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ABSTRACT

In this paper, we introduce fractional number-theoretic trans-
forms (FrNTT) based on matrix functions. The approach,
which is a kind of finite field extension of the method pre-
sented in [1], does not require the construction of any number-
theoretic transform eigenvector set. In this sense, the defini-
tion presented in this work is simpler than that of another re-
cently introduced FrNTT. An image encryption scheme based
on the proposed FrNTT is suggested.

Index Terms— Fractional transfoms, number-theoretic
transforms, image encryption

1. INTRODUCTION

In the last years, fractional transforms have been used in ap-
plications related to different areas of knowledge. Such trans-
forms can be viewed as generalizations of the corresponding
ordinary transforms, where arbitrary powers of integral or ma-
trix operators are computed [2]. The most well-known frac-
tional transform is the fractional Fourier transform, the appli-
cation of which to a signal can be interpreted as a rotation by
an arbitrary angle in the time-frequency plane [3].

Recently, fractional number-theoretic transforms (FrNTT)
have been introduced. Analogously to real-valued fractional
transforms, FrNTT generalize number-theoretic transforms
(NTT), which are computed over finite fields. More specifi-
cally, in [4], NTT are fractionalized by a method analogous
to that presented in [5], which uses eigenvectors generated
by complete generalized Legendre sequences; in [6], the au-
thors follow the technique introduced in [7], which employs
Hermite-Gaussian-like eigenvectors.

In this paper, we present a definition for fractional
number-theoretic transforms analogous to that introduced
in [1]. Our definition employs a technique based on matrix
functions to compute arbitrary rational powers of an NTT ma-
trix [8]. Concepts related to trigonometry in finite fields are
also used [6, 9]. In comparison to previous approaches [4, 6],
the proposed FrNTT has a simpler construction, since it is
not necessary to obtain NTT eigenvectors. Similarly to other
NTT, the computation of the FrNTT involves modular arith-
metic only and can be carried out by standard fast algorithms.

A scheme for image encryption based on the proposed FrNTT
is suggested.

This paper is organized as follows. In Section 2, we re-
view some concepts related to trigonometry in finite fields
and number-theoretic transforms. In Section 3, the proposed
FrNTT is introduced and an example is developed. In Sec-
tion 4, an image encryption scheme based on the FrNTT is
suggested; computer simulations and a security analysis are
carried out. The paper closes with conclusions in Section 5.

2. PRELIMINARIES

In this section, we review some concepts related to trigonom-
etry in finite fields. More details related to such concepts can
be found in [6, 9]. We also present a definition for the number-
theoretic transform and give its eigenvalues [4, 6].

Definition 1 Let GF(p) be the finite field with p elements and
ζ ∈ GF(p) be an element with multiplicative order denoted
by ord(ζ). The finite field cosine and sine of the arc related
to ζ are computed modulo p, respectively, as

cosζ(x) :=
ζx + ζ−x

2
and sinζ(x) :=

ζx − ζ−x

2
√
−1

,

x = 0, 1, . . . , ord(ζ)− 1.

Finite field cosines and sines hold properties similar to those
of the standard real-valued ones. We also remark that, if
p ≡ 3 (mod 4), the number −1 (mod p) is a quadratic non-
residue and, therefore,

√
−1 (mod p) lies in the extension

field GF(p2). This case is not considered in this paper.

Definition 2 The number-theoretic transform of an N -length
vector x = (xi), xi ∈ GF(p), is a vector X = (Xk), Xk ∈
GF(p), computed modulo p by

Xk =
√
N−1

N−1∑
i=0

xiζ
−ki, k = 0, 1, . . . , N − 1,

where ζ ∈ GF(p) and ord(ζ) = N . The inverse transform is

xi =
√
N−1

N−1∑
k=0

Xkζ
ki.
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The relationship between x and X can be expressed by the
matrix equation

X = Fx,

where F is the transform matrix, the (k+1)-th row and (i+1)-
th column element of which is given by Fk,i =

√
N−1ζ−ki.

Proposition 1 The F matrix has, at most, four distinct eigen-
values, namely {1,−1,

√
−1,−

√
−1}, computed in GF(p).

3. FRACTIONAL NUMBER-THEORETIC
TRANSFORM

In this section, we introduce a new definition for the frac-
tional number-theoretic transform. The approach follows the
idea originally presented in [1]. Differently from previous
fractional NTT approaches [4, 6], the definition given here
does not require the construction of NTT eigenvector sets.
This simplifies the computation of the corresponding trans-
form matrix, while the main properties required by a frac-
tional transform are preserved.

The proposed definition is based on matrix functions [8],
whose theory can be described using concepts which are valid
also in the finite field scenario. Such concepts include, for
example, the Lagrange interpolation polynomial for a given
function and the minimal polynomial of a matrix [10]. Our
goal is computing the function Fa, where a is a rational num-
ber called fractional parameter. We start by considering the
minimal polynomial of A, which is defined as the unique
monic polynomial ψ of lowest degree such that ψ(A) = 0.
The minimal polynomial divides any other polynomial r for
which r(A) = 0. According to the following theorem, r(A)
is completely determined by the values of r on the spectrum
of A.

Theorem 1 Let r and s be polynomials and A be an N ×N
matrix over a finite field. Then r(A) = s(A) if and only if r
and s take the same values on the spectrum of A.

The proof of Theorem 1 is analogous to that presented for
Theorem 1.3 on page 5 of [8]. This result can be generalized
to an arbitrary function f using the following definition.

Definition 3 Let f be defined on the spectrum of an N × N
matrix A over a finite field, and let ψ be the minimal polyno-
mial of A. Let λ1, . . . , λv be the distinct eigenvalues of A and
let ni be the dimension of the largest Jordan block in which
λi appears. Then f(A) := r(A), where r is the polynomial
of degree less than degψ that satisfies the interpolation con-
ditions

r(j)(λi) = f (j)(λi), j = 0, 1, . . . , ni − 1, i = 1, 2, . . . , v.

If ni = 1, i = 1, . . . , v, r corresponds to the Lagrange inter-
polating polynomial [10]

r(t) =

v∑
i=1

f(λi)li(t), li(t) =

v∏
j=1, j 6=i

(
t− λj
λi − λj

)
. (1)

In order to employ Definiton 3 to compute Fa, we set
f(t) = ta, where a = a1/a2 is a ratio of two integers. Ac-
cording to Proposition 1, one has v = 4, for N > 4, and
λ1 = 1, λ2 = −1, λ3 =

√
−1 and λ4 = −

√
−1. We com-

pute

l1(t) =
t3 + t2 + t+ 1

4
, l2(t) =

−t3 + t2 − t+ 1

4
,

l3(t) =

√
−1t3 − t2 −

√
−1t+ 1

4
,

l4(t) =
−
√
−1t3 − t2 +

√
−1t+ 1

4
,

and, therefore,

r(t) = l1(t) + (−1)al2(t) + (
√
−1)al3(t) + (−

√
−1)al4(t).

From Equation (1), expressing r(t) = ta = t
a1
a2 as

3∑
i=0

αi(a)t
i =

3∑
i=0

αi(a1, a2)t
i,

one has

α0(a) = α0(a1, a2) =
1 + (

√
−1)a + (−1)a + (−

√
−1)a

4

=
1

4

{(
2a2
√
−1
)a1 [

1 +
(

2a2
√
−1
)a1]

+

+
(

2a2
√
−1
)−a1 [

1 +
(

2a2
√
−1
)a1]}

=
1 +

(
2a2
√
−1
)a1

2
cos 2a2

√
−1(a1).

Analogously, we obtain

α1(a1, a2) =
1−
√
−1
(

2a2
√
−1
)a1

2
sin 2a2

√
−1(a1),

α2(a1, a2) =
−1 +

(
2a2
√
−1
)a1

2
cos 2a2

√
−1(a1)

and

α3(a1, a2) =
−1−

√
−1
(

2a2
√
−1
)a1

2
sin 2a2

√
−1(a1).

Finally, using Definition 3, we compute

Fa = F
a1
a2 = r(F) =

3∑
i=0

αi(a1, a2)F
i. (2)

Equation (2) corresponds to the matrix of the fractional
number-theoretic transform with fractional parameter a =
a1/a2. If F has dimensions N × N , the FrNTT of an N -
length vector x with components in a finite field is computed
by

Xa = Fax. (3)
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3.1. Example

Let us construct an 8-point FrNTT over GF(257). We choose
the element ζ = 4, the multiplicative order of which is N =
ord(4) = 8. Using Definition 2, we obtain

F =



242 242 242 242 242 242 242 242
242 197 17 68 15 60 240 189
242 17 15 240 242 17 15 240
242 68 240 197 15 189 17 60
242 15 242 15 242 15 242 15
242 60 17 189 15 197 240 68
242 240 15 17 242 240 15 17
242 189 240 60 15 68 17 197


.

As an example, let us consider a = a1/a2 = 3/8. In or-
der to compute αi(3, 8), i = 0, . . . , 3, we need

√
−1 ≡√

256 ≡ 16 (mod 257),
(

16
√
−1
)3 ≡ 603 ≡ 120 (mod 257),

cos60(3) = 196 and sin60(3) = 188. Using Equation (2), we
compute

F
3
8 = 36F0 + 28F1 + 97F2 + 97F3

=



57 181 181 181 181 181 181 181
181 241 112 14 76 52 145 83
181 112 112 145 181 112 173 145
181 14 145 241 76 83 112 52
181 76 181 76 57 76 181 76
181 52 112 83 76 241 145 14
181 145 173 112 181 145 112 112
181 83 145 52 76 14 112 241


.

4. IMAGE ENCRYPTION BASED ON THE FRNTT

Encryption schemes have been widely used in scenarios re-
lated to multimedia security. With respect to digital images,
the purpose of such techniques is to scramble and transform
the pixels, in order to modify its statistical properties and vi-
sual aspect [11]. Here, we propose an image encryption tech-
nique based on the FrNTT defined in Section 3.

The method employs the M -length vector of integers

a1 = ( a1,0 , a1,1 , . . . , a1,M−1 )

as secret-key. The encryption consists in computing the bidi-
mensional FrNTT of Bi, the i-th block of an image, according
to

B

a1,i (mod M)
a2

i = F
a1,i (mod M)

a2 BiF
a1,i (mod M)

a2 . (4)

In Equation (4), the parameter a2 is constant. The blocks
are transformed in a serial manner, as shown in Figure 1;
block Bi+1 is processed only after block Bi is processed and
substituted by its transformed version. This is strictly neces-
sary because there is a superposition among pixels of adja-
cent blocks. In the figure, the blocks have dimensions 8 × 8
pixels; subsequent blocks are alternately highlighted with a

. . .

B0 B1 B2 B3 B4

B4

B5

Fig. 1: Sequence of blocks to be processed in the image en-
cryption scheme based on the FrNTT.

gray shadow and with a dashed border line, in order to make
clear the pixel superposition. Blocks in the right border of
the image must be completed with pixels in the left border of
the image and immediately below the current “row of blocks”
(see block B4 in Figure 1).

Two rounds of the encryption procedure are performed
to obtain the final ciphered image. The decryption process
consists in applying the encryption steps in reverse order. This
includes the use of the fractional parameter a = −a1,i (mod M)

a2
to compute the inverse FrNTT of the i-th image block.

4.1. Computer Simulations and Security Analysis

Simulations of the proposed encryption technique were per-
formed using Matlabr. The grayscale images shown in the
first row of Figure 2 were used. The images have dimensions
512 × 512 pixels and are encoded with 8 bits per pixel. We
use the FrNTT developed in Example 1, with a2 = 64 and a1
taken from the 22-length secret-key

a1 = (53, 58, 9, 59, 41, 7, 18, 36, 62, 62, 11, 63, 62, 32, 52,

10, 27, 59, 51, 62, 2, 24) .

Once the transform is defined over GF(257), in order to avoid
pixels equal to 256, each FrNTT is recursively applied to
the corresponding image block until the maximum value of
a pixel in a given block is 255. In this manner, the ciphered
image can be encoded also with 8 bits per pixel. In the second
row of Figure 2, the ciphered images are shown. We observe
that the visual content of the images is completely noisy.

In Figure 3, the histograms of the original images and
those of the corresponding ciphered images are shown. The
application of the FrNTT leads to a uniformization of the his-
tograms, which suggests that statistical attacks may not be
feasible. The effectiveness of the encryption under statistical
aspects can also be observed by computing the correlation be-
tween two adjacent pixels of the images [12]. In Table 1, we
see that the original images have correlation coefficients close
to 1; as expected, correlation coefficients of ciphered images
are close to 0.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2: Original and ciphered images. (a),(e) img01.bmp;
(b),(f) img02.bmp; (c),(g) img03.bmp; (d),(h) img04.bmp.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3: Histograms of original and ciphered images. (a),(e)
img01.bmp; (b),(f) img02.bmp; (c),(g) img03.bmp; (d),(h)
img04.bmp.

In the simulations, the entropy of the ciphered images has
assumed values varying from 7.9993 to 7.9994. This means
that the transformed images are close to a random source and
the proposed technique is also secure against the entropy at-
tack [12]. Moreover, we see that the key space is sufficiently
large to make brute-force attack unfeasible. Since a1 is a 22-
dimensional vector whose elements are integers in the range
1−64, we can assume that one has a 132-bit key. This satisfies
the general requirement of resisting brute-force attack [13].

Finally, we analyze the key sensitivity of the proposed
scheme by attempting to decrypt the ciphered images shown
in Figure 2 using the key

a′1 = (53, 58, 9, 59, 41, 7, 18, 36, 62, 62, 11, 63, 62, 32, 52,

10, 27, 59, 51, 62, 2, 23) .

The wrong key a′1 differs from the correct key a1 only in 1
bit in the underlined position. We obtain the images shown in
Figure 4. The noisy aspect of those images suggests that our
method is highly sensitive to slight modifications in the key,
which is desirable in cryptographic schemes.

Table 1: Correlation coefficients of the original images (r)
and the corresponding ciphered images (r̃); (v), (h) and (d)
are related to vertical, horizontal and diagonal correlation re-
spectively. For each image, correlation coefficients were com-
puted by using 215 pairs of pixels randomly selected.

rh r̃h rv r̃v rd r̃d
img01 0.960 -0.001 0.897 -0.004 0.884 0.004
img02 0.936 -0.003 0.940 -0.004 0.889 -0.006
img03 0.953 0.008 0.946 0.004 0.911 0.015
img04 0.979 0.007 0.963 0.010 0.945 -0.009

(a) (b) (c) (d)

Fig. 4: Images decrypted with a key slightly different from the
correct key. (a) img01.bmp; (b) img02.bmp; (c) img03.bmp;
(d) img04.bmp.

5. CONCLUSIONS

In this paper, we have introduced a new definition for frac-
tional number-theoretic transforms. Our approach is based on
matrix functions and, in some sense, extends to the finite field
scenario the discrete fractional Fourier transform presented
in [1]. The proposed definition is simpler than those described
in [4] and [6], once it does not involve the construction of or-
thonormal eigenvector sets of the corresponding NTT matrix.
The FrNTT can be computed using standard fast algorithms
and appears to be suitable for cryptographic purposes. Cur-
rently, we are investigating additional properties of the FrNTT
and evaluating the possibility of using matrix functions to de-
fine other fractional transforms over finite fields.
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Fourier transform as a signal processing tool: An
overview of recent developments,” Signal Processing,
vol. 91, no. 6, pp. 1351–1369, June 2011.

[3] L. B. Almeida, “The fractional Fourier transform and
time-frequency representations,” IEEE Transactions
on Signal Processing, vol. 42, no. 11, pp. 3084–3091,
November 1994.

2636



[4] S.-C. Pei, C.-C. Wen, and J. J. Ding, “Closed form or-
thogonal number theoretic transform eigenvectors and
the fast fractional NTT,” IEEE Transactions on Signal
Processing, vol. 59, no. 5, pp. 2124–2135, May 2011.

[5] C.-C. Pei, S.-C. amd Wen and J. J. Ding, “Closed-form
orthogonal eigenvectors generated by complete general-
ized Legendre sequences,” IEEE Transactions on Cir-
cuits and Systems I: Regular Papers, vol. 55, no. 11, pp.
3469–3479, December 2008.

[6] J. B. Lima and R. M. Campello de Souza, “The frac-
tional Fourier transform over finite fields,” Signal Pro-
cessing, vol. 92, no. 2, pp. 465–476, February 2012.

[7] C. Candan, M. Alper Kutay, and H. M. Ozaktas, “The
discrete fractional Fourier transform,” IEEE Transac-
tions on Signal Processing, vol. 48, no. 5, pp. 1329–
1337, May 2000.

[8] N. J. Higham, Functions of Matrices: Theory and Com-
putation, Society for Industrial and Applied Mathemat-
ics, Philadelphia, 2008.

[9] R. M. Campello de Souza, H. M. de Oliveira, A.N.
Kauffman, and A. J. A. Paschoal, “Trigonometry in fi-
nite fields and a new Hartley transform,” in Proc. IEEE
Int. Symp. Information Theory (ISIT’98). IEEE, 1998, p.
293.

[10] R. Lidl and H. Niederreiter, Finite Fields, Encyclo-
pedia of Mathematics and its Applications. Cambridge
University Press, 2nd edition, 2008.

[11] R. Tao, X.-Y. Meng, and Y. Wang, “Image encryp-
tion with multiorders of fractional Fourier transforms,”
IEEE Transactions on Information Forensics and Secu-
rity, vol. 5, no. 4, pp. 734–738, December 2010.

[12] A. Akhshani, S. Behnia, A. Akhavan, H. Abu Hassan,
and Z. Hassan, “A novel scheme for image encryption
based on 2D piecewise chaotic maps,” Optics Commu-
nications, vol. 283, no. 17, pp. 3259–3266, September
2010.

[13] Nigel Smart, “ECRYPT II yearly report on algorithms
and keysizes (2010-2011),” Tech. Rep., European Net-
work of Excellence in Cryptology II, 2011.

2637


