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Abstract—Maximizing product adoption within a customer
social network under a constrained advertising budget is an
important special case of the general influence maximization
problem. Specialized optimization techniques that account for
product correlations and community effects can outperform
network-based techniques that do not model interactions that
arise from marketing multiple products to the same consumer
base. However, it can be infeasible to use exact optimization
methods that utilize expensive matrix operations on larger net-
works without parallel computation techniques. In this paper,
we present a hierarchical influence maximization approach for
product marketing that constructs an abstraction hierarchy for
scaling optimization techniques to larger networks. An exact
solution is computed on smaller partitions of the network, and
a candidate set of influential nodes is propagated upward to an
abstract representation of the original network that maintains
distance information. This process of abstraction, solution, and
propagation is repeated until the resulting abstract network
is small enough to be solved exactly. Our proposed method
scales to much larger networks and outperforms other influence
maximization techniques on marketing products.

I. INTRODUCTION

Advertising in today’s market is no longer viewed as a
matter of simply convincing a potential customer to buy the
product but of convincing their social network to adopt a
lifestyle choice. It is well known that social ties between
users play an important role in dictating their behavior. One
of the ways this can occur is through social influence where
a behavior or idea can propagate between friends. By con-
sidering factors such as homophily and possible unobserved
confounding variables, it is possible to examine these behavior
correlations in a social network statistically [1]. The aim
of viral marketing strategies is to leverage these behavior
correlations to create information cascades in which a large
number of customers imitate a much smaller set of informed
people, who are initially convinced by targeting marketing
schemes.

Marketing with a limited budget can be modeled as a
specialized version of the influence maximization problem
in which the aim is to advertise to the optimal set of seed
nodes to modify opinion in the network, based on a known
influence propagation model. Commonly used propagation
models such as LTM (Linear Threshold Model) and ICM
(Independent Cascade Model) assume that a node’s adoption
probability is conditioned on the opinions of the local network

neighborhood [2]. Much of the previous influence maximiza-
tion work [3], [4], [5] uses these two interaction models.
Since the original LT model and IC model, other generalized
models have been proposed for different domains and special-
ized applications. For instance, the decreasing cascade model
simulates processes used in the sociology and economics
communities where a behavior spreads in a cascading function
according to a probabilistic rule, beginning with a set of nodes
that adopt the behavior [2]. In contrast with the original IC
model, in the decreasing cascade model the probability of
influence propagation from an active node is not constant.
Similarly, generalized versions of the linear threshold model
have been introduced (e.g., [6], [7]). The simplicity of these
propagation models facilitates theoretical analysis but does not
realistically model specific marketing considerations such as
the interactions between advertisements of multiple products
and the effects of community membership on product adoption.

To address these problems, in previous work [8], we
developed a model of product adoption in social networks that
accounts for these factors, along with a convex optimization
formulation for calculating the best marketing strategy assum-
ing a limited budget. These social factors can emerge from
different independent variables such as ties between friends
and neighbors, social status, and the economic circumstance
of the agents. We believe that in marketing, all these factors
affect the customers’ susceptibility to influence and their
ability to influence others. As an example, [9] analyzes the
effect of social status on the influence factor of people on
Facebook. Having a more realistic model is particularly useful
for overcoming negative advertisement effects in which the
customers refrain from purchasing any products after being
bombarded with mildly derogatory advertisement from multi-
ple advertisers trying to push their own products. It is critical
to model the propagation of negative influence as well since
it propagates and can be stronger and more contagious than
positive influence in affecting people’s decisions [10].

The main limitation of this and similar types of optimiza-
tion approaches is that they involve computationally expensive
matrix operations which prevent these algorithms from scaling
to larger networks. In this paper, we propose a hierarchical
influence maximization approach that advocates “divide and
conquer”—-the network is partitioned into multiple smaller
networks that can be solved exactly with optimization tech-
niques, assuming a generalized IC model, to identify a candi-
date set of seed nodes. The candidate nodes are used to create
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a distance-preserving abstract version of the network that
maintains an aggregate influence model between partitions.
Here we demonstrate how this abstraction technique can be
used to create a scalable algorithm Hierarchical Influence Max-
imization (HIM) for maximizing steady-state product adoption
by customers connected by a social network. Moreover, we
present a theorem which shows that the realistic social system
model has a fixed-point, validating the strategy of optimizing
product adoption at the steady state.

The paper is organized as follows. Section II provides an
overview of the related work in influence maximization. Sec-
tion III introduces our proposed method, Hierarchical Influence
Maximization (HIM), as well as summarizing the operation
of the realistic product adoption model introduced by [8].
We evaluate our method vs. another optimization technique
and a set of centrality based network analysis techniques in
Section IV. We end the paper with a discussion of future work.

II. RELATED WORK

Influence maximization can be described as the problem
of identifying a small set of nodes capable of triggering large
behavior cascades that spread through the network. This set of
nodes can be discovered using probabilistic approaches (e.g.,
[11], [12]) or optimization-based techniques. [13], [8] treat
influence maximization as a convex optimization problem; this
is feasible for influencing small communities but does not
scale to larger scale problems. Due to the matrix computation
requirements, these approaches fail when the number of agents
in the system increases. Our HIM algorithm overcomes this
deficiency by using a hierarchical approach to factor the system
into smaller matrices.

The HIM model is designed to work on a complex social
system where multiple factors affect the propagation of in-
fluence. The simpler case, where the network topology alone
dictates activation spread, has been examined by multiple
research groups, seeking to improve on Kempe’s early work on
greedy approaches for influence maximization [14]. Examples
of possible speedups include innovations such as the use of
a shortest-path based influence cascade model [15] or a lazy-
forward optimization algorithm [16] to reduce the number of
evaluations on the influence spread of nodes. Clever heuristics
have been used very successfully to speed computation in both
the LT model (e.g., the PMIA algorithm [4]) and also the IC
model [5]. In this paper, instead of using the original cascade
models by Kempe et al. we introduce a cascade model that
accounts for product interactions and community differences
in influence propagation.

Proposed models for investigating how ideas and influence
propagate through the network have been applied to many
domains, including technology diffusion, strategy adoption in
game-theoretic settings, and the admission of new products in
the market [14]. For viral marketing, influential nodes can be
identified either by following interaction data or probabilistic
strategies. For example, Hartline et al. [17] solve a revenue
maximization problem to investigate effective marketing strate-
gies. [18] presented a targeted marketing method based on
the interaction of subgroups in social network. Similar to this
work, Bagherjeiran and Parekh leverage purchasing homophily
in social networks [19]. But instead of finding influential

nodes, they base their advertising strategy on the profile infor-
mation of users. Achieving deep market penetration can be an
important aspect of marketing; Shakarian and Damon present
a viral marketing strategy for selecting the seed nodes that
guarantees the spread of the word to the entire network [20].
Our work differs from related work in that our model not
only considers social factors but also incorporates the negative
effect of competing product advertisements and the correlation
between demand for different products. Our optimization ap-
proach is largely unaffected by the additional complexity since
these factors only impact the long-term expected value and not
the actual solution method.

III. METHOD

Our proposed hierarchical approach operates as follows:

1) Create a local network for each node consisting of its
neighbors and neighbors of neighbors;

2) Model the effect of the outside network by assigning a
virtual node for each boundary node to abstract activity
outside the local partition;

3) Update the interaction parameters to the virtual node
based on the model and the network connections;

4) Create a candidate set of influential nodes for each local
network using convex optimization to maximize steady
state product adoption;

5) Propagate the candidate set upward to a higher-level of
abstraction and link the abstract nodes based on their
shortest paths in the previous network;

6) Repeat the abstraction process until the resulting network
is small enough to be optimized as a single partition;
the resulting set of candidate nodes is then targeted for
advertisement.

Figure 1 demonstrates the process of the algorithm with three
hierarchies. The selected nodes at each local neighborhood,
colored in red, are moved to the upper hierarchy and re-
connected based on shortest path distances from the lower-
level. The same process is repeated at the next hierarchy to
select more influential nodes. The procedure terminates at the
last hierarchy when the number of influential nodes finally is
smaller than the advertising budget.

A. Market Model

To explore the efficiency of the proposed hierarchical
influence maximization (HIM) method in business marketing,
we have used the multi-agent system model, presented by
[8], to simulate a social system of potential customers. We
have slightly changed the definition of some parameters in
this model to make a more sensible model with generalized
capabilities. To avoid any confusion, we retained the same
notation from previous work.

In this model, the population of N agents, represented
by the set A = {a1, . . . , aN}, consists of two types of
agents (A = AR ∪ AP ), named Regular and Product agents
respectively. The Regular agents are the potential customers
in the market who will occasionally change their attitudes on
purchasing products based on the influence they receive either
from other neighbors or from the Product agents who represent
salespeople offering one specific product.
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Fig. 1. At each hierarchical level (Hi) local neighborhoods are created and
influential nodes (red) are selected using an optimization technique. Nodes
that have been selected at least once as an influential node are transferred to
the next level of the hierarchy. At the higher levels, the connection between
selected nodes is defined using the shortest path distance in the original
network. The process is repeated until the final set of influential nodes is
smaller than the total advertising budget.

Regular agents belong to a connected social network where
the directed weighted links in this network possess a history
of past interactions among the agents. This social network is
modeled by an adjacency matrix, E, where eij = 1 is the
weight of a directed edge from agent ai to agent aj and the
in-node and out-node degree of agent ai is the sum of all
in-node and out-node weights, respectively.

In this model a vector of
−→
Xi is assigned to each agent,

both Regular and Product agents, representing the attitude or
desire of the agent toward all of the products in the market.
Each element of this vector, xip, is a random variable in the
[-1 1] interval that indicates the desire of agent ai to buy an
item or consume a specific product, p.

In the social simulation, each agent interacts with another
agent in a pair-wise fashion that is modeled as a Poisson
process with rate 1, independent of all other agents. By
assuming a Poisson process of interaction, we are claiming that
there is at most one interaction at any given time. Here, the
probability of interaction between agents ai and aj is shown
by pij and is defined as a fraction of the connection weight
between these agents over the total connections that agent i
makes with the other agents. Therefore,

pij =

⎧⎪⎨
⎪⎩

eij
di
out

i, j ∈ AR
uji

Threshold i ∈ AR, j ∈ AP

0 otherwise

(1)

where the Threshold parameter is the total number of links that
Product agent can make with Regular agents. The bounds on
Threshold are a natural consequence of the limited budget of
companies in advertising their products. The uji parameter is
an indicator marking whether the Product agent is connected
to the Regular agent.

At each interaction there is a chance for agents to influence
each other and change their desire vector for purchasing or

consuming a product. During these interactions the Product
agents never change their attitude and maintain a fixed desire
vector of 1 toward themselves and −1 toward the other adver-
tising companies. The probability that agent i is susceptible to
agent j is denoted as αij and calculated as:

αij =

{
eji
di
in

i, j ∈ AR

cte i ∈ AR, j ∈ AP

(2)

The other important parameter in the agent influence pro-
cess is εij , which determines how much agent j will influence
agent i. This parameter indicates the role of social factors in
decision making of agents. In contrast to previous work, we
did not restricted this parameter to a specific distribution to
provide more flexibility to the model.

Moreover, in real life there is a correlation between the
user demand for different products in the market. The desire
of customers for a specific product is related to his/her desire
toward other similar products. Matrix M models this correla-
tion, and we consider its effect in our formulation.

The ultimate goal of our marketing problem is to recognize
the influential agents in the graph and define a set of connec-
tions between the AP agents and AR agents, in such a way to
maximize the long term desire of the agents for the products.

Note that the links between Product agents and Regular
agents are directed links from products to agents and not in
the opposite direction.

B. Generalized ICM

We use a generalized version of ICM similar to [8], [21].
The dynamics of the model at each iteration k proceed as
follows:

1) Agent i initiates the interaction according to a uniform
probability distribution over all agents. Then agent i
selects another agent among its neighbors with proba-
bility pij . Note that the desire dynamic can occur with
probability 1

N (pij + pji) as agent i’s attitude can change
whether it initiates the interaction or is selected by agent
j.

2) Conditioned on the interaction of i and j:

• With propagability αij , agent i will change its desire:{−→
Xi (k + 1) = εij M

−→
Xi (k) + (1− εij)M

−→
Xj(k)−→

Xj(k + 1) =
−→
Xj(k)

(3)
Recall that M is the pre-defined matrix indicating the
correlation between the demands of different products.

• With probability of (1−αij), agent i is not influenced
by the other agent:{−→

Xi (k + 1) =
−→
Xi (k)−→

Xj(k + 1) =
−→
Xj(k)

(4)

It is worthwhile to note that the above interaction model
can be degraded to the IC model, if we set εij = 0, M = I, and
restrict pijs to be equal to 1 right after activation of any node
and equal to 0 the rest of the time. Also since the values of the
desire vector range from [−1 1], the xips ∈ [0 1] and xips ∈
[−1 0] can be quantized to 1 and 0 respectively to match the
IC model representation of activation and deactivation.
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TABLE I. HIM ALGORITHM

HIM (Agent, E, P, A, AR, Hmax, r)
H = 0

EH = E

NH = |AR|
While stopCriteria do
H = H + 1
infList = NULL

for i = 1 to NH do

neighborList = FindNeighborList (i, r, EH )

EH
i = Subgraph (neighborList, EH )

EH
i = AddOutsideWorld (EH , EH

i )

(Pi, Ai) = UpdateMat (EH, P, A, neighborList )

L = Optimize (Agent, EH
i , Pi, Ai)

infList = infList
⋃

L
Agent = UpdateAgent (infList)

end for

NH = |infList|
U = MakeU (Agent)
stopCriteria = UpdateCriteria (infList, H)

EH = UpdateHierarchy (infList)
end while
return U

C. HIM Algorithm

Using these assumptions about customer product adoption
dynamics, we devised a new scalable optimization technique,
Hierarchical Influence Maximization (HIM). The pseudocode
of our proposed HIM algorithm is presented in Table I. Here,
matrix E represents the connection matrix among Regular
agents, and matrices P and A contain all the pij’s and αij’s
of the market model, respectively. In other words, all the
interactions and influence probabilities between two pairs of
Regular agents, (AR), are embedded in the elements of these
matrices. Agent contains all the information about Regular and

Product agent characteristics including desire vectors, (
−→
Xi’s),

and influence tag vectors,
−→
Ii ’s with size P , where Iip indicates

the number of times that agent i has been selected as an
influential node for product p. The algorithm receives as input
all the available data on the agents and the model, and the
output of the algorithm is the U matrix that contains the
assignments of uji’s and shows the final connection matrix
between all the products and influential seed nodes.

The level of the hierarchy is indicated by parameter H
which increments until the stopping criteria are satisfied. At
each hierarchy (H), we iterate over all the nodes (is) in the
network of that hierarchy, (EH ), and list the neighboring
agents around each node. The radius of the neighborhood,
denoted with parameter r, indicates the granularity of analysis.
Based on radius r, we partition the network into subsections,
(EH

i ), and update the probability matrices, Pi and Ai for
that subsection. HIM selects the influential agents in that local
network, EH

i , using an optimization technique and tags them
for future use. The process of node selection is described
in detail in III-C2. Then we add these influential nodes to
the set of influential nodes that have been identified in other
neighborhoods in the same hierarchy.

1) Outside World Effect: When a local neighborhood is
detached from the complete network, there exist boundary
nodes that are connected to nodes outside the neighborhood.
These connections that fall outside of the neighborhood can
potentially affect the desire vector of agents within the neigh-
borhood. One possible approach is to ignore these effects and
only consider the nodes inside the partition. In this paper

we account for these effects by allocating a virtual node to
each boundary node. This virtual node is the representative
of all nodes outside the neighborhood that are connected to
the boundary node. Figure 2 illustrates the abstraction of
outside world effect and shows how the model’s parameters
are calculated between each boundary and virtual node.

2) Node Selection: The process of selecting influential
nodes is repeated at each hierarchy and at each local neighbor-
hood surrounding node i. Following previous works [13], [21],
[8], we model the desire dynamic of all agents as a Markov
chain where the state of the local neighborhood is a matrix
of all existing agents’ desire vectors at a particular iteration
k and the state transitions are calculated probabilistically
from the pair-wise interaction between agents connected in
a network. The state of the local network around agent i at
the kth iteration is a vector of random variables, denoted as
Xi(k) ∈ R

NHi
P×1 (created through a concatenation of NH

i
vectors of size P ) and expressed as:

Xi(k) =

⎛
⎜⎜⎝

[
−→
X1(k)]

...

[
−−−→
XNH

i
(k)]

⎞
⎟⎟⎠

We calculate the expected long-term desire of the agents in
each local network around agent i and this calculation results
in the following formulation:

E[Xi(k + 1)] = E[Xi(k)] +Qi E[Xi(k)] (5)

where Qi is a block matrix representing the interactions among
Regular agents in the neighborhood and interactions between
the Regular agents and all the Products.

3) Convergence: In previous work [8], we solved Equation
5 at the steady state and in a global fashion, without giving
any guarantee that the state of the system actually reaches the
steady state. Here, by using Brouwer fixed-point theorem [22],
we prove that each local neighborhood has a fixed-point, hence
solving Equation 5 at steady state is a valid choice.

The Brouwer fixed-point theorem states that:

Theorem 1. Every continuous function from a closed ball of
a Euclidean space to itself has a fixed point.

According to the calculation of Equation 5, E[Xi(k+1)] is
a continuous function as it is the sum of two continuous ones.
Also since

−→
Xi(k + 1) in Equation 3 is a bounded function in

[−1 1], its expectation (E[Xi(k+1)]) will be bounded as well.
As a result we have a bounded, continuous function which is
guaranteed a fixed point by the Brouwer fixed-point theorem.
Consequently, we can follow all the calculations of [8] and
solve our problem with the proposed optimization algorithm
to find the assignment of ujis in a way to maximize the long-
term expected desire vector of agents toward all the products
in the market.

4) Update Hierarchy: When we proceed from one hierar-
chy to the next one, the selected nodes which are propagated
to the upper hierarchy are not necessarily adjacent. Therefore,
we need to define the interaction model between them based
on their position in the real network. The UpdateHierarchy
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Fig. 2. The network on the left is an example of a neighborhood around node e; the network on the right is the equivalent network with virtual nodes
representing the outside world effect. Here w can be any interaction parameter such as link’s weight, α, or ε. The direction of the interaction with the virtual
node is based on the type of links the boundary node has with the nodes outside the neighborhood. The value of the parameter is the average over all similar
types of interactions with outside world.

function is responsible for building the proper network con-
nection and interaction model for the next hierarchy based on
the selected influential nodes in current hierarchy. These nodes
were propagated to the higher hierarchy by being selected
as influential nodes in at least one local neighborhood. It is
possible for a node to be present in multiple partitions and be
selected more than once.

Note that the selected nodes are unlikely to be adjacent
nodes in the actual network E. Therefore we need to find a
way to form their connections to construct EH . To do so, we
look at the shortest path between these nodes in network E and
use that to calculate the weight of the edges in EH . In the EH

network the weight of the link between two selected nodes is
the product of the weights of the shortest path between these
two nodes in the previous hierarchy. Also the probabilities of
interaction and influence between two influential nodes is set
to be the product of the probabilities along the shortest path
between them.

5) Termination Criteria: To terminate the loop, we estab-
lish two different criteria in the UpdateCriteria function.
This function checks the stopping criteria based on the level of
the hierarchy and the list of influential nodes. One criterion is
based on the maximum number of levels in the hierarchy and
the other is based on the ratio of the selected influential nodes
and the advertising budget. According to the stopCriteria
output, the algorithm decides whether to proceed to a higher
hierarchy or to stop the search, returning the current U matrix
to be used as the advertising assignment.

IV. EVALUATION

A. Experimental Setup

We conducted a set of simulation experiments to evaluate
the effectiveness of our proposed node selection method on
marketing items in a simulated social system with a static
network. The parameters of the interaction model for all
the runs are summarized in Table II(a). All the results are
computed over an average of 100 runs which represent ten
different simulations on each of ten network structures.

In the Regular and Product agent interactions, parameters
α and ε are fixed for a given interaction and are presented in

TABLE II. PARAMETER SETTINGS

(a) Market Model Parameters

Parameter Value Descriptions

Threshold 2 Number of links between P and R agents
ε 0.4 Influence factor between P and R agents
α 0.8 Probability of influence between P and R agents
R Variable Number of Regular agents
P 10 Number of Product agents

NIterations 60,000 Number of iterations
NRun 10 Number of runs
NNet 10 Number of different networks

(b) HIM Parameters

Parameter Value Description

r 3 Neighborhood radius
Hmax 5 Max level of hierarchy

Table II(a). We assume that these parameters can be calculated
by advertising companies based on user modeling. The pij
values for this type of interaction are calculated using Equation
1 and are parametric. Table II(b) provides the parameters for
our HIM algorithm (neighborhood radius and the maximum
hierarchy level). The remaining part of the social system setup
is given by matrix M, which models the correlation between
the demand for different products. This matrix is generated
uniformly with random numbers between [0 1] and, as it has a
probabilistic interpretation, the sum of the values in each row,
showing the total demand for an item, is equal to one.

B. Results

We compare our hierarchical algorithm with the original
optimization method (OIM) described in [8] and a set of
centrality-based measures commonly used in social network
analysis for identifying influential nodes based on network
structure [14]. The comparison methods are:

• OIM: The Optimized Influence Maximization method
finds the influential nodes globally by using a convex
optimization method over the entire network.

• Degree: Assuming that high-degree nodes are influential
nodes in the network, we calculated the probability of
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advertising to a Regular agent based on the out-degree
of the agents and linked the Product agents according to
a preferential attachment model. Therefore, nodes with
higher degree had an increased chance of being selected
as an advertising target.

• Betweenness: This centrality metric measures the number
of times a node appears on the geodesics connecting all
the other nodes in the network. Nodes with the highest
value of betweenness had the greatest chance of being
selected as an influential node.

• PageRank: On the assumption that the nodes with the
greatest PageRank score have a higher chance of influ-
encing the other nodes, we based the probability of node
selection on its PageRank value.

• Random: In this baseline, we simply select the nodes
uniformly at random.

To evaluate these methods, we started the simulation with
an initial desire vector set to 0 for all agents, and simulated
60000 iterations of agent interactions. The entire process of
interaction and influence is governed by Equations 3 and 4
(Section III-B). At each iteration, we calculated the average
of the expected desire value of the agents toward all products.
This average is calculated over 100 runs (10 simulations on
10 different network structures). Note that the desire vector of
Product agents remain fixed for all products; in our simulation
it was set to 1 for the product itself and −0.1 for all other
products (e.g., μ1 = [1 − 0.1 − 0.1 . . . − 0.1]). We used
the same network generation technique described in [8] for
generating customer networks.

1) Performance: To compare the performance of these
methods, the average expected desire value of the agents in
a network with 150 agents has been shown over time in
Figure 3. Here we selected 150 agents as an optimal number
of agents to compare all the algorithms together. With fewer
agents, having ten simultaneously marketed products saturates
the network while with a larger number of agents OIM suffers
from scalability issues and the convex optimization method
was not feasible due to the near singular interaction matrix. In
Figure 3, by using the marketing-specific optimization methods
for allocating the advertising budget, the desire value of the
agents toward all products increases the most, resulting in
the largest number of sales. Although HIM sacrificed some
performance in favor of scalability, it clearly outperforms the
centrality measurement methods. The locally-optimal selection
approach of HIM results in a slightly lower performance
compared to globally optimal OIM.

Figure 4 shows the final average value of the expected
desire of agents in the last iteration for different number
of Regular agents. Although OIM with global optimization
method outperforms HIM and other centrality measurement
methods, it is incapable of scaling up to 300 and more agents
in the network due to near singular interaction matrix. HIM
with the ability to scale up linearly to number of nodes
provides a sub-optimal and yet practical solution in selecting
the influential nodes in large networks.

2) Run-time: Table III shows a runtime comparison be-
tween the two optimization methods, HIM (proposed) and
OIM (original). In small networks the runtime of the global
optimization method is less than the hierarchical but as the size
of network grows, its run time increases exponentially while

Fig. 3. The average of agents’ expected desire vs. number of iterations,
calculated across all products and over 100 runs (10 different runs on 10
different networks). The optimization methods have the highest average in
comparison to the centrality measurement heuristics. As HIM is a sub-optimal
method, it is unsurprising that its performance is worse than the global
optimization method, OIM.
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Fig. 4. The average of the final expected desire vectors for different numbers
of Regular agents and 10 Product agents. The optimization based methods
(OIM and HIM) outperforms the other methods in selecting the seed nodes.
While OIM is more successful than HIM in selecting the influential nodes, it
is unable to scale-up to networks with 300 agents and higher.

the run time of the HIM increases at a slower rate. The long
runtime of OIM for the networks larger than 200 nodes, makes
the algorithm impractical for finding influential nodes in very
large networks.

TABLE III. RUNTIME COMPARISON BETWEEN OIM AND HIM

Number of agents OIM HIM

50 10.67s 74.09s
100 94.76s 160.80s
150 290.67s 208.97s
200 897.51s 354.35s

3) Jaccard Similarity: To analyze the differences between
the algorithms’ selection of influential nodes, we use the
Jaccard similarity measurement. This measurement is calcu-
lated by dividing the intersection of two selected sets by the
union of these sets. Figure 5 shows this measurement for
all pairs of algorithms. The OIM and HIM algorithms have
the highest similarity compared to the other methods with
a similarity value of 0.47. The other pairs of methods have
very low similarities, resulting in dark squares in the figure.
Not surprisingly, Random has the least similar node selection
to other methods. This shows that HIM finds many of the
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same nodes as the original OIM algorithm, with a much lower
runtime cost.
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Fig. 5. The average Jaccard similarity measurements between different
methods, calculated over 100 runs (10 runs on 10 different networks). Lighter
squares denote greater similarity between a pair of algorithms. Note that HIM’s
selection of nodes is fairly close to OIM’s optimal selection.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a general hierarchical approach for
applying optimization techniques to influence maximization
and demonstrate its use for product marketing. The advantage
our method has over network-only seed selection techniques is
that it can account for item correlations and community effects
on the product adoption rate. Our method comes close to the
optimal node selection, at substantially lower runtime costs.
One possible extension of this work is to generalize the market
simulation to explicitly model the adversarial effects between
competing advertisers as a Stackelberg competition. Also in
this paper we assumed that the probability of interaction and
influence between two agents is small, compared to the size of
the network, which results in the agents sticking to a decision
for a reasonable period of time. However if the network is
smaller or the probability of interaction increases, there can
be large fluctuations in the agents’ desire vector. Applying
a parameter to the model which forces the agents to retain
their decisions for a minimum period, regardless of external
interactions, would ameliorate this issue. [23]. Furthermore,
working with dynamic networks where the agents can enter
and leave the network would be another practical extension of
this work.
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[14] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread
of influence through a social network,” in Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining. ACM, 2003, pp. 137–146.

[15] M. Kimura and K. Saito, “Tractable models for information diffusion
in social networks,” Knowledge Discovery in Databases (PKDD), pp.
259–271, 2006.

[16] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
N. Glance, “Cost-effective outbreak detection in networks,” in Pro-
ceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2007, pp. 420–429.

[17] J. Hartline, V. Mirrokni, and M. Sundararajan, “Optimal marketing
strategies over social networks,” in Proceeding of the International
Conference on World Wide Web. ACM, 2008, pp. 189–198.

[18] W. Yang, J. Dia, H. Cheng, and H. Lin, “Mining social networks for
targeted advertising,” in Proceedings of the Annual Hawaii International
Conference on System Sciences. IEEE Computer Society, 2006.

[19] A. Bagherjeiran and R. Parekh, “Combining behavioral and social
network data for online advertising,” in IEEE International Conference
on Data Mining Workshops (ICDMW), 2008, pp. 837–846.

[20] P. Shakarian and D. Paulo, “Large social networks can be targeted for
viral marketing with small seed sets,” in Proceedings of the IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), 2012, pp. 1–8.

[21] B. Hung, S. Kolitz, and A. Ozdaglar, “Optimization-based influencing
of village social networks in a counterinsurgency,” in Proceedings of
the International Conference on Social Computing, Behavioral-cultural
Modeling and Prediction, 2011, pp. 10–17.
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