370.

[12] R. J. Szczerba, “Threat netting for real-time, intelligent route
planners,” in IEEE Symp. Inf., Decis. Control, 1999, pp. 377–
382.

[13] J. K. Kuchar and L. C. Yang, “A review of conflict detection
and resolution modeling methods,” IEEE Transactions on
Intelligent Transportation Systems, vol. 1, pp. 179–189, 2000.

[14] J. A. Cobano, D. Alejo, A. Ollero, and A. Viguria,
“Efficient conflict resolution method in air traffic
management based on the speed assignment,” in
Proceedings of the 2nd International Conference on
Application and Theory of Automation in Command and
Control Systems, ser. ATACCS ’12. Toulouse, France,
France: IRIT Press, 2012, pp. 54–61. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2325676.2325684

[15] A. Vela, S. Solak, W. Singhose, and J.-P. Clarke, “A mixed
integer program for flight-level assignment and speed con-
trol for conflict resolution,” in Decision and Control, 2009
held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference
on, dec. 2009, pp. 5219 –5226.

[16] H. Erzberger, “Automated conflict resolution for air traffic
control,” in Proceeding International Congress Aeronautical
Sciences, 2006, pp. 179–189.

[17] A. Richards and J. P. How, “Aircraft trajectory planning with
collision avoidance using mixed integer linear programming,”
in In Proc. ACC, 2002, pp. 1936–1941.

[18] L. Pallottino, E. Feron, and A. Bicchi, “Conflict resolution
problems for air traffic management systems solved with
mixed integer programming,” Intelligent Transportation Sys-
tems, IEEE Transactions on, vol. 3, no. 1, pp. 3 –11, mar
2002.

[19] I. Hwang, C. J. Tomlin, I. Hwang, and C. Tomlin, “C.:
Protocol-based conflict resolution for air traffic control. air
traffic control quarterly 15(1,” 2007.

[20] N. Durand and J. Alliot, “Ant colony optimization for air
traffic conflict resolution,” in Proceedings of the Eighth
USA/Europe Air Traffic Management Research and Develop-
ment Seminar (ATM2009), Napa, (CA, USA), 2009.

[21] P. Masci and A. Tedeschi, “Modelling and evaluation of a
game-theory approach for airborne conflict resolution in om-
net++,” in Second International Conference on Dependability,
June 2009.

[22] A. Ollero, “Aerial robotics cooperative assembly system
(arcas): First results,” in Aerial Physically Acting Robots
(AIRPHARO) workshop, IROS 2012, Vilamoura, Portugal,
October 7-12 2012.

[23] A. E. Jimenez-Cano, J. Martin, G. Heredia, R. Cano, and
A. Ollero, “Control of an aerial robot with multi-link arm for
assembly tasks,” in IEEE Int. Conf. Robotics and Automation
(ICRA), Karlsruhe, Germany, MAy 6-10 2013.

[24] K. E. Parsopoulos and M. N. Vrahatis, “Recent approaches
to global optimization problems through particle swarm opti-
mization,” Natural Computing, Springer, vol. 1, pp. 235–306,
202.

[25] D. Alejo, J. M. Dı́az-Báñez, J. A. Cobano, P. Pérez-Lantero,
and A. Ollero, “The velocity assignment problem for conflict
resolution with multiple aerial vehicles sharing airspace,”
Journal of Intelligent and Robotic Systems, vol. 69, no. 1-
4, pp. 331–346, 2013.

[26] L. Pallotino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “De-
centralized cooperative policy for conflict resolution in multi-
vehicle systems,” IEEE Transactions on Robotics, vol. 23,
no. 6, pp. 1170 –1183, December 2007.

[27] J. Kennedy and R. Eberhat, “Particle swarm optimization,”
in IEEE Internatioal Conference on Neural Networks, vol. 4,
1995, pp. 1942–1948.

[28] M. E. H. Pedersen, “Good parameters for particle swarm
optimization,” in Hvass Laboratories, Technical Report no.
HL1001, 2010.

[29] “Alpha test:,”
http://parasol.tamu.edu/groups/amatogroup/benchmarks/mp.

[30] R. Conde, D. Alejo, J. A. Cobano, A. Viguria, and A. Ollero,
“Conflict detection and resolution method for cooperating
unmanned aerial vehicles,” Journal of Intelligent & Robotic
Systems, vol. 65, pp. 495–505, 2012, 10.1007/s10846-011-
9564-6.

307

