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ABSTRACT
Three psychophysical experiments were carried out to under-
stand both audio and video components interact and affect
the overall audio-visual quality. In the experiments, subjects
independently evaluated the perceived quality of (1) video
(without audio), (2) audio (without video ), and (3) video with
audio. With the help of the perceptual models obtained using
subjective data, we propose 3 no-reference audio-visual qual-
ity metrics composed of combination functions of a video and
an audio quality metrics. The no-reference video quality met-
ric consists of a blockiness and a blurriness metrics, while the
NR audio metric is modification of the SESQA metric. When
tested on our database and on a public database, the metrics
performed better than single video NR and RF metrics avail-
able in the literature.

Index Terms— video quality assessment, quality metrics,
audio-visual.

1. INTRODUCTION

Multimedia communication has evolved into an important
field in the past few years. There have been significant ad-
vances in compression and transmission techniques, which
have made possible to deliver high quality content to the
end user. In particular, the advent of new technologies has
allowed the creation of services like direct broadcast satel-
lite, digital television, high definition TV, and Internet video.
The level of acceptability and popularity of these services
is related to its reliability and to the quality of the content
provided. As a consequence, the development of real-time
quality monitoring schemes is key for the success of these
and future services.

There is an ongoing effort to develop video quality met-
rics that estimate quality as perceived by human viewers, but
most of the achievements have been in the development of
full-reference (FR) video quality metrics [1]. Much remains
to be done in the area of no-reference (NR) quality met-
rics [2]. Also, very few objective metrics have addressed the
issue of simultaneously measuring the quality of all media
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involved (e.g. video, audio, text). For the simpler case of
audio-visual content, a lot of work has been done on trying to
understand audio-visual quality, what resulted in several per-
ceptual models [3, 4]. A good review on audio-visual quality
studies was performed by Pinson et al. [5].

There are fewer works that tackle the development of
audio-visual objective metrics. Among the most relevant
works, we can cite the parametric (NR) objective quality
metrics proposed by Garcia et al. [4] and Yamagishi and
Gao [6]. Parametric metrics estimate quality using the in-
formation available at the receiver, such as bitrate, frame
rate, QP, motion vectors, and various types of information
regarding the impacts of network impairments. These metrics
are generally faster than pixel-based video quality metrics
and, depending on the level of access to the bitstream, can
produce reliable results. However, parametric metrics are
coding and transmission dependent, what makes them less
generally applicable. In other words, they cannot predict the
quality of content outside the ‘transmission scenario’, like,
for example, content transcoded among different compression
standards/bitrates or processed using any signal processing
techniques. In this work, we are interested in developing
generic pixel-based audio-visual quality metrics that can be
used in most applications.

Previously [7], we have proposed a FR audio-visual qual-
ity metric based on a combination of FR audio and video qual-
ity metrics. In this work, our goal is to design a NR objective
metric for audio-visual quality using a similar approach. To
achieve this goal, we use the same experimental data from our
previous work, which consisted of three psycho-physical ex-
periments that independently measured the perceived quality
of (1) video (without audio), (2) audio (without video ), and
(3) video with audio. In this work, we perform a new analy-
sis on the experimental data and propose a set of perceptual
audio-visual quality models. The perceptual models are the
basis of the proposed NR objective metric, which consists of
an audio metric, a blockiness metric, and a blurriness metric.

2. PSYCHOPHYSICAL EXPERIMENTS

For all three experiments, we used a set of six videos of
eight seconds, obtained from The Consumer Digital Video
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Fig. 1. Sample frames of videos used in experiments.

Table 1. Test Conditions Used in the Experiments I-III.
Experiment I Experiment II Experiment III

Component Video Audio Audio + Video
Bitrate 30, 2, 1, 0.8 MB/s 128, 96, 48 KB/s 128, 96, 48 KB/s

30, 2, 1, 0.8 MB/s
Codec H.264 MPEG-1 Layer 3 MPEG-1 Layer 3

H.264
Test seq. 30 24 78
Subjects 16 16 17

Library (CDVL) website (http://www.cdvl.org/). Representa-
tive frames are shown in Figure 1. The videos are 1280x720
(4:2:0) and 30 frames per second (fps). We selected se-
quences that had speech, music, and ambient sound [7]. The
ffmpeg framework was used to encode the test sequences,
using different levels of bitrate levels for audio and video
components. Details of the codecs, bitrates, number of se-
quences, and number of experimental subjects are listed at
Table 1.

A Double-Stimulus Continuous Quality-Scale (DSCQS)
methodology was used in all experiments [8], which con-
sists of presenting two sequences (reference and test) with
the same content and asking participants to score the qual-
ity of both of them. The scale used ranged from ‘0’ to ‘100’
and presentation order is random. For each test sequence, the
Mean Opinion Score (MOS) is calculated by taking the av-
erage of the scores over all participants. Different groups of
subjects were used in each experiment.

In Experiment I, 16 participants scored video test se-
quences (without audio), generating one MOSv value for
each test sequence. Figure 2(a) shows the MOSv versus the
video bitrate (vb) values (vb1 = 800 Kbps, vb2 = 1 Mbps,
vb3 = 2 Mbps, vb4 = 30 Mbps) for all test sequences. One
of the lowest MOSv values (at high bitrate) correspond to
the sequence ‘Basketball’ (low temporal and spatial activity).
In contrast, two of the highest MOSv values (at high bitrate)
correspond to the videos ‘Music’ and ‘Crowd Run’ (high
temporal and spatial activities). Due to the scene’s character-

(a) Experiment I (b) Experiment II

Fig. 2. (a) MOSv (Exp.I) versus video bitrate and (b) MOSa

(Exp.II) versus audio bitrate.
istics and masking properties, some impairments might not
be perceived by users. In other words, errors of the same
type and the same energy level (mean squared error) when
presented in complex scenes have a higher visibility threshold
than when present in lower activity scenes.

In Experiment II, 16 subjects scored audio test sequences
(without video), generating one MOSa value for each test se-
quence. Figure 2.(b) shows the MOSa versus the audio bi-
trate values (ab1 = 48 kbps, ab2 = 96 kbps, ab3 = 128 kbps)
for all test sequences. The ‘Basketball’ audio sequence (en-
vironmental sounds) presented a slightly lower MOS value
(not statistically significant). Meanwhile, the audio sequences
‘Music’ and ‘Park Run’ (Music, Screams, and Others2) got
slightly higher MOSa values.

In Experiment III, three audio bitrates and four video
bitrates were used (same bitrates of Experiments I and II).
17 subjects performed the experiment, providing one MOSav

for each audio-visual test sequence. Figure 3 shows MOSav

versus the audio and video bitrates. For comparison, in the
graphs we also show the data of Experiment I (video with no
audio), which is represented as ‘ab0’.

It can be observed from Figure 3 that the MOSav values
increase as the video bitrate values increase. Nevertheless, the
slope caused by the increase in video bitrate is not the same
for the different ‘originals’ or the different groups of audio
bitrates (ab). This can be observed for the sequences ‘Boxer’,
‘Basketball’ and ‘Music’, which have different slopes for
the different audio bitrates. Meanwhile, the sequences ‘Park
Run’, ‘Crowd Run’, and ‘Reporter’ maintain similar slopes.
In general, by comparing the results in all three experiments,
we can observe that the video component had considerable
more influence over the overall audio-visual quality.

3. PERCEPTUAL QUALITY MODELS

We used the subjective data gathered from Experiments I, II,
and III to obtain a set of three perceptual (subjective) models
(PrMOSi, i = 1, 2, 3) for the audio-visual quality (MOSav),
as a combination function of the audio quality (MOSa) and
the video quality (MOSv). The main intention is to see which
model integrates better the audio and video quality values.

The first perceptual model was a simple linear model:

PrMOS1 = α1 ·MOSv + β1 ·MOSa + γ1. (1)
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Fig. 3. Exp. I and III: MOSv and MOSav versus audio (and
video) bitrates.

The fitting returned scaling coefficients α1 = 0.76, β1 =
0.41, and γ1 = −21.92.

The second model was a weighted Minkowski function:

PrMOS2 = (α2 ·MOSp1
v + β2 ·MOSp1

a )
1
p1 . (2)

The fit returned p1 = 0.0001, α2 = 0.7024, and β2 = 0.2976.
The last perceptual model tested was a power model:

PrMOS3 = (γ2 + α3 ·MOSp2
v ·MOSp3

a ), (3)

The fit returned p2 = 1.3213, p3 = 0.6533, α3 = −0.0109,
and γ2 = −12.9734.

We compared the perceptual models obtained in this
section with three perceptual models available in the lit-
erature: two models (SQavH1 and SQavH2) proposed by
Hands [3], two models (SQavW1 and SQavW1) proposed by
Winkler [9], and one model (SQavG) proposed by Garcia [4].
Table 2 depicts the Pearson and Spearman correlation coef-
ficients obtained by testing all perceptual models in the data
of Experiment III. As can be observed, for this database, the
proposed models present better results. But, models taken
from literature present an acceptable correlation, given that
they were not trained on this dataset.

4. OBJECTIVE QUALITY METRIC (NR)

To generate the audio-visual quality NR quality metric, we
combined an audio and a video NR metrics. For the audio
metric, we chose the NR speech quality metric SESQA (Sin-
gle Ended Speech Quality Assessment Model) [10]. For the
video metric, we combined two NR artifact metrics: a blurri-
ness metric [11] and a blockiness metric [12]. These metrics

Table 2. Perceptual Audio-Visual Models: Pearson and Spear-
man Correlation Coefficients obtained for data of Exper. III.

Model Type Pearson Spearman
PrMOS1 SUBJ. 0.9110 0.9173
PrMOS2 SUBJ. 0.9197 0.9267
PrMOS3 SUBJ. 0.9285 0.9270
SQavH1 SUBJ. 0.8447 0.8340
SQavH2 SUBJ. 0.8441 0.8349
SQavG SUBJ. 0.7739 0.8050
SQavW1 SUBJ. 0.8441 0.8349
SQavW2 SUBJ. 0.8244 0.8374

were fast metrics that showed a good performance in tests us-
ing additional video and audio databases.

4.1. Audio Quality Metric

The SESQA metric was originally proposed for speech sig-
nals in telephone applications. The first step of the SESQA
algorithm consists of pre-processing the test signal, using a
voice activity detector (VAD) that identifies speech signals
and estimates its speech level. Then, the signal is analyzed
and a set of 51 characteristic signal parameters is obtained.
Next, based on a restricted set of key parameters, an assign-
ment to main distortion classes is made. The main distortion
classes include ‘unnatural speech’, ‘noise’, and ‘interruptions,
mutes, clippings’. The key parameters and the assigned main
distortion class are used by the model to estimate the speech
quality.

In order to apply this metric for audio signals (speech,
music, generic sounds, etc.), we modified it slightly. Instead
of using the 51 parameters considered in the original algo-
rithm, we selected 17 parameters that showed better results in
a test a set of degraded audio sequences. This set of audio
sequences was different from the set used in the experiments
and included sounds of music, explosion, speech, and nature.
The set of 17 selected parameters is presented in Table 3. The
rest of the SESQA algorithm was kept without modifications.

Table 3. Selected 17 SESQA parameters for audio metric [10].
Parameter Name Classification

1-2 PitchAverage, SpeechLevel Basic voice descriptors
3 MuteLength Interruptins/mutes

4-9 LocalBGNoiseLog, RelNoiseFloor, Noise analysis
SNR, SpecLevelDev

SpecLevelRange, SpectralClarity
10-17 BasicVoiceQuality, ArtAverage Unnatural speech

CepCurt,FinalVtpAverage, LPCCurt
LPCSkew, PitchCrossCorrelOffset

PitchCrossPower

4.2. Video Quality Metric

The proposed NR video quality metric is composed by two ar-
tifact metrics: a blurriness metric proposed by Narvekar and
Karem [11] and a blockiness metric proposed by Wang and
Bovik [12]. For the blockiness metric, the algorithm calcu-
lates the vertical and horizontal absolute differences of the
intensities fo the video frame. Then, blockiness is calculated
by observing the peaks at the frequencies 1/8, 2/8, 3/8, and



4/8. Vertical and horizontal values are combined to obtain an
estimate of blurriness for the video.

The blurriness metric uses the concept of just-noticeable
blurriness together with a cumulative probability of blur-
riness detection. In other words, it uses the sensitivity of
human blurriness perception at different contrast levels to
estimate the probability of blurring being detected at each
(strong) edge of the video frame. By evaluating the cumula-
tive probability of blurriness detection, the blurriness percep-
tion information of each edge is calculated and summed over
the entire frame to get a final blockiness score.

The NR video quality metric is obtained by combining the
blurriness and blockiness scores using a simple linear model,
given by the following equation:

Qv = −195.08 · Blur +−55.23 · Block + 320.94. (4)

This metric was trained using different videos from the ones
used in the experiments described in Section 2.

4.3. Proposed Audio-Visual Quality Metric

We propose three NR audio-visual quality metrics, which are
based on the perceptual models described in Section 3. The
first audio-visual metric is a simple linear model, given by the
following equation:

Qav1 = α4 ·Qv + β3 ·Qa + γ3, (5)

where Qav1 corresponds to the resulting predicted audio-
visual quality score, Qv to the quality score obtained with
the video quality metric, and Qa to the quality score obtained
with the audio metric. The fit returned α4 = 0.87, β3 = 0.52,
and γ3 = −35.6387. For this fit, the Pearson correlation co-
efficient was 0.7929 and the Spearman correlation coefficient
was 0.7972.

The second audio-visual metric uses a weighted Minkowski
model, given by the following equation:

Qav2 = (α5 ·Qvp4 + β4 ·Qap4)
1
p4 . (6)

where Qav2 corresponds to the predicted audio-visual quality
score. The fit for the Minkowski model returned an exponent
p4 = 0.003 and scaling coefficients α5 = 0.6160 and β4 =
0.3840. For this fit, the Pearson correlation coefficient was
0.7779 and the Spearman correlation coefficient was 0.7920.

Finally, the third audio-visual metric is a power model,
given the following equation:

Qav3 = (γ4 + α6 ·Qvp5 ·Qap6), (7)

where Qav3 corresponds to the predicted audio-visual quality
score. The fit for this model returned exponents p5 = 1.9904
and p6 = 0.9762 and scaling coefficients α6 = 0.0001 and
γ4 = 20.1468. For this fit, the Pearson correlation coef-
ficient was 0.8100 and the Spearman correlation coefficient
was 0.8068.

Table 4. Pearson and Spearman Correlation Coefficients for
data on Experiment III.

Model Type Pearson Spearman
Qav1 NR 0.7929 0.7972
Qav2 NR 0.7779 0.7920
Qav3 NR 0.8100 0.8068
SSIM FR 0.5896 0.6435
VQM FR 0.7092 0.7364
PSNR FR 0.5437 0.6350
NIQE NR 0.3901 0.3976
BIQI NR 0.3607 0.3021
BRISQUE NR 0.5804 0.5610

Due to the difficulty of finding NR (pixel-based) audio-
visual quality metrics, we compared the proposed metrics
with a group of FR and NR video metrics. The FR video
quality metrics considered here are: SSIM [13], VQM [14],
and PSNR. The NR video metrics considered are: NIQE [15],
BIQI [16], and BRISQUE [17]. In Table 4, we summarize
the Pearson and Spearman correlation coefficients obtained
testing these metrics and the proposed audio-visual metrics
on the data of Experiment III. As can be observed, similarly
to the perceptual models, the proposed audio-visual metrics
have the best performance, with the power model achieving
the best correlation with subjective scores.

We also tested this set of metrics using a database pro-
vided by The National Telecommunications and Information
Administration (NTIA) [5, 18], which is available for down-
load at CDVL (www.cdvl.org). The database consists of data
gathered at six different international laboratories associated
to VQEG, resulting in ten sets of audio-visual MOS values
[18]. The database sequences contained audio and video,
with VGA resolution (640x480, 4:2:2, 30 fps). The Pear-
son correlation coefficients for this test is shown in Table 5
for the 10 sets of test sequences. Notice that all models have
much lower correlation coefficients for this database, but the
proposed audio-visual metrics have better correlation values.
This result is expected since the other metrics only take into
account the video component. But, surprisingly, the proposed
Minkowski combination presented the best results.

5. CONCLUSIONS

We carried out three psychophysical experiments with the
goal of understanding how the audio and video compo-
nents contribute to the overall audio-visual perceptual quality.
Based on the collected experimental data, we obtained three
perceptual audio-visual models: a linear model, a weighted
Minkowski model, and a power model. We also tested other
five perceptual audio-visual quality models proposed in lit-
erature. For the given database, the proposed power model
presented the best results.

Using video and audio NR metrics, we were able to obtain
three objective NR audio-visual quality metrics. The combi-
nation functions used by the NR audio-visual metrics were
the same used for the perceptual models. When compared to



Table 5. Pearson Correlation Coefficients for NTIA database [18].
Exp. SSIM PSNR VQM NIQE BIQI BRISQUE Linear Power Mink.
NTIA lab 0.2622 0.3221 0.2555 0.5964 0.3726 0.1985 0.5392 0.6783 0.7378
NTIA caf. 0.2589 0.4183 0.2475 0.5600 0.3154 0.0830 0.5131 0.6501 0.7307
Intel 0.3084 0.3614 0.3057 0.6056 0.3739 0.2068 0.5814 0.6875 0.7390
IRCCyN BT500 0.2858 0.3469 0.2990 0.5913 0.3477 0.1964 0.6014 0.6977 0.7653
IRCCyN Tablet 0.2728 0.3149 0.3464 0.5597 0.3724 0.2717 0.6264 0.6954 0.7573
Technicolor Dark Room 0.3038 0.3865 0.3458 0.6165 0.4062 0.2478 0.5946 0.7082 0.7314
Technicolor Patio 0.3069 0.3763 0.3259 0.6050 0.3792 0.2227 0.5777 0.6722 0.7191
AGH Lab 0.3600 0.4101 0.2747 0.5843 0.4022 0.1885 0.5500 0.6657 0.7028
AGH D5 0.2926 0.3352 0.3808 0.6201 0.4059 0.2738 0.6084 0.6923 0.7335
Opticom 0.319 0.3199 0.3683 0.6312 0.4601 0.2870 0.5997 0.6892 0.7320

NR and FR video quality metrics, the proposed metrics pre-
sented a better performance on our database. When tested
on a public database provided by NTIA, all metrics presented
lower correlation values, but the proposed metric presented
significant better results.
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