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Bayesian Methods for Multiaspect Target Tracking
in Image Sequences

Marcelo G. S. Bruno, Member, IEEE

Abstract—In this paper, we introduce new algorithms for auto-
matic tracking of multiaspect targets in cluttered image sequences.
We depart from the conventional correlation filter/Kalman filter
association approach to target tracking and propose instead a
nonlinear Bayesian methodology that enables direct tracking
from the image sequence incorporating the statistical models
for the background clutter, target motion, and target aspect
change. Proposed algorithms include 1) a batch hidden Markov
model (HMM) smoother and a sequential HMM filter for joint
multiframe target detection and tracking and 2) two mixed-state
sequential importance sampling trackers based on the sam-
pling/importance resampling (SIR) and the auxiliary particle
filtering (APF) techniques. Performance studies show that the
proposed algorithms outperform the association of a bank of
template correlators and a Kalman filter in adverse scenarios
of low target-to-clutter ratio and uncertainty in the true target
aspect.

Index Terms—Bayesian estimation, hidden Markov models,
multiaspect target tracking, noncausal Gauss–Markov random
fields, particle filters.

I. INTRODUCTION

REMOTE imaging sensors scan a certain surveillance
region recording returns from both targets of interest

and spurious scatterers in the background. The raw sensor
measurements are sampled and processed to form a sequence
of two-dimensional (2-D) cluttered images. In typical scenarios
of practical interest, designated targets are heavily obscured
by structured clutter, becoming barely visible to a human
observer. In addition, the aspect of the clutter-free image of a
target of interest may itself change randomly over time as a
result of rotational motion and/or variations in the conditions
of observation of the target. Finally, targets of interest may be
moving randomly in the background, adding further uncertainty
on their true spatial location.

Previous literature on multiaspect target detection, e.g.,
[1]–[3], is concerned mostly with stationary targets and focuses
on designing correlation filters that are robust to distortions of
the target’s template. The literature on moving target tracking
with imaging sensors (see, e.g., [4] and [5]) is in turn based on
a suboptimal decoupling of the detection and tracking tasks.
Typically, a preliminary single frame detection stage uses
image processing and/or pattern recognition techniques such as
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segmentation, clustering, and correlation filtering to generate
initial estimates of the true position of a potential target of
interest. These preliminary estimates are subsequently associ-
ated with a multiframe tracker or, alternatively, are discarded
as false measurements originating from clutter. The sequential
estimator used for tracking from validated measurements is
usually a linearized Kalman–Bucy filter (KBf). This suboptimal
association of correlation detectors and KBf trackers has been
shown to perform poorly for low target-to-clutter ratios, even
in simpler test scenarios where the target aspect and the clutter
statistics are known; see [6].

We propose to overcome the limitations of the conven-
tional correlation filter/KBf association using a Bayesian
methodology that enables direct target tracking from the image
sequence, eliminating any preliminary single frame image
correlation or pattern recognition step and integrating detection
and tracking. We design recursive, multiframe algorithms that
fully incorporate the (stochastic) dynamic models for target
motion and aspect and take full advantage of the knowledge
of the statistical model for the spatially correlated clutter
background. The proposed algorithms are clutter adaptive,
learning the parameters of the clutter correlation model from
the available test data with no need for training.

Previous work [7]–[10] considered the problem of clas-
sification/identification of stationary, multiaspect targets
using hidden Markov models (HMMs) [11] to represent the
aspect-dependent electromagnetic [7] or acoustical [9], [10]
scattering characteristics of the targets. We use a similar
strategy to handle the uncertainty in the target aspect. However,
instead of processing the target’s scattered waveforms, we
have as input data a preprocessed sequence of digital images
in which we use the HMM formalism to model the rotations
and/or deformations (scaling or shearing) of the target template
from frame to frame. The target’s aspect state is incorporated
into our model as a dynamic unknown variable that is jointly
estimated with the target’s kinematic state. To model the
evolution in time of the kinematic state, we consider, on the
other hand, two strategies, using, respectively, discrete-valued
and continuous-valued state variables.

Grid-Based Detector/Trackers: In the discrete-space ap-
proach, we take advantage of the sensor’s finite resolution to
model the target’s centroid motion as a 2-D discrete-valued
HMM defined directly on the sensor’s image grid. Detection
and tracking are then easily integrated by adding a dummy ab-
sent target state to the motion HMM. Using the discrete-valued
models for target motion and aspect, we derive a batch HMM
smoother and an online HMM filter for joint multiframe, mul-
tiaspect detection and tracking. The proposed HMM smoother

1053-587X/04$20.00 © 2004 IEEE



BRUNO: BAYESIAN METHODS FOR MULTIASPECT TARGET TRACKING IN IMAGE SEQUENCES 1849

is a generalization of the forward-backward Baum–Welch re-
cursions [12], [13] and provides an alternative to Viterbi-based
trackers; see, e.g., [14]. The online HMM filter in this paper
generalizes, in turn to multiaspect targets, the 2-D sequential
HMM detector/tracker briefly introduced in [6].

Particle Filter Trackers: Despite their good performance,
the grid-based solutions described in the previous paragraph
suffer from two shortcomings: 1) They are computationally
intensive, and 2) a discrete-valued model for target motion may
be too simplistic to represent real-world target dynamics. To
circumvent these problems, we also introduce, in this paper,
a second class of multiaspect Bayesian trackers that assume
continuous-valued motion models. The dynamic target aspect
model remains, however, discrete-valued. To approximate
the optimal sequential Bayesian estimator for this mixed
discrete-valued/continuous-valued state model, we resort to
sequential importance sampling [15], which is also known as
particle filtering [16], Monte Carlo filtering [17], or, in the
computer vision literature, the condensation algorithm [18],
[19]. We present two mixed-state particle filter algorithms
for direct multiaspect target tracking from image sequences.
The proposed trackers are based, respectively, on the sam-
pling/importance resampling (SIR) method [20], [21] and on
the alternative auxiliary particle filter (APF) [22] technique.
An earlier, simpler version of those trackers for single aspect
targets was introduced in [23].

Observation Model: An important tenet in our approach to
target detection/tracking, both in the grid-based and in the se-
quential importance sampling solutions, is that, unlike in pre-
vious work reported in the literature, we do not use validated
measurements or contacts as input data for the tracker, but rather
treat the image frames themselves as input data. In order to do
that, we propose a nonlinear observation model that, when a
target is present, maps a target centroid location into a spatial
distribution of target pixels with a certain shape and intensity.
The associated likelihood function fully incorporates the models
for target shape and intensity and the model for the background
clutter.

Clutter Adaptation: Previous work on multiframe detec-
tion—see, e.g., [24]—neglects the spatial correlation of the
clutter treating the background as white Gaussian noise. We
propose instead to capture the clutter spatial correlation using
a 2-D noncausal Gauss–Markov random field (GMrf) model
[25]–[27]. We use, in this paper, a suboptimal approximate
maximum likelihood (AML) parameter estimation algorithm
[26], [28] that fits a GMrf model to the clutter data at each
frame in the image sequence.

Outline of the Paper: The paper is divided into seven sec-
tions. Section I is this introduction. In Section II, we introduce
the models for target and clutter that underly our algorithms,
and we review the proposed model for the likelihood function.
Section III derives the proposed batch and online versions of the
grid-based multiframe HMM detector/tracker. In Section IV, we
introduce the mixed-state sequential Monte Carlo SIR and APF
trackers. In Section V, we discuss clutter adaptation. Section VI
examines the tracking performance of the various proposed al-
gorithms using simulated multiaspect target sequences gener-
ated from real infrared airborne radar (IRAR) [29] data. Finally,

Section VII summarizes the main contributions and conclusions
of our work.

II. PROBLEM SETUP

Our primary goal is to estimate the 2-D spatial location of des-
ignated targets in an image sequence. For simplicity, we restrict
our discussion to the situation when there is at most one target
of interest present in the imaged scene. We formalize next the
target motion, target signature, target aspect, and background
clutter models that underly the derivation of the algorithms in
this paper.

A. Target Motion Model

In this subsection, we discuss two strategies for target transla-
tional motion modeling using, respectively, continuous-valued
and discrete-valued state variables. Throughout this paper, we
use lowercase letters to denote both random variables/vectors
and realizations (samples) of random variables/vectors; the
proper interpretation is implied in context. We use lowercase

to denote probability density functions (pdfs) of (absolutely)
continuous random variables/vectors and uppercase to
denote probability mass functions (pmfs) of discrete random
variables/vectors.

Continuous-State Model: Assuming Cartesian coordinates,
we use the indices and to refer, respectively, to each
of the two dimensions of the plane. Let

(1)

be a continuous-time state vector that collects the position and
velocity of the target centroid at instant in dimension . Now,
let

(2)

be the corresponding discrete-time state vector with denoting
the sampling period in time. We build the four-dimensional
target state vector

(3)

where , , 2, are defined as in (2).
We assume that , is a first-order Markov random

sequence specified by the conditional probability density func-
tion (pdf) and by the pdf of the initial state . In
practice, we may assume further that the sequence of kinematic
state vectors in dimension 1 is statistically independent
of the sequence of kinematic state vectors in dimension 2
for . It follows then that

(4)

In particular, in many real-world problems, we model the se-
quence of random vectors , , 2 by the (generally
nonlinear) dynamic system

(5)
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where , is assumed to be a sequence of zero-mean,
independent, identically distributed (i.i.d.) Gaussian random
vectors. Equation (5) is initialized with a stochastic initial
condition , independent of the sequence , , and
with a pdf , which may be, in general, non-Gaussian.

Discrete-State Model: An alternative to the continuous-state
motion model discussed before is to restrict the values of the
unknown target centroid positions in dimensions and

to pixel locations in the image grid
, where is the size in pixels of each

frame in the image sequence. We then track the centroid pixel
locations directly, as opposed to tracking real-valued centroid
coordinates. Let

(6)

denote the unknown pixel location of the target centroid. The
dynamic state evolution of the hidden vector can be mod-
eled by a 2-D discrete-valued hidden Markov chain specified
by the transition probability masses and by the ini-
tial probability masses , .

B. Observation Model

The raw sensor measurements at instant are sampled and
processed to form a 2-D digital sensor image, which is referred
to as a frame. Let denote the hypothesis that the designated
target is absent from the scene at frame and denote by
the hypothesis that the target of interest is present at frame .
Assuming a continuous-state motion model, we represent the

th frame by the matrix

(7)

(8)

where matrix represents the background clutter, and ma-
trix is the clutter-free target image model, which is
a function of the 2-D pixel location of the target centroid
and the target aspect state , both of which are unknown and
random and must be sequentially estimated from the observed
data . The 2-D hidden random vector takes values on
the finite sensor grid (see
Section II-A) and is obtained from the 4-D continuous-valued
state vector in (3) by making

round (9)

round (10)

where and are the image resolutions, respectively, in di-
mensions and . We are reminded [see (2)] that

, , 2 denote the position coordinates of the target
centroid at instant , respectively, in dimensions
and .

Otherwise, assuming a discrete-valued target position state
(see Section II-A), we can write the observation model for

frame under hypothesis (target present) directly as

(11)

Target Aspect Model: We assume that the target as-
pect state is defined on a finite, discrete-valued set

, where each index is a pointer to
one possible template model in a target aspect library such that
the several entries in the library represent possible rotation,
scaling, and/or shearing of the target’s base template. The
random sequence of aspect states , is modeled as
a first-order HMM defined on the set and specified by the
vector of initial probabilities such that ,

, and by the matrix of transition probabilities such that

(12)

Clutter-Free Target Model: We assume that at any given
frame for any aspect state , the clutter-free image of a target
that is present is contained in a bounded rectangular region
of size . In this notation, and

denote the maximum vertical pixel distances in the target
image when we move away, respectively, up and down from
the target centroid. Analogously, and are the maximum
horizontal pixel distances in the target image when we move
away, respectively, left and right, from the target centroid.

For each pixel centroid position in the
continuous-valued motion model, or in the
discrete-valued motion model, the nonlinear function in
(7) and (11) returns a spatial distribution of (real-valued) pixel
intensities , , , centered
at , and dependent on the aspect state . Formally, we
write

(13)

where is an matrix whose entries are all equal to
zero, except for the element , which is equal to 1.

For a given fixed template model , the coefficients
in (13) are referred to as the target signature parame-

ters corresponding to that particular template. The signature co-
efficients are the product of a binary parameter

that defines the target shape for each aspect state and a
real coefficient that specifies the pixel intensities
of the target, again for the various states in the alphabet . For
simplicity, we assume that the pixel intensities and shapes are
deterministic and known at each frame for each possible value
of .

Remark: To write (13), we assumed that the target is suffi-
ciently far from the borders of the image grid so that we do not
have to worry about boundary conditions. Boundary effects can
be easily taken into account by changing the summation limits
accordingly in (13) for centroid locations near the borders.

Clutter Model: We capture the 2-D spatial correlation of the
background clutter using a noncausal, spatially homogeneous
Gauss–Markov random field (GMrf) model [25]. The random
clutter returns at frame , , , are
then described by the 2-D finite difference equation

(14)
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where . We use subscript
in the notation for the parameters , , and to emphasize
that the clutter parameters may be time-variant and change from
frame to frame. The assumption of zero-mean clutter implies,
on the other hand, a preprocessing of the data that subtracts the
mean of the background.

Let be a 1-D equivalent representation of the matrix
in (14) that is obtained by scanning the matrix row by row and
sequentially stacking the scanned rows in a long vector. Writing
(14) in compact matrix notation, it can be shown [25], [27] by
the application of the principle of orthogonality that the inverse
of the covariance matrix has a block-tridiagonal
structure of the form

(15)

where denotes the Kronecker (or tensor) product, is the
identity matrix, and is a matrix whose entries

if and are equal to zero otherwise.

C. Likelihood Function

Let and be the 1-D long vector representations,
respectively, of the image frame and the clutter-free target
image in (7), assuming continuous-valued kinematic
target states as in (3). For a GMrf background as in (14), the
likelihood function under hypothesis for a fixed template
state may be written as

(16)

where the symbol denotes “proportional to,” is a target
energy term given by

(17)

that does not vary with away from the image borders (see [6]
for further details), and is a data-dependent term such
that

(18)

Using the structure of the inverse of the covariance matrix in
(15), it has been shown in [30] that in (18) is computed
by the expression

(19)
where , , 2 are obtained, respectively, from (9) and
(10), and is the output of the differential operator

(20)

with Dirichlet (identically zero) boundary conditions. Equation
(19) is valid for and

. For centroid positions close to the image borders, the
summation limits in (19) must be varied accordingly, as shown
in [6].

Remark: For a discrete-valued target state as in (6), we
may rewrite the likelihood function equations by replacing

and directly with the components of the vector .

III. GRID-BASED HMM DETECTION/TRACKING

In this section, we derive grid-based Bayesian algorithms for
joint multiframe target detection and tracking in cluttered image
sequences using the models from Section II. We build an in-
tegrated framework for detection and tracking by conveniently
extending the image grid to account for both boundary effects
and absence of target.

A. Lattice Extension and Integration of Detection and Tracking

To model situations when targets move in and out of the
sensor image, we introduce the augmented centroid lattice

. The
centroid lattice collects all possible values of the target centroid
position for which at least one target pixel may lie inside the
sensor’s image.

Let be an equivalent 1-D representation of the centroid lat-
tice obtained by row lexicographic ordering. We build an in-
tegrated framework for detection and tracking by augmenting

with an additional dummy state that represents the absence
of the target. For convenience, we assign to the absent state the
index , where . The
final 1-D extended lattice is

(21)

Modified Discrete-Valued Motion Model: Now, let
be the new unknown (hidden) random variable at frame . If the
target is present at frame at a centroid location ,

, the scalar variable takes, by definition, the
value

Otherwise, if the target is absent at frame , then, as explained
before, . Like in Section II-A, the dynamic evo-
lution of the sequence of random variables , may
be described by a discrete-valued Markov chain, which is now
defined on the extended lattice that includes the absent target
state. This Markov chain is specified by the matrix of transition
probabilities such that

(22)

Realizations of this Markov chain are initialized with samples
from the distribution of prior probabilities specified by the
vector such that

(23)
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B. HMM Smoother

Let be, as before, an equivalent long vector representation
of the th sensor frame , and let
be a collection of observed frames. Introduce the matrices

, , and such that

(24)

(25)

(26)

for and . Note that the term on the right-hand side
of (24) is a mixed probability density function, which is defined
as an actual density function in the continuous-valued variables
and a probability mass function in the discrete-valued variables.
We use lowercase on the right-hand side of (24) as an abuse
of notation.

In order to obtain the optimal Bayesian estimates of the un-
known target position and aspect at frame , we must compute
the joint posterior statistics of the hidden variables and
at each frame conditioned on the observed data . We then
derive, in the sequel, an algorithm for the recursive computation
of the matrix such that

(27)

We make the following assumptions in the derivation.

• The sequence of clutter frames , , after a pre-
processing of the data that subtracts the spatially variant
local background mean, is i.i.d. as well as statistically in-
dependent of the sequences of target centroid positions

and target aspect states , .
• The sequences and are mutually inde-

pendent first-order discrete Markov processes.
Forward Recursion: From the observation model and using

the previous assumptions that the sequence is i.i.d., we
note that

(28)

On the other hand, using the assumptions that the sequences
and are two mutually independent first-order Markov

sequences and are also statistically independent of the sequence
of clutter frames , we conclude that

(29)

Using Bayes’ law and (28), we write

Using now the Theorem of Total Probability and recalling (29),
we get

(30)

where and are the motion and aspect transition prob-
ability matrices defined, respectively, in (22) and (12). Using
(30), we now write

(31)

or, in compact matrix notation

(32)

where denotes pointwise multiplication, and the superscript
stands for the transpose of a matrix.
Backward Recursion: From the Theorem of Total Proba-

bility

(33)

From the previous assumptions on the statistics of , ,
and , we note, however, that

(34)

Similarly, we also note that

(35)

Using Bayes’ law to expand (33) and recalling (34) and (35),
we get

(36)
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or, in compact matrix notation

(37)

Initialization: In the sequel, we discuss how to initialize the
forward and backward recursions. In the forward case, we have

(38)

where and are the prior
probability mass functions, respectively, for the initial centroid
position and aspect of the target. Similarly, for the backward
recursion, we write

(39)

where, by definition

(40)

Smoothing Posterior: From the modeling assumptions

(41)

where is a normalization constant. Equation
(41) may be rewritten in compact matrix notation as

(42)

From , we obtain the marginal posterior probability mass
function for the hidden centroid position

(43)

Multiframe Target Detection: Denoting by and the
hypotheses that the target is, respectively, absent from and
present in the scene at frame , the minimum probability of
error multiframe detector at frame is given by the test

(44)

where is the absent target state; see Section III-A.
Multiframe Target Tracking: If hypothesis is declared

true at instant , we find then the multiframe maximum a pos-
teriori (MAP) estimate of the target’s centroid position at
frame using the expression

(45)

where is the centroid lattice; see Section III-A.

Summary of the Algorithm: Table I summarizes the main
steps in the proposed multiaspect, multiframe detector/tracker.

Before we leave this subsection, we make a few brief re-
marks concerning the actual implementation of the algorithm
in Table I.

Remark 1: The forward and backward recursions in (32) and
(37) may be interpreted as a generalization of the Baum–Welch
smoother [12], [13]. We perform simultaneous smoothing of two
hidden Markov chains and process the observed sensor images
directly, incorporating the 2-D models for target signature and
clutter. For the present target states, the corresponding entries
in the matrix are computed up to a proportionality constant
using the likelihood function model in Section II-C. For the
absent target state, the conditional density of the observation
reduces to the clutter probability density function. We omit
algorithmic details on the normalization of for the sake
of conciseness.

Remark 2: As reported in the HMM literature (see, e.g.,
[11]), Baum–Welch smoothers may suffer from numerical
instability if is large. To avoid these problems, practical
implementations of our algorithm use additional normalizations
of the matrices and for numerical error control.

Remark 3: Most discrete-valued motion models are based on
a principle of locality that leads to a highly sparse and struc-
tured transition matrix . We take advantage of this structure
to speed up computations and save memory storage space. Fur-
ther details are omitted here for lack of space.

C. HMM Filter

The multiframe detector/tracker of Section III-B is a batch
algorithm that uses forward and backward recursions to com-
pute the joint posterior probability mass function of the hidden
variables at instant conditioned on all past, present, and future
frames in the data volume. In this section, we derive an alterna-
tive online algorithm that is based on the recursive computation
of the joint posterior filtering probability mass function

(46)

conditioned only on present and past data. Note, however, that

(47)

From (47), we conclude that, barring a normalization constant,
the recursion for the computation of coincides with the for-
ward recursion of the HMM smoother, i.e.,

(48)

where is computed such that
is summable to 1. From , we compute the

marginal filtering distribution

(49)

The multiframe detection and tracking steps are now identical
to the detector and estimator in (44) and (45) but replacing
with .

Remark: In practical situations, assuming a priori knowl-
edge of the class of objects to be tracked, the discrete-valued
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TABLE I
ALGORITHM I: GRID-BASED MULTIFRAME, MULTIASPECT

DETECTOR/TRACKER USING BAYESIAN SMOOTHING

target motion HMM may be derived by discretizing in space
the (known) real-valued dynamic model of the target of in-
terest. On the other hand, assuming knowledge of the motion
parameters and assuming that a volume of training data is
available, the unknown HMM target aspect parameters may
be recursively estimated using the expectation–maximization
(EM) [31] algorithm. An efficient implementation of the EM
recursion for HMM training is obtained using the Baum–Welch
re-estimation algorithm [12], [13]. We omit this discussion
here for conciseness.

IV. MIXED-STATE PARTICLE FILTER TRACKERS

The grid-based trackers introduced in Section III outperform
conventional contact/association trackers in scenarios of low
target-to-clutter ratio. However, they suffer from two limita-
tions. First, a discrete-valued target motion model may be not
flexible enough to capture the structure of real-world motion.
Second, grid-based filters are computationally intensive. A less
computationally intensive and more flexible alternative to the
grid-based HMM trackers is to retain a (possibly nonlinear)
continuous-valued target motion model, as described in Sec-
tion II-A, and resort to sampling/importance resampling (SIR)
filters, which are also known as particle filters [15]–[17], [20].
SIR filters are sequential Monte Carlo methods for dynamic
state estimation that have been successfully applied to several
practical problems of interest including mobile robot localiza-
tion [32], computer vision [33], [34], terrain navigation [35],
and many others. In the sequel, we propose a mixed-state SIR
filter for multiaspect target tracking in images. Similar mixed-
state particle filters assuming different dynamic and observation
models have been used in the context of computer vision in [19].
For independent related work, see also [36].

TABLE II
ALGORITHM II: MIXED-STATE SIR FILTER FOR MULTIASPECT TARGET

TRACKING IN CLUTTERED IMAGE SEQUENCES

TABLE III
ALGORITHM III: MIXED-STATE AUXILIARY PARTICLE FILTER FOR

MULTIASPECT TARGET TRACKING IN IMAGE SEQUENCES

A. Mixed-State SIR Tracker

In a simpler tracking-only problem (i.e. assuming presence
of target), we treat the continuous-state kinematic target vector

in (3) (see Section II-A) and the discrete-valued target as-
pect state (see Section II-B) as the hidden variables at frame

. Discarding the initial frame , our goal is to represent the
mixed posterior at step by a properly weighted
set of particles , , with associated
weights such that, as goes to infinity, the weighted
averages of the particles converge to the minimum mean-square
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error (MMSE) estimates of the hidden states under the true pos-
terior distributions, i.e.,

(50)

(51)

For all possible random realizations of the particle filter method,
convergence in (50) and (51) is usually interpreted (see [37]) in
the mean square sense.

Importance Sampling Step: Let now be the
mixed state vector at frame . Using the mixed density version
of Bayes’ law, we can factor as

(52)
From (52), it follows that, using as importance
function, a possible sequential importance sampling method-
ology for recursive generation of the particle set and
their proper weights at frame is as follows.

For to

• Draw .
• Draw .

• Update the weights .
• Normalize the weights such that .

Note that we dropped in (52) the requirement in Section III
of statistical independence between the sequences and

. The probabilities of the different possible aspect changes
between frames and are now dependent on the
target kinematic state at frame . Furthermore, instead
of assuming a fixed motion transition kernel , the
problem setup now includes a collection of different motion
models parameterized by the aspect state pairs

, . For computational sim-
plicity and in order to compare the tracking performance of the
proposed HMM and particle filters, we will assume, however,
in the numerical simulations in this paper that without loss
of generality, statistical independence between target motion
and target aspect holds. Under that hypothesis and assuming
further statistically decoupled centroid motion in dimensions 1
and 2, the sampling procedure is simplified to independently
sampling , , and

.
Resampling Step: A practical problem associated with the

use of sequential importance sampling, as described before, is
that only a small number of samples in the particle set may have
significant importance weights. As time increases, the distribu-
tion of particle weights may get increasingly skewed, resulting
in particle degeneracy. One of the early proposed solutions to
circumvent this problem [20] was to add a particle selection step
that consists of resampling from the original particle set with re-
placement according to the importance weights. The net result
of this selection procedure is to discard low-weight particles,
whereas high-weight particles are multiplied. After resampling,
the importance weights of the new particle set are then made all
equal to .

TABLE IV
AML PARAMETER ESTIMATION ALGORITHM FOR AN L�M GMRF

Fig. 1. IRAR intensity data from the Portage database (source: CIS, Johns
Hopkins University, Baltimore, MD).

Monte Carlo filters that combine a sequential importance
sampling step with a selection step, as described in the previous
paragraph, are referred to in the literature as sampling/im-
portance resampling (SIR) filters. Using the GMRf-based
likelihood function model from Section II-C, we summarize
in Table II the SIR filter for direct, multiaspect target tracking
from image sequences in the special case when statistical inde-
pendence between target motion and target aspect is assumed.
The desired minimum mean-square error (MMSE) estimate
of the unknown kinematic target state is obtained at each
frame as the weighted average of the resampled Monte Carlo
particles, i.e.,

(53)

Alternatively, we could use the MAP estimate obtained from the
histogram of the particles.
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Computational Complexity: From a computational point of
view, the main advantage of a particle filter solution over the
grid-based algorithms described in Section III is that, whereas
the grid-based trackers evaluate the likelihood function in
the entire discretized state space, the particle filter algorithm
requires the evaluation of the likelihood function only for
each sample in the current set of particles. For a fixed number
of particles equal to and using a GMrf-based likelihood
function as in Section II-C, that translates into a computational
cost in terms of required floating-point multiplications of order

, where . By
contrast, the grid-based HMM algorithm as implemented in
this paper has a computational cost, assuming an image
grid, of order , where (see Section II-B) is the
number of target aspect states. If and is large, the
computational savings may be considerable.

B. Auxiliary Particle Filter Tracker

The SIR tracker presented previously samples blindly from
the motion and aspect priors without taking into consideration
the current available frame. That may result in a large number
of particles with negligible weight, particularly if the likelihood
function is highly peaked. A possible alternative to enhance
performance is to use auxiliary particle filtering (APF) [22].
The intuitive idea in APF is to preselect a set of particles at step

, taking advantage of the information conveyed by the
current observation . Assuming decoupled motion in the two
dimensions of the plane and statistical independence between
target motion and target aspect that is formally accomplished
in our problem by introducing a preselection step where we
first draw samples , , and , respectively, from

, , and . We then
compute the first-stage importance weights

(54)

and sample auxiliary indices from the set
with . Finally, we sample the next set of par-

ticles , , and from ,

and . The second-stage importance weights are up-
dated, taking into consideration both the preselection and the
importance sampling steps by making

(55)

In (54) and (55), we use the GMrf-based likelihood function
model from Section II-B [see (16), (19), and (20)] to compute
the importance weights up to a proportionality constant.

Table III summarizes the APF algorithm used by our tracker.
The initialization step is identical to that in Table II and is

Fig. 2. Cluttered target sequence, PTCR = 3:6 dB. (a) First frame. (b) Tenth
frame with random target translation, rotation, scaling, and shearing.

omitted accordingly for conciseness. The final Monte Carlo ap-
proximation of the MMSE estimate of the unknown kinematic
state is given then by

(56)

with the weights normalized to add up to 1. As noted be-
fore, if necessary, statistical dependence between target motion
and target aspect could be incorporated into the importance sam-
pling step in Table III.
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V. CLUTTER ADAPTIVE DETECTION/TRACKING

The algorithms in Sections III and IV assumed perfect knowl-
edge of the parameters of the GMrf background clutter model.
However, in practical scenarios with real clutter data, the clutter
model parameters are either unknown a priori or vary from
frame to frame and must be therefore adaptively learned from
the sensor images. In this section, we discuss clutter parameter
estimation.

A. Clutter Parameter Adaptation

In practical situations, the residual clutter after the removal
of the spatially variant local means in each frame is not per-
fectly modeled by a Gauss–Markov random field. Nevertheless,
the highly parameterized and sparse nature of a GMrfs inverse
covariance matrix [27] still makes this model attractive from a
computational point of view by allowing us to avoid multipli-
cations and inversions of large matrices in the computation of
the likelihood function. In this paper, we propose to fit a GMrf
model as in (14) to the residual clutter data at each frame by
first assuming that the model holds and, then, by estimating the
most likely corresponding clutter model parameters , ,

for each observed frame.
Ideally, the time-varying clutter parameters should be

jointly estimated with the hidden state variables and
in a nonlinear Bayesian framework. For computational sim-
plicity, though, in this paper, we use a suboptimal approach
to clutter adaptation, where the unknown GMrf parameters
corresponding to each available sensor frame are assumed
deterministic and are independently estimated from frame
to frame using a single frame variation of the approximate
maximum likelihood (AML) parameter estimation algorithm
introduced in [26]. The suboptimal estimates , , and

are then plugged into (16), (19), and (20) to evaluate the
likelihood function for all states in the lattice in the
case of the grid-based algorithms from Section III or, for all
particles in the set , , in the case of the
Monte Carlo filters in Section IV.

Assuming that the target is small compared with the back-
ground, we summarize, in Table IV, the AML parameter esti-
mation algorithm given an th observed sensor frame

; see [26] and [28] for further details. We are reminded that,
like elsewhere in this paper, the input frame used in the rou-
tine in Table IV corresponds to the raw observed image after
suitable preprocessing to remove the local means.

VI. PERFORMANCE ANALYSIS

In this section, we investigate the tracking performance of the
algorithms proposed in Sections III and IV. In our performance
studies, we use simulated image sequences that are generated
from real-world infrared laser radar (IRAR) intensity data.
The real IRAR data, which were obtained from the Center for
Imaging Science at Johns Hopkins University, were collected
by an airborne laser imaging sensor [29] flying over the Portage
region. Fig. 1 shows an imaged scene where we see a stretch of

Fig. 3. Clutter-free target templates for Figs. 2(a) and (b) respectively, shown
as binary images.

terrain next to a body of water on the bottom left corner of the
image. Brighter areas indicate stronger laser returns.

In order to simulate a moving target sequence, we extracted
the spatially variant local mean along the image and fitted a
first-order GMrf model to the background by estimating the
model parameters using the AML estimator. The background
clutter movie is then generated by adding to the matrix of pre-
viously stored local means a sequence of synthesized random
GMrf samples that are generated using the estimated back-
ground clutter parameters and the GMrf simulation algorithm
in [25].
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Fig. 4. Position estimate RMSE for the HMM filter (solid) and HMM
smoother (dashed) PTCR = �3:6 dB. (a) Vertical coordinate. (b) Horizontal
coordinate.

Target Simulation: To simulate the target, we took an arti-
ficial template representing a military vehicle and generated a
library of transformations of that model using composite opera-
tions of rotation, scaling, and shearing. We then added the arti-
ficial target to the background sequence with the target centroid
position changing from frame to frame according to a linear
white noise acceleration model [4]. The white noise accelera-
tion motion model is a particular case of the model in (5) (see
Section II-A), where we make

(57)

with

(58)

and

(59)

for , , and with
, . For the target simulations in this paper, we set

and in (58) and (59). Note that the par-
ticular choice of a linear motion model in (57) does not turn
the target tracking problem into a linear/Gaussian stochastic fil-
tering problem since the nonlinearity in the observation model
(7) will still cause the posterior pdf of the hidden target state
to be non-Gaussian. The model choice in (57) does not imply,
therefore, any loss of generality.

In order to simulate the target’s aspect dynamics, we initial-
ized the target template state with a random, unknown se-
lection from the template library and then changed the aspect
over time according to a first-order Markov chain. At any given
frame, the true aspect of the target is unknown to the trackers.
The target pixel intensity is, on the other hand, time-invariant
and known and was set according to a desired low level of
contrast between the template and the background. Figs. 2(a)
and (b) show two simulated frames, respectively, at instants

and , with peak target-to-clutter ratio (PTCR)
equal to 3.6 dB. The corresponding clutter-free target templates
are shown as binary images in Figs. 3(a) and (b), respectively.

Performance of the Grid-Based Detector/Trackers: We ex-
amine first the performance of the grid-based algorithms in
Section III. The simulated target starts from an unknown ini-
tial position that is assumed to be uniformly distributed over
the entire image grid. The target is subsequently detected and
tracked over 14 frames using 1) the on-line HMM filter and
2) the batch HMM smoother. A total of five different template
models were used for each block of 14 simulated frames. The
peak target-to-clutter ratio (PTCR) was lowered to 3.6 dB
in the simulated image sequence, and the initial target ve-
locity was set at 10 m/s in each dimension. At each frame,
the HMM algorithms first make a hard detection decision on
the presence or absence of a target and then, if a target is
declared present, estimate the spatial location of the target’s
centroid. In the implementation of the grid-based trackers, we
approximate the true continuous-valued motion model in (57)
by a discrete-valued state model consisting of a deterministic
drift of 2 pixels/frame in each dimension superimposed to a
2-D random walk model with probability of fluctuation of
one pixel in either dimension equal to 15%. The background
clutter parameters are adaptively estimated using the AML
algorithm.

The zoomed-in plots in Figs. 4(a) and (b) show the root mean-
square error (RMSE) in number of pixels of the estimates of
the centroid position, respectively, in the vertical and horizontal
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Fig. 5. RMSE for the HMM filter and Kalman PTCR = �3:6 dB.
(a) Horizontal coordinate. (b) Vertical coordinate.

dimensions in Fig. 2. The curves in Figs. 4(a) and (b) were
obtained from 130 Monte Carlo runs (i.e, 1820 simulated image
frames). We note from the plots in Fig. 4 that the online HMM
filter has an initial error, probably due to its poor initialization
with a uniform (noninformative) prior. However, as additional
data frames are processed, the algorithm quickly acquires the
target and eventually reaches a low steady-state localization
error. In turn, the batch HMM smoother takes advantage of both
past and future information in the data volume to attenuate the
large initial errors of the HMM filter, thus achieving near-perfect
tracking for this particular level of peak target-to-clutter ratio.

Note also that both the HMM filter and the HMM smoother
had no misses (i.e., present targets that are incorrectly declared
absent) over all 1820 simulated frames.

For comparison purposes, using the same level of PTCR
( 3.6 dB), we plot in Figs. 5(a) and (b) the RMSE of the
horizontal and vertical coordinate estimates obtained by the
online HMM filter and by the suboptimal association of a
bank of correlation filters (each one matched to one possible
target template) and a linear Kalman–Bucy filter (KBf) used
for sequential tracking. The plots in Fig. 5 show that the
correlator/KBf association performs poorly in low levels of
PTCR, exhibiting a very long target acquisition time in contrast
with the quick acquisition and low steady-state localization for
the nonlinear HMM filter.

Particle Filter Tracking Performance—Multiaspect
Target: We examine next the performance of the multiaspect,
mixed-state SIR, and APF trackers introduced in Section IV.
The target simulation parameters are identical to those used for
the grid-based trackers, except that instead of assuming that
initial target position is uniformly distributed over the entire
image grid, we assume that the vertical initial target centroid
position is uniformly distributed between pixels 20 and 60
within the image resolution. Similarly, we assume that the hor-
izontal initial target centroid position is uniformly distributed
between pixels 20 and 40. We use 5000 particles and track the
object of interest over 13 consecutive frames. For a 150 150
image and assuming five target template states and a maximum
template size equal to 20 20, the particle filter trackers
with 5000 particles have a computational cost in
number of floating-point multiplications per frame compared
with an approximate cost of order for the raw
implementation of the HMM trackers.

Figs. 6(a) and (b) show the position estimate RMSE mea-
sured in number of pixels for the SIR tracker (solid line) and
for the APF tracker (dashed line), respectively, in the vertical
and horizontal dimension. Setting (very noisy trajectory)
and PTCR dB (invisible target), the SIR tracker di-
verged (i.e, failed to acquire the correct track within 13 frames)
in eight out of 135 Monte Carlo runs. The APF tracker, on the
other hand, diverged in seven out of 144 Monte Carlo runs. The
error curves in Figs. 6(a) and (b) were computed excluding the
diverging tracks from the average.

We see from the plots in Fig. 6 that the particle filters also
have a relatively high initial position estimation error, but
roughly 95% of the time, they quickly acquire the target after
a few frames and converge to a low RMS steady-state error.
When the target is acquired, the APF tracker has a slightly
better performance than the SIR algorithm, as reflected in
a smoother error curve in Figs. 6(a) and (b). However, it
was impossible in this simulation to detect any statistically
meaningful improvement in terms of number of lost tracks
when we compare the APF algorithm to the SIR tracker. We are
currently investigating possible enhancements to the particle
filter trackers to reduce the percentage of lost tracks without
increasing the number of particles. A possible alternative is to
introduce an additional Monte Carlo Markov chain (MCMC)
move step to steer the particles back to the “correct” region of
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Fig. 6. Position estimate RMSE for the SIR filter (solid) and the auxiliary
particle filter (dashed) PTCR = �3:6 dB. (a) Vertical coordinate.
(b) Horizontal coordinate.

the state space once a track has been lost; see, e.g., [38] or, for
an unrelated application, [39].

VII. CONCLUSIONS

In this paper, we discussed different Bayesian algorithms
for direct target tracking in image sequences in a situation
of random target aspect and unknown clutter parameters. We
modeled the changes in target aspect from frame to frame using
a discrete-valued hidden Markov chain defined on the space

of possible target templates. The target’s translational motion
was modeled either as a separate 2-D discrete-valued Markov
chain defined on the image grid or as a continuous-valued
(possibly nonlinear) first-order Markov dynamic model. The
spatial correlation of the clutter background at each frame was
represented by a 2-D noncausal GMrf model.

For the discrete-valued target motion model, we integrated
detection and tracking by augmenting the 2-D motion HMM
with an additional dummy state that represents the absence
of a target at the current frame. We introduced a multiframe
Bayesian smoother that, given a sequence of observed (clut-
tered) frames , decides at each frame ,

whether a target is present or absent and, if the
target is declared present, jointly estimates its position and
aspect. We also introduced an alternative online multiframe
HMM filter that detects the presence of a target at frame and
estimates its position and aspect based only on the current and
past observed frames.

The integrated detection/tracking framework for grid-based
algorithms allows us to propagate the multiframe posterior
probability of absence or presence of target together with
the multiframe posteriors for the different target position and
aspect states. That methodology has obvious advantages in
heavily cluttered image sequences where a target of interest
shows poor visibility in any given individual frame but may
become more visible when seen moving across several different
frames. In fact, performance studies with simulated image
sequences generated from real IRAR data show that in a sce-
nario of low target-to-clutter ratio and unknown, time-variant
target aspect, the HMM detector/trackers had no misses (i.e.
no present targets incorrectly declared absent) over 1820
simulated image frames. The HMM smoother and filter also
greatly outperformed the association of a bank of multiaspect
image correlators and a Kalman filter tracker in terms of target
acquisition time.

Despite their good performance, the use of the proposed
HMM trackers is limited, however, by their computational
complexity, particularly if the size of the image and the number
of possible target models increase. To circumvent this problem,
we proposed alternative mixed-state particle filter trackers that
assume a continuous-valued motion state and a discrete-valued
aspect state. Two versions of the particle filter tracker were
introduced: a sampling/importance resampling (SIR) filter and
an alternative auxiliary particle filter algorithm. In both algo-
rithms, we track the target directly from the image sequence
incorporating the target signature and clutter spatial correlation
models into the likelihood function.

The particle filter algorithms are flexible enough to account
for nonlinear target motion dynamics and statistical dependence
between target motion and target aspect. Moreover, using a lim-
ited number of particles, the particle filter trackers have a reduc-
tion of over one order of magnitude in computational cost when
compared with the grid-based HMM filter. The drawback asso-
ciated with a particle filter tracker is, however that, for a small
number of particles, the algorithm may fail to converge to the
true state track. Nevertheless, we observed in our simulations
that despite heavily cluttered observations, both the SIR and the
APF trackers quickly converged to the true track roughly 95%
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of the time. The APF tracker seems to have slightly superior per-
formance to the SIR solution, as reflected in an improved RMSE
curve. Excluding those rare occasions when the true track was
lost, the steady-state RMS localization error for both the SIR and
APF trackers was roughly comparable with that of the HMM
filter after the same number of image frames were processed.
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