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Abstract—Phase change memory (PCM) has emerged as
a promising non-volatile memory technology. Multi-level cell
(MLC) PCM, while effectively reducing per bit fabrication
cost, suffers from resistance drift based soft errors. It is
challenging to construct reliable MLC chips that achieve high
performance, high storage density, and low energy consumption
simultaneously.

In this paper, we propose ReadDuo, a fast and robust
readout solution to address resistance drift in MLC PCM.
We first integrate fast current sensing and resistance drift
resilient voltage sensing, which exposes performance opti-
mization opportunities without sacrificing reliability. We then
devise last writes tracking and selective different write schemes
to minimize performance and energy consumption overhead
in scrubbing. Our experimental results show that ReadDuo
achieves 37% improvement on average over existing solutions
when considering performance, energy consumption, and stor-
age density all together.

Keywords-Phase Change Memories; Multi-level Cell; Resis-
tance Drift

I. INTRODUCTION

Phase Change Memory (PCM) [20] is an emerging mem-
ory technology that takes advantage of the stable resistance
states of phase change material (e.g., GST) to record data.
A PCM cell, when having currents injected through the
cell, can be programmed to either fully crystalline state
or fully amorphous state, ranging from several kilo Ωs to
several million Ωs [21]. Given the large resistance difference
between these two states, MLC (multi-level cell) PCM has
been devised to utilize the middle resistance states to store
multiple bits in one cell. As a comparison, SLC (single-level
cell) PCM uses only full crystalline state and full amorphous
state, and stores only one bit in each cell.

The resistance of a PCM cell increases after write, which
is referred to as resistance drift. While both SLC PCM and
MLC PCM have resistance drift, the latter is more vulnerable
because its middle resistance states are not as stable as the
fully crystalline state and the resistance range of each MLC
state is often very tight. Resistance drift has been identified
as the main source of soft errors in MLC PCM and a major
obstacle that restricts MLC PCM from wide adoption.

Designs have been proposed to mitigate the resistance
drift in MLC PCM. Efficient scrubbing [2] periodically scans

MLC lines for resistance drift errors and, if found, rewrites
all the cells in a drifted line after correction. This scheme
tends to consume large memory bandwidth and write energy
if we want to match the reliability of MLC PCM chips
to that of today’s DRAM chips. Tri-Level-Cell (TLC) [26]
removes the most drift-prone state in four-level MLC design,
making a trade off between density and reliability. Helmet
[34] was proposed to adopt more precise MLC write control
and data encoding to mitigate resistance drift. M-metric
[23] is a recently proposed readout metric that conducts
drift resilient voltage sensing (rather than traditional current
sensing, referred to as R-metric). A M-metric based readout
scheme requires much longer latency to differentiate the
stored data. In summary, it remains challenging to design
a drift resilient scheme that achieves high performance and
low energy consumption while maintaining the same density
and endurance as those in drift-free MLC PCM.

In this paper, we address the challenge using a hybrid
readout solution that integrates voltage sensing and current
sensing. We strive to achieve the best tradeoff among
performance, energy consumption, storage density and chip
lifetime. We summarize our contributions as follows.

• We propose ReadDuo, a hybrid readout solution that
integrates fast current sensing and resistance drift re-
silient voltage sensing. In the Hybrid design, R-metric
sensing helps to improve read performance while M-
metric sensing helps to meet DRAM reliability with
low overhead scrubbing.

• We propose Last Writes Tracking and Selective Rewrite
schemes to minimize performance and energy con-
sumption overhead in scrubbing. Last Write Tracking
enables relaxed M-metric scrubbing without sacrificing
R-sensing reliability. Selective Rewrite reduces the av-
erage number of cell writes in most write operations
and save energy consumption.

• We evaluate the proposed schemes with comparison to
the state-of-the-art. A new metric EDAP (Energy Delay
Area Product) is used to evaluate the trade off among
energy consumption, performance and storage density.
Our results show that, on average, ReadDuo achieves
37% improvements over existing schemes.



In the rest of the paper, we briefly review the background
in Section II. We elaborate the design details in Section III.
The experiment methodology and results are discussed in
Section IV and Section V, respectively. We discuss more
related work in Section VI and conclude the paper in
Section VII.

II. BACKGROUND

A. Multi-level Phase Change Memory
PCM takes advantage of the stable states of chalcogenide

material such as GST [35], [12] to record data. MLC
PCM [32], e.g., a 2-bit MLC PCM in Figure 1, partitions the
resistance range between full crystalline state (several kilo
Ωs) and full amorphous state (several million Ωs) to four
resistance subranges, i.e., states.

Reading MLC PCM needs to compare a cell’s resistance
to three reference cells (denoted as Ref1/2/3) in two rounds
— the resistance is first compared to Ref2 and then, based
on the comparison results, compared to either Ref1 or Ref3.
The stored data is determined based on the comparison
results at two steps.

Writing MLC PCM often adopts iterative program and
verify (P&V) strategy. A to-be-written cell is always RESET
to amorphous state ‘00’ and undertaken a series of SET pulse
to program the cell to the target resistance range. Writing a
MLC PCM often needs to write its resistance to a narrower
range between two reference cells, leaving a small resistance
interval as guard band.
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Figure 1: MLC PCM and resistance drift errors (Solid
distribution line denotes resistance distribution at t0; Dashed
distribution line denotes resistance distribution at t (t>t0)).

B. PCM I-V Characteristics and Readout Metrics
Figure 2(a) shows a typical PCM I-V curve. SET and RE-

SET operations require relatively large current and voltage,
as shown in the figure. Read operation usually falls in the left
below section, i.e, low field. Low field electrical resistance is
typically used to quantify the programmed cell state. A read
voltage cannot exceed the Vth as otherwise, the resistance of
the cell may drop significantly, resulting threshold switching
phenomenon and may disturb cell state [23].

Figure 2(b) plots the low field I-V characteristic of MLC
PCM cells when they have different amount of amorphous
material (UA represents material thickness). The larger the
UA is, the higher resistance the cell has.
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Figure 2: The I-V curve and PCM operations.

1) R-metric: A Current based Readout Metric: To readout
the data stored in a MLC cell, we conventionally use
current sensing to compare the resistance of the cell to the
reference cell. By applying a small voltage Vbias to MLC
cells, the read circuit compares the sensed currents with
reference currents and determine the stored values based
on the comparison results [16]. This is referred to as R-
metric based sensing, or R-sensing, as it tests the resistance
characteristic of a cell.

Recent studies [23], [7] showed that R-metric is a strong
function of the activation energy, which is the fundamental
material characteristic that change over time, and leads to
temporal resistance drift [15], i.e., the resistance of a MLC
cell, in particular if the cell was programmed to a middle
state, increases over time. For the example in Figure 1, if the
resistance of a cell in ‘01’ state drifts above the resistance
of Ref3, it is readout as ‘00’, leading to drift errors.

It is also evident that R-metric has a very low signal-to-
noise ratio at high resistance level, making the high resis-
tance cell difficult to be sensed. As shown in Figure 2(b),
the current differences under Vbias is difficult to be sensed.

R-metric resistance drift can be modeled by Equation 1
[6], [8]:

R(t) = R0(t/t0)αR (1)

where R0 denotes the initial resistance at time t0, R(t)
denotes the cell resistance at time t,and α is the drift



coefficient. Due to process variation, R0 for a given state is
subject to normal distribution of N(µR, σ

2
R). Ideally, a de-

sired programmed resistance range is within 10µR±2.75σRΩ,
while the boundary of a given state are 10µR±3σRΩ. That
is, each state has 10µR±0.25σRΩ guard band towards its left
and right states, respectively. The value of drift coefficient is
also subject to a normal distribution of N(µα, σα

2). Table
I summarizes the resistance distribution and drift parameters
[2] and [26] that we use in the paper.

Table I: R-metric Configuration of four level MLCs when
t0 = 1s

Storage Level Data log10R αR
µR σR µα σα

0 01 3

1/6

0.001

0.4× µα
1 11 4 0.02
2 10 5 0.06
3 00 6 0.10

Writing MLC cells into narrower resistance subranges
enlarges inter-state guardbands such that it takes longer
time to drift into errors. This mitigation approach demands
precise writing control that takes more write iterations and
longer write latency to finish write operations [34]. It is an
orthogonal approach to the schemes that are designed and
compared in this paper.

2) M-metric: A Drift-Tolerant Voltage based Readout
Metric: Alternatively, M-metric [23] was proposed for
MLC PCM cells. By applying a bias current to MLC cells,
M-metric based sensing, or M-sensing tests the voltage
difference of cells storing different data.

Being a weak function of the activation energy, voltage
sensing shows significant tolerance to resistance drift —
the drift coefficient for M-metric is 6-8x lower than R-
metric [23], [1]. Also, the signal range is higher as shown
in Figure 2(b). Cells at different resistance states produces
easy-to-differentiate voltage values.

Ideally, the readout operation for M-metric is performed
by current biasing and voltage sensing. By applying a bias
current Iref lower than the threshold current, the voltage
difference of different cells are sensed [23]. A major draw-
back of voltage sensing is its long sensing latency. A naive
implementation often needs more than 1000ns to finish read
operation [1]. Therefore, recently, [16], [1], [14] optimized
the sensing circuit, which improves the read latency in the
range of 450ns and makes M-metric sensing practical. In
this paper, we use M-sensing to refer to this optimized
implementation of voltage sensing.

M-metric and R-metric are both cell metrics that can
be derived from I-V curve, and M-metric is more resis-
tance drift tolerant. The drift behavior of M-metric was
approximated as similar empirical model as R-metric [23].
Equation 2 and Table II shows the M-metric drift model and
configuration adopted in this paper. We assume the initial
distribution of M-metric is similar to R-metric, log10M is

subject to normal distribution, with µM = µR− 4, meaning
the value of M-metric is 4 orders smaller than R-metric [23].
The drift-coefficient is set to 1/7 of the R-metric as suggested
in [1].

M(t) = M0(t/t0)αM (2)

Table II: M-metric Configuration of four level MLCs when
t0 = 1s

Storage Level Data log10M αM
µM σM µα σα

0 01 -1

1/6

0.0001

0.4× µα
1 11 0 0.003
2 10 1 0.010
3 00 2 0.014

III. THE DESIGN DETAILS

In this section, we first motivate our design by studying
the state-of-the-art mitigation schemes. We then elaborate
the design details and evaluate the architectural overhead.

A. Motivation

The soft error rate (SER) is an important metric to
evaluate the reliability of the memory system in modern
computers. The soft errors of DRAM come mainly from
particle strikes. Recent studies on DRAM SER shows a
wide range from 25∼50 FIT [29] to 25,000∼75,000 FIT
[28] (failures in time per billion hours) per Mbit, depending
on the settings of the systems. In this paper, we choose a
small FIT value, i.e., 25 FIT per Mbit. The smaller value
the FIT is, the higher reliability the memory system has.
Given that the soft errors of MLC PCM come mainly from
drift errors [33], the design goal of this work is to mitigate
resistance drift such that, at any given time, the reliability of
MLC PCM chip can match that of DRAM chip, i.e., 25FIT
for DRAM reliability SER. For a 64B MLC PCM line that
contains 512 bits, this SER is translated to line error rate
(LER), 3.56E-15 per line-second and 1.28E-11 per line-hour,
respectively.

Our design is based on efficient scrubbing [2]. More
formally,

Definition An (E, S, W) efficient scrubbing is a scheme
that attaches a BCH-E code to each MLC PCM line to
correct all E or fewer errors. It scrubs each memory line in
every S seconds, and rewrites all cells of the line if detecting
W or more drifted errors.

In order to meet the reliability of DRAM in an efficient
scrubbing design, we need to choose (E, S, W) such that:
(i) the probability of a memory line accumulating more

than E drift errors in the first S-second interval after its
write, is smaller than LERDRAM;



Table III: The line error rate (LER) under different ECC code and scrub interval (using R-metric sensing).
Time S Scan in every S seconds and eliminate E or fewer errors LERDRAM

(seconds) E=0 (No protection) E=1 E=7 E=8 E=9 E=16 E=17 E=18 (Target)
22 1.23E-02 9.34E-05 too small too small too small too small too small too small 1.42E-14
23 7.09E-02 2.56E-03 1.81E-14 1.78E-14 too small too small too small too small 2.84E-14
24 1.63E-01 1.43E-02 2.09E-11 4.07E-13 9.55E-15 too small too small too small 5.69E-14
25 2.81E-01 4.44E-02 2.51E-09 8.98E-11 2.88E-12 too small too small too small 1.14E-13
26 4.20E-01 1.03E-01 1.06E-07 6.17E-09 3.23E-10 too small too small too small 2.28E-13
27 5.65E-01 2.03E-01 2.52E-06 2.25E-07 1.80E-08 too small too small too small 4.55E-13
28 7.02E-01 3.43E-01 3.73E-05 4.84E-06 5.63E-07 9.10E-15 too small too small 9.10E-13
29 8.18E-01 5.11E-01 3.78E-04 6.86E-05 1.12E-05 3.33E-12 2.92E-13 1.06E-14 1.82E-12
640 8.50E-01 5.65E-01 7.21E-04 1.44E-04 2.60E-05 1.55E-11 1.51E-12 1.32E-13 2.28E-12
210 9.03E-01 6.79E-01 2.68E-03 6.59E-04 1.46E-04 3.80E-10 4.61E-11 4.42E-12 3.64E-12

Table IV: The line error rate (LER) under different ECC code and scrub interval (using M-metric sensing)
Time S Scan in every S seconds and eliminate E or fewer errors LERDRAM

(seconds) E=0 (No protection) E=1 E=2 E=3 E=4 E=5 E=6 E>=7 (Target)
21 − 26 too small too small too small too small too small too small too small too small 2.28E-13

27 6.40E-06 2.04E-11 too small too small too small too small too small too small 4.55E-13
28 3.84E-05 7.34E-10 3.33E-15 too small too small too small too small too small 9.10E-13
29 2.69E-04 3.60E-08 3.18E-12 too small too small too small too small too small 1.82E-12
210 9.85E-04 4.83E-07 1.58E-10 4.54E-14 7.11E-15 too small too small too small 3.64E-12
211 2.42E-03 2.91E-06 2.33E-09 1.38E-12 7.99E-15 too small too small too small 7.28E-12
212 4.78E-03 1.14E-05 1.80E-08 2.13E-11 2.99E-14 too small too small too small 1.46E-11
213 8.14E-03 3.31E-05 8.94E-08 1.80E-10 3.01E-13 too small too small too small 2.91E-11
214 1.26E-02 7.91E-05 3.31E-07 1.03E-09 2.58E-12 6.88E-15 1.67E-15 too small 5.83E-11

Table V: The LER when choosing different W=1
R(...): R-sensing Probability of (ii) Probability of (iii)
M(...): M-sensing W=1 LERDRAM W=1 LERDRAM

R(BCH=8,S=8) 3.59E-13 5.69E-14 9.1E-12 8.54E-14
R(BCH=10,S=8) 4.83E-14 5.69E-14 1.7E-14 8.54E-14
M(BCH=8,S=640) too small 4.56E-12 too small 6.84E-12

(ii) the probability of a memory line accumulating less than
W errors in the first S-second interval while accumu-
lating more than (E-W) errors in the second S-second
interval is smaller than LERDRAM;

(iii) the probability of a memory line accumulating less
than W errors in the first two S-second intervals while
accumulating more than E-W errors in the following
S-second interval is smaller than LERDRAM;

We next check these probabilities to set up the parameter
values for the baseline designs. Table III and Table IV sum-
marize the probabilities of (i) when adopting R-sensing and
M-sensing, respectively. From Table III, a R-sensing scheme
that adopts (BCH=8,S=8) can meet LERDRAM. In this scheme,
each memory line is attached with a BCH-8 code and is
scrubbed every 8s. This matches the observation in [26],
[2] that adopts BCH-8 code. M-sensing can meet LERDRAM

using (BCH=8,S=640). While the scrubbing interval for M-
sensing can be relaxed to 214 (16,384) seconds, we choose
S=640 for reasons that we will elaborate in the next section.

We then check the probabilities of (ii) and (iii) and sum-
marize the results for three selected E and S combinations

in Table V. Our study shows that W needs to be small for
R-sensing — a bigger W requires stronger BCH code than
those listed. From Table V, we find that (BCH=8, S=8)
fails to match LERDRAM even using W=1. The implication
is, a scrubbing scheme that adopts (BCH=8, S=8) needs to
rewrite every line at scrubbing time no matter if the line
has a drift error. A scheme that adopts (BCH=10, S=8) can
relax it to skip rewriting if no error is found. A M-sensing
scheme is much safer, e.g., using (BCH=8,S=640,W=1) is
sufficient to meet LERDRAM.

In this paper, we choose (BCH=8, S=8, W=1) for R-
metric based scrubbing and (BCH=8, S=640,W=1) for M-
metric based scrubbing. From above analysis, a reliable R-
sensing scheme needs either using W=0 (i.e., rewriting at
scrubbing time) or using (BCH=10,W=1). Both of which
tend to introduce larger overhead. We choose (BCH=8, S=8,
W=1) only for comparison purpose. For M-metric based
scrubbing, it is possible to relax W or S to further reduce
overhead. Given the large interval, we observe that the
overhead is already low.



Comparing different mitigation schemes. Figure 3
studies the state-of-the-art drift mitigation schemes.
Scrubbing indicates the scheme that adopts R-sensing [2]
with (BCH=8,S=8,W=1). M-metric indicates the scheme
that adopts M-sensing with (BCH=8,S=640,W=1). TLC in-
dicates the scheme that adopts the TLC scheme [26].
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Figure 3: Comparing existing drift mitigation schemes.

As shown in the figure, Scrubbing and M-metric
introduce large performance degradation — scrubbing
wastes memory bandwidth on scrubbing and reduces mem-
ory availability; M-metric slows down each memory ac-
cess. TLC, while showing no performance degradation, show
large density penalty. In summary, mitigating resistance drift
in MLC PCM chips remains a challenging research topic.

In this paper, our design goal is to devise a drift resilient
solution that matches the reliability of MLC PCM with
that of DRAM, and achieve high performance, low energy
consumption, good memory density, and good chip lifetime
simultaneously, as shown in Table VI.

Table VI: The design goal of our proposed ReadDuo scheme
Performance Energy Density Endurance

Scrubbing - - + -
TLC + + - +

M-metric - - + +
ReadDuo + + + +

B. ReadDuo-Hybrid: a Simple Hybrid Integration of R-
Sensing and M-Sensing

Given that (i) R-sensing is faster than M-sensing but
requires a short 8s scrubbing interval, and (ii) M-sensing
can meet LERDRAM with a large 640s scrubbing interval, a
simple integration of both sensing approaches is to conduct
R-sensing first and, if R-sensing fails due to resistance drift,
conducts M-sensing. This is referred to as simple hybrid
sensing, or ReadDuo-Hybrid. Intuitively, if most read oper-
ations finish with R-sensing, ReadDuo-Hybrid can achieve
performance close to that in R-metric only sensing, and, if
there are drift errors, M-sensing with (BCH=8,S=640,W=1)
helps to provide reliability guarantee.

Unfortunately, R-sensing is less reliable. As an example,
the data returned from R-sensing may contain more than 20
errors while, if sensing the same memory line at the same

time with M-metric, the returned data has only five errors. In
ReadDuo-Hybrid, we need to ensure the undetected errors,
i.e., those that cannot be detected by BCH-8, during R-
sensing can meet the reliability target LERDRAM.

We next elaborate the design details of ReadDuo-Hybrid.
In particular, we need to enhance W=1 to W=0 in order
to meet DRAM reliability, i.e., ReadDuo-Hybrid is a hy-
brid sensing that adopts (BCH=8,S=640,W=0) for M-metric
based scrubbing — each line is refreshed every 640s.

Decoupling error detection and error correction. BCH
code is an ECC code with Hamming distance d, which can
detect up to d-1 errors and correct up to d/2-1 errors
[22]. That is, the BCH-8 code adopted in hybrid sensing
can correct up to 8 errors and detect up to 8× 2 + 1 = 17
errors. However, when adopting BCH-8 in memory systems,
we often do not care if 9 or more errors may be detected as
the line shall be left in erroneous state anyway. In this paper,
we decouple error detection and error correction, and take
advantage of the full error detection capability of BCH-8
code.

In particular, to service a read request, ReadDuo-Hybrid
first conducts R-sensing and determines the number of drift
errors under R-metric.

• If there are 8 or fewer errors, ReadDuo-Hybrid corrects
the errors using the BCH-8 attached to the memory line
and returns the corrected data to the processor.

• If there are 9 to 17 errors, ReadDuo-Hybrid re-issues
the memory request to conduct M-metric sensing. The
second try returns the correct data to the processor.

• If there are more than 17 errors, ReadDuo-Hybrid
cannot differentiate erroneous data from correct data,
and thus return the sensed data to the processor with
no correction.

We then check Table III and find that the probability of a
memory line having 17 or more errors is lower than LERdram
for up to 640s. Given that our M-metric scrubbing interval
is also 640s, we next discuss how to ensure the reliability
of ReadDuo-Hybrid.

Enhancing W=1 based scrubbing to W=0. When a
hybrid sensing uses setting (BCH=8,S=640s,W=1), it shall
perform M-metric based scrubbing on all lines in every
640s. Since M-metric is drift-resistant, scrubbing will skip
re-writing most memory lines as there are no errors. Given
that R-sensing can reliably sense a memory line only within
640s after its last write, such a skip jeopardizes R-sensing
as it may be issued beyond 640s from its last write.

In this section, ReadDuo-Hybrid addresses the issue with
a simple enhancement that adopts W=0 instead of W=1.
We leave more advanced designs to the following sections.
With setting (BCH=8,S=640s,W=0), ReadDuo-Hybrid re-
writes each memory line at its scrub time, no matter if an
error was found. In this way, R-sensing is always within 640s
after a line write, which ensures the reliability in ReadDuo-
Hybrid.



Read modes. Figure 4 compares ReadDuo-Hybrid to the
two schemes that adopt R-metric sensing and and M-metric
sensing individually. To simplify discussion, we differentiate
the following three types of read operations.

• R-read. The R-metric based sensing finishes in 150ns.
Scrubbing the memory using (BCH=8,S=8,W=1) may
roughly ensure all read operations being safely serviced
with R-read.

• M-read. The M-metric based sensing finishes in 450ns.
Scrubbing the memory using (BCH=8,S=640,W=1) can
ensure all read operations being safely serviced with
M-read.

• R-M-read. ReadDuo-Hybrid, when encountering 9 to
17 drift errors in R-sensing step, needs to conduct M-
sensing and thus finishes in 600ns (=150ns+450ns).
This is referred to as R-M-read.

8 seconds
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Figure 4: Hybrid sensing speeds up read operations.

As shown in Figure 4(a) that adopts R-metric only sens-
ing, read requests are all serviced by fast R-read operations.
An individual request, e.g., Rb, could be delayed by frequent
scrubbing operations. In Figure 4(b) that adopts M-metric
only sensing, scrubbing is much less frequent and the bank
is also less busy. However, read requests are serviced by
slow M-read operations. In Figure 4(c) that adopts hybrid
sensing, a read request can be serviced by either R-read or
R-M-read. Due to low error rate under BCH-8 protection,
most read requests are serviced by R-read.

C. ReadDuo-LWT: Tracking Last Write in Hybrid Sensing

ReadDuo-Hybrid chooses W=0 in M-metric scrubbing to
ensure read reliability. Comparing to a scheme that chooses
W=1, ReadDuo-Hybrid introduces large overhead as it re-
writes each memory lines in every 640s; the W=1 scheme
re-writes a line only if there are errors. Given the low error
rate in M-sensing, the W=1 scheme generates negligible re-
write operations in each 640s scrubbing interval.

To reduce the number of write operations in ReadDuo-
Hybrid, we propose a different optimization over the W=1
baseline. The scheme, referred to as ReadDuo-LWT, tracks

the last write to each memory line and switches to conduct
M-sensing if a read occurs beyond 640s from its last write.

Tracking the last write. To track the last write, a
ReadDuo-LWT-k scheme partitions one scrubbing interval
into k sub-intervals and attaches two flags (with k bits and
log2k bits, respectively) to each memory line.

• We label the sub-intervals from 0 to k-1, as shown in
Figure 5. One memory line keeps a k-bit vector-flag to
indicate if the memory line was written in the preceding
sub-intervals — bit-x=1 indicates there was a write in
the current or closest sub-interval labeled with x. It
also saves a log2k-bit index-flag ind to indicate the
sub-interval in which the last write occurs.
In the example shown in Figure 5, write W1 sets bit
2 of the vector-flag and modifies the index-flag to 2
because it locates in sub-interval#2.

• When scrubbing a memory line, we first clear the
vector-flag bits before the last write, i.e., all bits in
the range of [0, ind-1]. If ind=0, then all bits in the
vector-flag are cleared. We then set bit 0 of the vector
flag to 1 if the scrub operation re-writes the line, and
to 0 otherwise.
In the example shown in Figure 5, scrub1 clears bit 1
and bit 0 in the vector-flag while scrub3 clear all bits.

• When there is a write operation, we identify the sub-
interval s that the write belongs to, and the current
index flag ind. If s >1, we clear the vector flag bits
that correspond to sub-interval range [ind+1,s). We set
the vector flag bit for sub-interval s.

Time

W1 0 1 0 0
 3    2    1    0

1 0

Vector

 flag

Index

 flag

scrub1

scrub2

W3

0 1 0 0 0 0

Sub-

interval

2

3

0

1

2

3

0

1

2

3

0

0 0 1 0 0 0

scrub3 0 0 0 0 0 0

0 1 1 1 0 1

W2 0 1 0 1 0 0

R1: Is last-write within 640s?

Figure 5: The partition of scrub interval for one memory
line. (The three scrub operations are all for this memory
line; none actually re-writes the line. The shaded flag bits
are changed bits at each step).



Intuitively, the vector-flag is a sliding window that tracks
and retires writes in sub-intervals. The index-flag records
sub-interval of the last write or the starting of a new scrub-
bing interval. The location of the last write is determined by
both of them, as discussed in the following.

Enhanced readout control. To service a read operation,
ReadDuo-LWT reads data/ECC bits using R-sensing and
simultaneously reads the flag bits. The flag bits are stored as
single-level cell (SLC) and thus do not suffer from resistance
drift [2]. ReadDuo-LWT also identifies the sub-interval s in
which the read belongs to.

There are three cases — (i) If both vector-flag and index-
flag are non-zero, indicating there is a write within 640s,
ReadDuo-LWT can continue R-sensing as it is reliable. (ii)
If the vector-flag is zero, indicating there is no write in the
past 640s, ReadDuo-LWT terminates R-sensing and switches
to M-sensing. (iii) Otherwise, i.e., the vector-flag is non-zero
while the index-flag is zero. ReadDuo-LWT first discards the
vector-flag bits in [1,s] as these bits indicate writes beyond
640s. If the vector flag is still non-zero, ReadDuo-LWT
continues R-sensing. Otherwise, ReadDuo-LWT switches to
M-sensing.

In Figure 5, read R1 locates in sub-interval 2. The vector-
flag, while being non-zero initially, becomes zero after
discarding bit 1 and bit 2 (i.e., in range [1, s]). We therefore
switch to M-sensing to reliably read the memory line.

R-M-Read conversion. By tracking last writes to mem-
ory lines, ReadDuo-LWT can choose (BCH=8,S=640,W=1)
for M-metric scrubbing without impacting reliability. This
greatly reduces memory re-write operations. However, when
many read operations are beyond 640s of their last write
operations, the memory performance can become worse than
the scheme that only adopts M-sensing — R-M-read is
slower than M-read because the latter does not need to
test flag bits. This could become a big concern if, as an
example, an in-memory database application first creates the
database and then performs read-intensive query operations.
In this case, the read operations need to access data that
were written to memory a long time ago.

To mitigate this concern, we propose to conduct redundant
write operation after R-M-read. That is, After servicing a
read request with R-M-read, ReadDuo-LWT re-writes the
same data back to the MLC PCM. ReadDuo-LWT then
tracks this write and enables fast R-sensing in the next 640s
interval.

However, blindly converting all R-M-read operations
could greatly degrade chip lifetime due to additional writes
introduced to PCM chips. For this reason, we dynamically
monitor P% — the percentage of reads falling to un-tracked
memory lines. We convert T% of R-M-read and adjust T
between [0,100] at step 10. We increase T if an increment
gives 2 times percentage increase on P and decrease, and
decrease T if P is greater than 85%. Otherwise, we keep
the same T .

D. ReadDuo-Select: Selectively Rewriting MLC Cells

Reducing the number of cell writes is an effective ap-
proach to address the well-known write endurance problem
in PCM. For example, based on the observation that a write
operation typically changes around 20% data bits to its
memory line, differential write only writes modified bits
to PCM cells, which greatly improve PCM chip lifetime
[35]. Unfortunately, due to resistance drift, the MLC write
operations, including both writes from processors and writes
from scrubbing, need full-line write i.e., writing all cells in
the line.

Figure 6 elaborates the details. To simplify the discussion,
we assume all cells were programmed to state ‘01’, with
their resistances forming a normal distribution within the
resistance range of state ‘01’. Figure 6a shows that, due
to resistance drift, a small number of cells drift across the
state boundary between state ‘01’ and state ‘00’, leading
to drift errors. If we only write the modified cell or the
drifted cells, as shown in Figure 6b, the resistances of the
cells in this MLC line do not follow normal distribution. A
large number of cells are now close to the boundary such
that, in the next scrubbing interval, this line may accumulate
more drift errors than what its ECC can handle. Therefore,
writing a memory line needs to write all cells such that their
resistances still follow normal distribution.

Full-line write not only wastes write energy but also
degrade MLC chip lifetime. We therefore propose ReadDuo-
Select, a selective differential write (SDW) design that
safely reduces cell writes in MLC PCM. A ReadDuo-Select-
(k:s) scheme enhances the last-write tracking policy used in
ReadDuo-LWT-k as follows.

• Intuitively, a ReadDuo-Select-(k:s) scheme performs
only one full-line write in s consecutive sub-intervals.
The index-flag indicates the sub-interval in which the
last full-line write was performed.

• When performing a write operation to a memory line,
we determine the sub-interval that the write operation
belongs to, and the last full-line write (saved in the
index-flag). If they are within s sub-intervals, we only
write modified cells. Otherwise, a full-line write is
performed.
When we convert a read operation to a write operation
in ReadDuo-LWT, we need to write all cells as this
write is the only write in the past s sub-intervals.

• When performing a differential write in MLC PCM,
ReadDuo-Select does not update the index-flag. As
such, when determining if a read can perform R-
sensing, ReadDuo-Select conservatively measures the
distance to the last full-line write, which ensure its read
reliability.

When s=1, SDW performs a full-line write only for
the first write operation in each sub-interval and converts
following writes from the same sub-interval to differential
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Figure 6: Reliable scrubbing needs to rewrite all cells.

writes. When s >1, SDW converts more full-line writes
to differential writes, but relaxes tracking the last write
operation, which may slow down some ready operations. In
the experimental sections, we will study different s values
and their impacts on performance and chip lifetime.

E. Architectural Enhancement

Figure 7 presents an overview of the proposed ReadDuo
architecture. One PCM rank consists of eight data chips,
one ECC chip, and a bridge chip. The ECC chip is to
mitigate soft errors triggered by resistance drift, the same
as that in [2]. To defend hard errors, we may increase the
error correction capability of the current ECC chip, or even
add a new ECC chip if necessary. The design of hard error
mitigation schemes is orthogonal to our work. The bridge
chip is responsible for fine-grained PCM timing control and
device specific management, which helps to mitigate the
non-determinism in MLC PCM [9].
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Figure 7: An overview of ReadDuo architecture (dark boxes
show enhanced components).

In figure 7, the dark boxes mark the ReadDuo enhanced
architecture components that include (i) readout selection
(R/S) to switch between R-sensing and M-sensing; (ii)
scrubbing control (S/C) to scrub memory lines periodically;
(iii) BCH hardware to encode and decode the BCH-8 code

attached to each memory line; (iv) the enhanced I/V and
timing control; (v) a hybrid sense amplifier (S/A) that
supports both current and voltage sensing.
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Figure 8: The details of hybrid sensing.

Within each subarray, ReadDuo integrates both the tra-
ditional R-metric based current-mode sensing logic and
the new M-metric based voltage-mode sensing logic. The
details are shown in Figure 8. Current-mode sensing [4], [5]
applies a fixed bias voltage Vbias to the cell and compares
the current flow through the bitline Icell to the reference
current generated by reference cells. It requires large die
area because current signals are converted to voltage signals
and then sensed. In contrast, M-metric reading only requires
voltage sensing sense amplifier but not the I-V converter.
By applying a bias current Ibias to the cell, we sense the
voltage on the bitline and then compare it to predefined
reference voltage, and finally output the readout value. Other
peripheral circuits are shared, such as row decoder, column
decoder, precharger etc.

We revised NVSim [5] to model both types of sense
amplifiers and estimate the area overhead. Each 2GB mem-
ory bank consists of 32 mats while each mat contains 16
subarrays. At the subarray level, the area occupancy of
control logic and data array are shown in Table VII. The
overall area increment is 0.27%.



Table VII: Subarray level area analysis

Component Baseline[mm2]
(current sensing)

R+M-metric[mm2]
(hybrid sensing)

Cell Array 2.466 2.466
Row Decoder 0.254 0.254

Precharger 0.026 0.026
I-V converter 0.208 0.208

Bitline Mux & Dec 0.015 0.015
S/A Mux & Dec 0.002 0.002

S/A 0.003 0.006
Mode Control X 0.005

Total 2.974 2.982

Table VIII: Baseline Configuration

CPU 4-core single issue in-order CMP, 4GHz
L1 private, I/D separate, 32KB per core, 64B line
L2 private, 256KB per core, 4-way LRU, 64B line

write back
L3 DRAM cache, private, 8MB per core, 8-way LRU

64B line, 50ns (200-cycle) hit
Main 16GB, 8 banks, 32-entry write queue per bank

Memory R-Read: 150ns [3] ,M-Read: 450ns [1]
Write: 1000ns

ReadDuo maintains a scrub register to indicate the next
memory line to be scrubbed. It increments after each scrub,
i.e., increments every (S / number of memory lines) sec-
onds. In addition, each memory line keeps (k+log2k) bits
to track its last write. These bits are stored as SLC in the
ECC chip, which do not suffer from resistance drift [2].
Accessing the flag bits is off the critical path and incurs
negligible performance overhead.

IV. EXPERIMENTAL METHODOLOGY

To evaluate the effectiveness of ReadDuo, we simulated
a system using 4-core in-order CPU and MLC PCM based
main memory. The baseline architectural configuration fol-
lows [26]. We generated memory accesses trace through
Pintool [13], and fed it to our in-house memory system
simulator, which models the entire memory hierarchy, the
memory controller and PCM based main memory. We
also considered timing constraints including cache-memory
related bus contention, memory bank conflicts and DDR
scheduling constraints. Write cancellation [18] was also im-
plemented so that read operations are given highest priority.
For the memory systems, the read latency is 150ns [3] for
fast R-metric sensing, and 450ns [1] for slow M-metric
sensing. MLC write latency is set as 1000ns [2] for the
iterative based write strategy. Scrubbing needs to read a
PCM line first, scan for drift errors, and re-write a line if
errors were found. The detailed system configuration is in
Table VIII. Table IX lists the energy consumed to read and
write MLC cells [31].

In our experiment, we simulated 14 workloads from
SPEC2006 benchmarks. We listed their RPKI/WPKI
(read/write operations per thousand instructions) in Table X.

Table IX: Energy Model of PCM per bit access

R-Read M-Read Write 01 Write 11 Write 10 Write 00
10pJ 30 pJ 50pJ 100pJ 400pJ 1600pJ

Table X: Simulated Workloads

RPKI WPKI RPKI WPKI
astar 14.12 11.35 bwaves 17.81 9.14
bzip2 2.83 2.83 gemsfdtd 9.67 9.08

gromacs 0.49 0.49 lbm 17.08 11.75
leslie3d 5.21 5.14 libquantum 13.53 7.55

mcf 23.23 21.15 milc 21.22 13.08
sjeng 0.39 0.39 sphinx 3.97 3.36
wrf 0.90 0.90 zeusmp 4.23 4.08

V. RESULTS

We implemented and compared the following schemes in
the section.

• Ideal. This is the setting that assumes no resistance
drift in MLC PCM. A MLC line can be readout using
R-metric sensing in 150ns.

• Scrubbing. This scheme adopts efficient scrubbing
with R-metric sensing. It uses (BCH=8, S=8s, W=1).
In practice, it needs to be enhanced with W=0 to meet
LERDRAM.

• M-metric. This scheme adopts M-metric sensing
only. It uses (BCH=8, S=640s, W=1).

• Hybrid. This scheme implements ReadDuo-Hybrid.
It uses (BCH=8, S=640s, W=0).

• LWT-k. This scheme is built on top of Hybrid and
implements ReadDuo-Hybrid-k, which partitions 640s
to k sub-intervals, and convert R-M-Read to write for
untracked memory lines.

• Select-(k:s). This scheme, in addition to LWT-k,
implements ReadDuo-Select-(k:s).

A. Performance Comparison

Figure 9 reports the normalized execution time using
different schemes. We normalized the results to Ideal.
Scrubbing and M-metric introduce 21% and 25% per-
formance degradation.

The overhead of Scrubbing comes mainly from busy
memory banks. Note here we use W=1 setting, which cannot
meet our target reliability requirement. If W=0 setting is
used, the memory suffers from more scrubbing operations,
and the execution time for that case is much longer, about
2-3x over ideal.

The overhead of M-metric comes mainly from slow
memory read operations. Since read operation is on the
critical path, the execution time is prolonged significantly.
Hybrid reduces the scrubbing frequency and also en-

ables that most read operations can be fulfilled by fast R-
read. The 5.8% extra execution time compared with Ideal
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Figure 10: Comparing the energy consumption.

comes mainly from the scrubbing overhead with W=0 set-
ting. The energy overhead comes from W=0 setting is even
more significant.
LWT-4 implements the last write tracking on a granularity

of 1/4 of 640s, i.e, 160s sub-interval tracking. With W=1
scrubbing setting, the scrubbing overhead is reduced. By im-
plementing the R-M-read conversion for untracked memory
lines, we also lower the probability of long latency R-M-
read. We further analyze the impact of each enhancement
in next section. The LWT-4 design can lower the extra
execution time to 2.9% over ideal.

At last, the energy optimization scheme Select-4:2
will slightly increase the performance overhead, because the
probability of R-M-read will slightly increase. The extra
execution time is 3.4% over ideal.

B. Dynamic Energy Comparison

Figure 10 reports the dynamic energy consumption under
different schemes. We normalized the results to Ideal.
Due to frequent scrubbing, Scrubbing consumes 17%
more energy than Ideal with W=1 setting. M-metric
consume 5% extra dynamic energy due to long read latency.
The scrubbing energy consumption is small because the
frequency to issue a scrub operation is lower. Hybrid
adopts W=0 scrubbing, meaning that more scrub operations
has to be issued. Therefore, the extra energy overhead is
8.7%.

Our proposed LWT-4 reduces energy consumption for
some benchmarks, like bwaves, bzip2, etc. The reduction
comes from two parts, one is because the read latency is
now shortened compared with M-metric. Also, by using
W=1 scrubbing mode, our scrubbing energy is also saved
compared with Hybrid. However, it is noticeable that for
some benchmarks, such as sphinx, the energy consumption is
increased significantly. This is because for such benchmarks,
we convert many R-M read to write operations, thus the
energy consumption is higher. Overall, LWT-4 has an
energy overhead of 1.33%.

The Select-4:2 reduces the write energy significantly,
which contributes the major part of the overall dynamic
energy. Since we only need to modify changed bits, the
energy is only 77.8% of the Ideal, which writes all line
with full writes.

C. Energy Delay Area Product

We next examined different schemes by taking subarray
area into consideration. We start with comparison of the
effective cell array sizes when storing same amount of
information. Take 64B data as example, the TLC design
with (72,64) SECDED code requires 192 tri-level cells to
store data. Scrubbing with BCH-8 and parity check per
32bits, resulting to use 155 cells to store data. Our proposed
schemes, also requires BCH-8 attached per line. With LWT-
4, another 153 cells per line is required, thus storing 64B



requires cells. We normalize all the required cells to store a
line to TLC and show the result in Figure 11.

To evaluate the schemes on performance, energy con-
sumption, and area, we used EDAP (Energy Delay Area
product) metric and reported the comparison results in
Figure 11. In this figure, lower bars mean better results.
Product-D and Product-S are the results when consid-
ering dynamic energy and system energy, respectively. When
considering dynamic energy only, on average, LWT-4 and
Select-4:2 achieves 7.5% and 37% over TLC.

When considering system energy, they achieves 11% and
23% over TLC design.
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Figure 11: Comparing EDAP (Energy Delay Area Product).

D. Sensitivity Study

In this section, we varied the choices of parameters and
evaluated their impacts on the system.

1) Impact of Subinterval Number(k): The value of k
determines how many subintervals we have in one 640s
scrubbing interval. With bigger k, we are able to track longer
time. Longer tracking time will give some benchmarks
higher opportunity to enable fast R-read. At the same time,
we need to add more flag bits to enable finer granularity
tracking. We report several benchmarks that shows signifi-
cantly better performance with more subintervals. Figure 12
shows that the performance improvement from k =2 to k =4
is 0.7% for all benchmarks, and 2.3% for memory intensive
benchmark mcf.
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Figure 12: Impact of Subinterval Number(k)
2) Impact of Select Rewrite Interval Number(s): As stated

in Section III-D, the choice of s determines how frequently
we can convert a full write to a selective write. We compare
Select-4:1 and Select-4:2 two settings and compare the

energy reduction results. Figure 13 shows that the energy
saving for s =2 over s =1 is 1.2%.
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Figure 13: Impact of Select Rewrite Interval Number(s)

3) R-M-read conversion in LWT-k: Figure 14 shows the
benefit of R-M read conversion enhancement in LWT-4.
For several benchmarks, for example, sphinx, enabling R-
M Read conversion will bring much better performance.
The performance improvement for sphinx by enabling R-
M Read conversion is 22%. Meanwhile, as we analyze
in Section V-B, the energy consumption is also increased
because of the conversion. Overall, R-M-read conversion
with LWT-4 will gain 2.9% improvement on performance.
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Figure 14: Impact of Read Conversion

E. Lifetime Impact

For PCM, the memory lifetime is determined by numbers
of write operations. We examine different schemes impact
on memory lifetime and show the result in Figure 15.
Scrubbing will shorten 12.4% lifetime. M-metric with
W=1 scrubbing will have negligible lifetime impact on
memory. Hybrid, LWT-4 will reduce lifetime by 6% and
10%. By enabling the Select-4:2, the memory lifetime
is increased by 42%.
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VI. RELATED WORK

Phase Change memory is one of promising non-volatile
memory technologies for future memory systems. In ad-
dition to resistance drift, many issues have been stud-
ied in the literature. ECP [27], PAYG [17], Free-p [33],
Safer [25] focus on hard errors in PCM. Write disturbance
was addressed in SD-PCM [30] and DIN [10]. Wear-leveling
techniques were proposed in Security-refresh [24] and Start-
gap [19]. MLC PCM also suffers from long write latency and
leading performance degradation. Write cancellation [18],
write truncation[11] addressed the long write latency in
MLC PCM.

VII. CONCLUSIONS

In this paper, we propose ReadDuo, a resistance drift
resilient readout solution for MLC PCM system. ReadDuo
combines fast R-metric sensing and drift resilient M-metric
sensing. It converts the reliability design to a performance
optimization problem. By selectively scrubbing MLC lines
for drift errors and selectively rewriting drifted cells only,
ReadDuo achieves high performance, low energy consump-
tion, and good storage density simultaneously.
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