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ABSTRACT

This paper considers robust transmit beamforming for multiuser

multi-input single-output (MISO) downlink transmission, where im-

perfect channel state information (CSI) is assumed at the base station

(BS). The imperfect CSI is captured by a moment-based random er-

ror model, in which the BS knows only the mean and covariance of

each CSI error, but not the exact distribution. Under this error model,

we formulate a distributionally robust beamforming (DRB) problem,

in which the total transmit power at the BS is to be minimized, while

each user’s SINR outage probability, evaluated w.r.t. any distribution

with the given mean and covariance, is kept below a given threshold.

The DRB problem is a semi-infinite chance-constrained problem.

By employing recent results in distributionally robust optimization,

we show that the DRB problem admits an explicit conic reformula-

tion, which can be conveniently turned into a convex optimization

problem after semidefinite relaxation (SDR). We also consider the

case where the mean and covariance are not perfectly known. We

show that the resulting DRB problem still admits a conic reformula-

tion and can be approximately solved using SDR. The robustness of

the proposed designs are demonstrated by numerical simulations.

Index Terms— robust transmit beamforming, distributionally

robust optimization, semidefinite relaxation

1. INTRODUCTION

Owing to its simplicity and capability of leveraging system perfor-

mance, transmit beamforming, a spatial diversity technique, has been

widely employed in wireless communications recently. In this pa-

per, we consider multiuser multi-input single-output (MISO) down-

link transmission using transmit beamforming. Under this setting,

a classical beamformer design formulation is to minimize the total

transmit power at the base station (BS) while providing certain qual-

ity of service (QoS), e.g., the signal-to-interference-plus-noise ratio

(SINR), for each user. In the last decade, different approaches have

been proposed to tackle this problem, such as the uplink-downlink

duality approach [1,2], the semidefinite relaxation (SDR) approach [3,

4] and the second-order cone (SOCP) approach [5]. It should be

noted, however, that all these approaches assume perfect channel

state information (CSI) at the BS, which in practice may not be

possible because of channel estimation and/or quantization errors.

In view of this, there has been growing interest in beamformer de-

signs that are robust to CSI errors. Currently, there are two main

approaches to designing such beamformers. The first assumes that
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the errors are adversarially chosen from some (bounded) set, which

results in worst-case robust beamformer designs [6–9]. In this ap-

proach, one does not utilize any distributional properties of the er-

rors. The second assumes that the errors follow a certain fully-

specified distribution, whose properties are then exploited to yield

outage-constrained robust beamformer designs [10–14]. In practice,

however, neither of these approaches is satisfactory, as we typically

are able to obtain some, but not complete, information about the er-

ror distribution through channel estimates. This raises the natural

question of whether an alternative, tractable model for robust beam-

former design can be devised to better account for the available dis-

tributional information of the CSI error.

In this paper, we depart from the aforementioned error mod-

els and consider another moment-based random CSI error model,

in which the BS has no a priori knowledge of the error distribution

except for its first and second-order statistics. Such a model is moti-

vated by the observation that it is relatively easy for a BS to have ac-

curate estimates of the error mean and covariance from accumulated

channel estimates. Under this moment-based error model, we for-

mulate a new distributionally robust beamforming (DRB) problem,

in which the beamformers are designed to minimize the total trans-

mit power at the BS, while the SINR outage probability of each user,

evaluated w.r.t. any distribution with the given mean and covariance,

is kept below a given threshold. The DRB problem is a semi-infinite

chance-constrained optimization problem, which is generally hard to

solve. Nevertheless, by employing recent results in distributionally

robust optimization [15–17], we show that the seemingly challeng-

ing DRB problem actually admits an explicit conic reformulation,

which can then be conveniently approximated using the SDR tech-

nique [18]. We also consider the DRB problem for the case where

the mean and covariance are not perfectly known. We show that the

resulting DRB problem still admits a conic reformulation and can be

approximately solved using SDR.

Before we present our setup and results, let us mention some

related works. The MISO downlink transmit beamforming problem

has been extensively studied in the past; see, e.g., [12] and the refer-

ences therein. Some representative works include [2–5] for the case

of perfect CSI at the BS, and [6–13] for the case of imperfect CSI.

The robust beamformer design problem can also be tackled using

the sample average approximation approach developed in the recent

work [19]. Such an approach uses channel estimates to approximate

the outage probability and hence does not require any knowledge of

the error distribution. However, the size of the resulting optimization

problem can be huge, which limits the practicality of the approach.
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2. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a multiuser downlink transmission, where a base station

(BS) simultaneously sends K data streams to K users with each

data stream exclusively for one user. The BS is equipped with N an-

tennas and all the receivers have a single antenna, i.e., MISO down-

link. Assuming that transmit beamforming is employed at the BS,

the transmit signal x(t) ∈ C
N at time t may be expressed as

x(t) =
PK

i=1 wisi(t), (1)

where si(t) is the data stream for user i with unit power; i.e, E[si(t)] =
1,∀ i, and wi ∈ C

N is the beamforming vector for the ith data

stream. Assuming frequency-flat and slow fading channels, the re-

ceived signal yi(t) at the ith user is given by

yi(t) = h
H
i x(t) + ni(t), i ∈ K, (2)

where K , {1, . . . , K}, hi ∈ C
N is the channel vector from the

BS to the ith user, and ni(t) ∼ CN (0, σ2
i ) is the additive white

Gaussian noise with mean zero and variance σ2
i . According to (1)

and (2), the received SINR at the ith user may be calculated as

SINRi ,
|hH

i wi|2
P

j 6=i |hH
i wj |2 + σ2

i

, ∀ i ∈ K. (3)

Due to imperfect channel estimation and/or feedback errors, the

BS usually has only some rough knowledge of hi. To describe the

imperfect CSI at the BS, we consider the following random CSI error

model:
hi = h̄i + ∆hi, i ∈ K, (4)

where h̄i is the presumed CSI at the BS, and ∆hi is the associ-

ated CSI error, which is randomly distributed with mean ξi ∈ C
N

and covariance Σi ∈ H
N
++. Different from [10–13], herein we do

not impose any particular distribution (such as Gaussian or uniform

distribution) on ∆hi. Instead, we allow ∆hi to be arbitrarily dis-

tributed as long as its distribution, denoted by ∆Fi, has mean ξi and

covariance Σi; i.e.,

∆hi ∼ ∆Fi ∈ D(ξi,Σi), (5)

where D(ξi,Σi) denotes the set of distributions with mean ξi and

covariance Σi. We assume for now that ξi and Σi are known, and

the case of imperfect ξi and Σi will be considered in Sec. 4. The

error model (5) is motivated by the fact that it is more convenient

and easier for the BS to have the statistics rather than the accurate

distribution of the CSI error from the accumulated CSI estimates.

Under the above system model, we consider the following dis-

tributionally robust beamforming (DRB) problem:

min
w1,...,wK∈CN

PK
i=1 ‖wi‖2 (6a)

s.t. min
∆Fi∈D(ξi,Σi)

P∆hi∼∆Fi
{SINRi ≥ γi} ≥ 1 − ǫi, ∀ i, (6b)

where γi > 0,∀ i ∈ K is a given SINR threshold required by user

i, and 0 < ǫi < 1 specifies the SINR outage probability; i.e., the

chance of the ith receiver’s SINR falling below γi in the presence

of CSI error. Clearly, the DRB problem (6) is a chance-constrained

problem, which is generally difficult to solve. In particular, the dif-

ficulty of (6) mainly arises from the following two aspects: First,

the outage probability P∆hi∼∆Fi
{SINRi ≥ γi} generally has no

closed form. Even if it has, the resulting constraint is likely to

be non-convex. Secondly, the set D(ξi,Σi) typically contains in-

finitely many distributions, which gives rise to an infinite number of

chance constraints in (6b). Therefore, the DRB problem (6) per se is

a semi-infinite chance-constrained optimization problem.

Nevertheless, in the next section, we will develop a tractable ap-

proach to problem (6) by employing recent results in distributionally

robust optimization [15–17] and the SDR technique [18]. The for-

mer gives an explicit conic reformulation of (6b), while the latter

provides us with a tractable approach to obtaining an (approximate)

solution to (6).

3. A TRACTABLE APPROACH TO THE DRB PROBLEM

For ease of exposition, let us denote Wi = wiw
H
i ,∀ i ∈ K. Clearly,

it follows from (4) and (5) that hi ∼ Fi ∈ D(h̄i + ξi,Σi). Hence,

the constraint (6b) can be expressed as

min
Fi∈D(h̄i+ξi,Σi)

Phi∼Fi
{Li(hi, {Wl}l∈K) ≤ 0} ≥ 1−ǫi,∀ i, (7)

where Li(hi, {Wl}l∈K) = hH
i (

P

k 6=i Wk − γ−1
i Wi)hi + σ2

i .

Next, we show that the semi-infinite chance constraint (7) admits

an explicit conic reformulation. Specifically, we have

Theorem 1. The constraint (7) is equivalent to

0 ≥ min
βi∈R,Mi∈HN+1

βi + ǫi
−1Tr(ΩiMi) (8a)

s.t. Mi �
»

P

k 6=i Wk − γ−1
i Wi 0

0
T σ2

i − βi

–

, (8b)

Mi � 0, (8c)

for all i ∈ K, where Ωi =

»

Σi + (h̄i + ξi)(h̄i + ξi)
H h̄i + ξi

(h̄i + ξi)
H 1

–

.

Proof. See the Appendix. �

Invoking Theorem 1, we can express the DRB problem (6) as

min
{Wl,wl}l∈K

PK
i=1 Tr(Wi) (9a)

s.t. min
(βi,Mi)∈Zi

βi + ǫi
−1Tr(ΩiMi) ≤ 0, ∀ i ∈ K, (9b)

Wi = wiw
H
i , ∀ i ∈ K, (9c)

where Zi , {βi ∈ R, Mi ∈ H
N+1 : (8b) and (8c) hold}. It

is easy to see that (9b) holds if and only if there exists a feasible

point (βi, Mi) ∈ Zi such that βi + ǫi
−1Tr(ΩiMi) ≤ 0. Thus,

problem (9) can be rewritten as

min
{Wl,wl,βl,Ml}l∈K

PK
i=1 Tr(Wi)

s.t. βi + ǫi
−1Tr(ΩiMi) ≤ 0, ∀ i ∈ K,

(8b) − (8c) and (9c), ∀ i ∈ K.

(10)

Thus far, we have derived an equivalent reformulation of (6).

However, problem (10) is still non-convex due to the non-convex

constraint (9c). To circumvent this difficulty, we resort to the SDR

approach. Specifically, we replace Wi = wiw
H
i with Wi � 0 and

drop the non-convex rank-one constraint on Wi to get the following

convex relaxation of (10):

min
{Wl,βl,Ml}l∈K

PK
i=1 Tr(Wi)

s.t. βi + ǫi
−1Tr(ΩiMi) ≤ 0, ∀ i ∈ K,

Mi �
»

P

k 6=i Wk − γ−1
i Wi 0

0
T σ2

i − βi

–

, ∀i ∈ K,

Mi � 0, Wi � 0, ∀i ∈ K.

(11)
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Problem (11) is a semidefinite program, which can be efficiently

solved with off-the-shelf optimization softwares, such as CVX [20]

and SeDuMi [21]. Let {W ⋆
i }i∈K be an optimal solution to (11). If

rank(W ⋆
i ) ≤ 1, ∀ i ∈ K, then an optimal solution {w⋆

i }i∈K for

the DRB problem (6) can be obtained through eigen-decomposition.

Otherwise, we can perform Gaussian randomization to generate an

approximate solution to (6). Readers are referred to [18] for more de-

tails on Gaussian randomization. Curiously, our simulation results in

Sec. 5 reveal that the optimal W ⋆
i , ∀ i ∈ K of (11) returned by CVX

is always rank-one. Similar observations have also been mentioned

in [9, 12] when SDR is applied to handle other robust beamforming

designs.

4. DRB UNDER IMPERFECT MEAN AND COVARIANCE

In the last section, we have developed an SDR approach to the DRB

problem (6) when the mean ξi and covariance Σi of ∆hi are per-

fectly known at the BS. In practice, however, both ξi and Σi may

subject to some uncertainty. To accommodate this, we generalize the

previous CSI error model (5) by incorporating the uncertainty on ξi

and Σi as follows [16, 17]:

∆hi ∼ ∆Fi ∈ D(ξ̄i, Σ̄i, τi,1, τi,2), ∀ i ∈ K. (12)

Here, ξ̄i ∈ C
N and Σ̄i ∈ H

N
++ are the estimated mean and covari-

ance of ∆hi; τi,1 ≥ 0 and τi,2 ≥ 1, where i ∈ K, are given con-

stants; D(ξ̄i, Σ̄i, τi,1, τi,2) denotes the set of distributions of ∆hi

such that
(

(E[∆hi] − ξ̄i)
H
Σ̄

−1
i (E[∆hi] − ξ̄i) ≤ τi,1, (13a)

E[(∆hi − ξ̄i)(∆hi − ξ̄i)
H ] � τi,2Σ̄i. (13b)

Roughly speaking, (13a) means that ξi lies in an ellipsoid of size

τi,1 centered at the estimate ξ̄i, and (13b) requires that the centered

second-moment matrix E[(∆hi − ξ̄i)(∆hi − ξ̄i)
H ] should have a

similar structure as Σ̄i [16].

With the above uncertainty model, we formulate the following

distributionally robust beamforming problem with moment uncer-

tainty (DRB-MU):

min
w1,...,wK∈CN

PK
i=1 ‖wi‖2 (14a)

s.t. min

∆Fi∈D

“

ξ̄i,Σ̄i,
τi,1,τi,2

”

P∆hi∼∆Fi
{SINRi ≥ γi} ≥ 1 − ǫi, ∀ i.

(14b)

The DRB-MU problem appears to be more challenging than the

DRB problem (6). Nevertheless, the next theorem shows that the

chance constraint (14b) also admits an explicit conic reformulation.

Theorem 2. The constraint (14b) is equivalent to

0 ≥ min
ri,ti,Qi,qi,νi

ri + ti + νi − νiǫi (15a)

s.t.

»

Qi qi/2
qH

i /2 ri + νi

–

� 0, νi ≥ 0, Qi � 0, (15b)

»

Qi qi/2
qH

i /2 ri

–

�
»P

k 6=i Wk − Wi/γi 0

0 σ2
i

–

, (15c)

√
τi,1‖Σ̄1/2

i (qi + 2Qiµ̄i)‖ + Re(µ̄H
i qi)

+Tr
“

Qi

`

τi,2Σ̄i + µ̄iµ̄
H
i

´

”

≤ ti,
(15d)

for all i ∈ K, where µ̄i , h̄i + ξ̄i, ∀ i ∈ K.

The proof of Theorem 2 is omitted due to page limit. A key step

in proving Theorem 2 is to apply Lemma 1 in [16]. Now, we replace

(14b) with (15) and again apply SDR to obtain the following convex

relaxation of (14):

min
n

Wi,ri,ti,
Qi,qi,νi

o

i∈K

PK
i=1 Tr(Wi) (16a)

s.t. ri + ti + νi − νiǫi ≤ 0, ∀ i ∈ K, (16b)

(15b) − (15d) satisfied, Wi � 0, ∀ i ∈ K, (16c)

Remark. In (13), one still needs to determine an appropriate pair of

(τi,1, τi,2) such that the true distribution is included in the uncer-

tainty set (12). In practice, the determination of (τi,1, τi,2) can be

done using a data-driven approach, which gives a way to determine

(τi,1, τi,2) and the resulting confidence level that the uncertainty set

(12) contains the true distribution; see [16, 17]. More details on this

data-driven approach will be discussed in the full paper.

5. SIMULATION RESULTS AND CONCLUSIONS

In this section, we demonstrate the efficacy of the proposed robust

designs using Monte-Carlo simulations. The simulation settings are

as follows: The number of antennas at the BS is N = 5. There

are K = 3 users and the noise at each user has unit variance, i.e.,

σ2
1 = · · · = σ2

K = 1. For simplicity, we set ξi = 0, Σi = 0.002I ,

γi = γ, ǫi = ǫ, τi,1 = 0.5 and τi,2 = 1.5 for all i ∈ K. All the

results were averaged over 100 feasible channel realizations.

In the first example, we consider the DRB problem (6) and com-

pare our proposed robust design (cf. (11)) with the Bernstein-type

inequality design in [12]. The Bernstein-type design deals with a

different SINR outage-constrained beamforming problem, where the

channel error distribution is assumed to be complex Gaussian; i.e.,

by replacing D(ξi,Σi) with the singleton {CN (ξi, Σi)} in (6b).

Fig. 1 plots the average transmit power against the SINR threshold

γ for ǫ = 0.1 and 0.2. From the figure, we see that the Bernstein-

type design yields lower power consumptions than the DRB design.

This is expected because after replacing D(ξi,Σi) with the single-

ton {CN (ξi,Σi)} in (6b), the Bernstein-type design actually deals

with a relaxed problem of (6). However, such a replacement or relax-

ation could also make the resulting Bernstein-type solution violate

the distributionally robust constraint (6b); i.e., the worst-case out-

age probability associated with the Bernstein-type solution1 could be

larger than the threshold ǫ. To verify this, Table 1 shows the worst-

case outage probability of the two methods for a target ǫ = 0.1.

Clearly, the Bernstein-type design cannot satisfy the worst-case out-

age probability requirement, while the proposed DRB design can.

Moreover, the results in Fig. 1 and Table 1 reveal that the distribution

achieving the minimum in (6b) should not be a complex Gaussian.

In addition, from our extensive numerical tests, we found that the

optimal solution to (11) returned by CVX is always rank-one, which

implies that solving the SDR (11) automatically gives us the optimal

beamformer of (6) for the tested scenarios.

The second example considers the DRB-MU problem (14). We

compare the proposed DRB-MU design (cf. (16)) with DRB de-

sign (11). Notice that the result of DRB is obtained by solving (11)

with the estimated h̄i and Σ̄i without considering the uncertainties

associated with the mean and covariance. Fig. 2 and Table 2 show

1The worst-case SINR outage probability for Bernstein-type design is ob-
tained by fixing {Wi}i∈K in (11) at the Bernstein-type design solution and
searching for the minimum ǫ such that problem (11) is feasible. The latter
can be done by performing bisection on ǫ.
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Table 1: Achieved average SINR outage probability of DRB and

Bernstein with target ǫ = 0.10

Algorithm
SINR threshold γ (dB)

3 5 7 9 11 13

DRB 0.10 0.10 0.10 0.10 0.10 0.10

Bernstein 0.30 0.31 0.31 0.31 0.31 0.31

respectively the average transmit power and the achieved worst-case

SINR outage probability of the two designs, when we increase the

SINR requirement γ. Similar to Fig. 1 and Table 1, we see that

while DRB consumes less transmit power than DRB-MU, DRB can-

not fulfill the worst-case SINR-outage-probability requirement. By

contrast, DRB-MU can always meet the outage probability require-

ment. In addition, we also found that the optimal solution obtained

from the SDR (16) is always rank-one. Hence, the result of DRB-

MU in Fig. 2 actually is already optimal for problem (14).

To conclude, we have considered two types of distributionally

robust transmit beamforming problems and developed tractable ap-

proximate solutions for both of them by employing robust optimiza-

tion methodology and SDR technique. Curiously, our extensive nu-

merical results reveal that the proposed SDRs for the considered two

robust designs are always tight. As a future work, it would be inter-

esting to analyze why SDR performs so well in this context.
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Figure 1: SINR threshold γ vs. the average transmit power under

perfect mean and covariance.
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Figure 2: SINR threshold γ vs. the average transmit power under

imperfect mean and covariance.

6. APPENDIX

The proof of Theorem 1 follows from [15]. To start, we need the

following two lemmas:

Lemma 1 ( [15, Theorem 2.2] ). Let f : C
N → R be a continu-

ous function. Suppose that f(η) is either concave or (possibly non-

Table 2: Achieved average SINR outage probability of DRB-MU

and DRB with target ǫ = 0.10

Algorithm
SINR threshold γ (dB)

3 5 7 9 11 13

DRB-MU 0.10 0.10 0.10 0.10 0.10 0.10

DRB 0.16 0.16 0.16 0.16 0.16 0.15

concave) quadratic in η. Then the following equivalence holds

sup
F∈D(µ,Σ)

CVaRǫ(f(η)) ≤ 0

⇐⇒ inf
F∈D(µ,Σ)

Pη∼F {f(η) ≤ 0} ≥ 1 − ǫ,
(17)

where 0 < ǫ < 1 and CVaRǫ(f(η)) is the Conditional Value-at-

Risk functional given by

CVaRǫ(f(η)) = inf
β∈R

˘

β + ǫ−1
EF [(f(η) − β)+]

¯

. (18)

Lemma 2 ( [15, Lemma A.1] ). Let f : C
N → R be a measurable

function, and define the worst-case expectation θwc as

θwc = sup
F∈D(µ,Σ)

EF [(f(η))+].

Then,

θwc = inf
M∈HN+1,M�0

Tr(ΩM )

s.t. [ηH 1]M [ηH , 1]H ≥ f(η), ∀ η ∈ C
N ,

where Ω =

»

Σ + µµH µ

µH 1

–

.

Equipped with the above two lemmas, we are now ready to

present the proof. Specifically, by noticing that Li(hi, {Wl}l∈K)
is quadratic in hi [cf. (7)], we invoke Lemma 1 to get

(7) ⇐⇒ sup
Fi∈D(h̄i+ξi,Σi)

CVaRǫi
(Li(hi, {Wl}l∈K)) ≤ 0, ∀ i ∈ K.

(19)

According to the definition of CVaRǫ(·) in (18), we have

sup
Fi∈D(h̄i+ξi,Σi)

CVaRǫi
(Li(hi, {Wl}l∈K))

= sup
Fi∈D(h̄i+ξi,Σi)

inf
βi∈R

n

βi +
1

ǫi
EFi

[(Li(hi, {Wl}l∈K) − βi)
+]

o

= inf
βi∈R

n

βi +
1

ǫi
sup

Fi∈D(h̄i+ξi,Σi)

EFi
[(Li(hi, {Wl}l∈K) − βi)

+]
o

.

(20)

In the last equality of (20), we have interchanged the maximization

and minimization operations, which can be justified by a stochastic

saddle point theorem due to Shapiro and Kleywegt [22] (see also

[15]). It then follows from Lemma 2 that the supremum in (20) is

equal to

inf
Mi∈HN+1,Mi�0

Tr(ΩiMi) (21a)

s.t. [hH
i 1]Mi[h

H
i , 1]H ≥ Li(hi, {Wl}l∈K), ∀ hi ∈ C

N , (21b)

where Ωi is defined in (8). Since Li(hi, {Wl}l∈K) is quadratic in

hi, it is not hard to see that (21b) holds if and only if

Mi �
»P

k 6=i Wk − γ−1
i Wi 0

0
T σ2

i − βi

–

. (22)

Finally, by replacing (21b) with (22) and making using of (19) and

(20), we arrive at the desired the result in (8).
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