
Towards Building a Masquerade Detection
Method Based on User File System Navigation

Benito Camiña, Raúl Monroy, Luis A. Trejo, and Erika Sánchez

Computer Science Department
Tecnológico de Monterrey — Campus Estado de México

Carretera al Lago de Guadalupe Km. 3-5, Atizapán, Estado de México, 52926, México
{a00965049,raulm,ltrejo,snora}@itesm.mx

Abstract. Given that information is an extremely valuable asset, it is
vital to timely detect whether one’s computer (session) is being illegally
seized by a masquerader. Masquerade detection has been actively studied
for more than a decade, especially after the seminal work of Schonlau’s
group, who suggested that, to profile a user, one should model the history
of the commands she would enter into a UNIX session. Schonlau’s group
have yielded a masquerade dataset, which has been the standard for
comparing masquerade detection methods. However, the performance of
these methods is not conclusive, and, as a result, research on masquerade
detection has resorted to other sources of information for profiling user
behaviour. In this paper, we show how to build an accurate user profile
by looking into how the user structures her own file system and how she
navigates such structure. While preliminary, our results are encouraging
and suggest a number of ways in which new methods can be constructed.

1 Introduction

For today’s world, where information is reckoned to be an extremely valuable
asset, it is vital to timely detect whether one’s computer (session) is being ille-
gally seized by some intruder, so-called a masquerader. A masquerader aims to
put a computer holder into jeopardy, as quickly as possible, while impersonating
the holder to avoid being caught.

Masquerade detection has been actively studied since the seminal work of
Schonlau et al. [1], who suggested that, in order to profile a user, it should
suffice to model the history of the (parameterless) commands she would type
while logged in into a UNIX session. For that purpose, Schonlau et al. developed
a masquerade dataset, commonly referred to as SEA [2], which has been a de
facto standard for building, validating and comparing a number of masquerade
detection methods (see, for example, [3–6]).

The performance of SEA-based methods, however, cannot be said to be over-
whelming. Accordingly, in later experiments, SEA has been enriched to consider
additional information; in particular, command arguments (see, for instance, [7]).
Also as a result, research on masquerade detection has turned to using alternative
sources of activity in an attempt to better characterise user behavior. Example

alternative information sources include device usage (e.g. the mouse [8], or the
well-studied keyboard [9]), and application usage (e.g. the use of a document
management system [10]). In a similar vein, user activity has been clustered
into activity types, such as information gathering, browsing, communications,
etc. [19]. These activity types, 22 in total, aim at capturing user intention, and
they have been characterized in terms of executions of Windows applications,
dynamic link libraries, and Microsoft Disk Operating System commands.

In this paper, we claim that to better characterise user behaviour, it is nec-
essary to consider how and what the user browses while working on her own file
system. After all, a user file system is an abstract representation of some user,
at least as far as the operating system is concerned. Crucial to our approach is
a structure, we call a user navigation structure, representing the navigation of a
user through her file system. A navigation structure contains information of a
user file system. In particular, it contains the most recently visited file system
objects; it also contains information about both how a user structures her own
file system, and how she uses and browses such directory.

We will show that the aim of using a user navigation structure is twofold.
First, a navigation structure allows to better understand the behaviour of a given
user. Second, and more importantly, it allows to build a user profile suitable for
masquerade detection. While we reckon that a combination of various kinds of
user activities will be necessary, at the end of the day, for practical masquerade
detection, our results show that file system navigation is central to achieve an
accurate user profile.

While preliminary, our results are very promising. We shall see that even
Näıve Bayes, when applied as an intrusion detection mechanism on the file sys-
tem objects visited by a user, surpasses the performance of similar methods, that
have been designed to consider alternate sources of information. We shall argue
that the information gathered in navigation structures can make this classifier
take more informed intrusion detection decisions.

Overview of Paper The remainder of this paper is organised as follows. First, §2,
we shall show the limitations of UNIX-commands based masquerade detection
methods. In particular, we shall argue that, on the one hand, they perform rather
poorly, even when they are not subject to proper masquerader action; and that,
on the other hand, they are difficult to implement, because the activity informa-
tion chosen to profile a user is, per se, sparse. Second, §3, we will (operationally)
introduce user navigation structures and the operations they take. Third, §4, we
shall briefly outline the datasets we have collected throughout our experiments,
both (honest) user and masquerader, and shall provide preliminary results on
understanding and profiling user behaviour for masquerader detection, using the
frequency of access to file system objects. Then, in §5, we shall discuss direc-
tions for further research, which aims to truly exploit the information contained
in navigation structure. Finally, in §6, we will report on the conclusions we have
drawn from our experiments.

2 Masquerade Detection

Masquerade detection is concerned with timely noticing that an intruder is im-
personating a legitimate user in a computer session. [1]. It is usually undertaken
as an anomaly detection task, where the masquerade detection mechanism aims
at distinguishing any diversion in the current user activity from a given profile of
ordinary user behaviour. Masquerade detection has been actively studied since
the seminal work of Schonlau et al. [1], who have developed a database, called
SEA [2], which is the de facto standard for building, validating and comparing
masquerade detection mechanisms.

2.1 The SEA Dataset

SEA contains log information about the activity of 70 UNIX users. Each user log
consists of 15,000 commands, that were gathered via the aact auditing mecha-
nism, stripping off the arguments. 50 users were randomly selected to serve as
honest holders, while the remaining ones were (artificially) set to act as mas-
queraders.

The SEA dataset is structured as follows. Every command sequence of a
legitimate user is first divided into blocks of size 100. Each command block
is called a session; thus, user activity is arbitrarily taken to be composed of,
and represented by, 150 sessions. The first 50 sessions of every user are left
untouched; they constitute ordinary user behavior, we call the user history of
commands. The command history set is used as the construction dataset for any
proposed masquerade detection system. The last 100 sessions, however, may or
may not have been contaminated, and they are used as the detection mechanism
validation dataset.

If contaminated, a validation session is taken to be a masquerade. A vali-
dation session is either totally contaminated or not. Session contamination in
SEA amounts to replacing the selected, original validation session for one of a
user who was arbitrarily set to be a masquerader. Contaminated sessions were
inserted using this rule: if no masquerader is present, then a new masquerader
appears in the next session with a probability of 1%. Otherwise, the same mas-
querader continues to be present in the next block with a probability of 80%.
SEA comes with a matrix that, for each user, shows where masquerade sessions
are located, if any.

As a test dataset, SEA is very restrictive, when more realistic conditions
are considered. To begin with, a supposedly masquerader does not have any
knowledge about the profile of an intended victim. A masquerade session is just
a sequence of commands that a user, unwillingly marked as a ‘masquerader’,
would type in a UNIX session. Moreover, in SEA, some of such masqueraders
show very simple and repetitive behaviour, which is easily spotted as unusual,
even by human inspection.

To overcome these limitations, one may embark oneself in gathering faithful
UNIX sessions; however, such task has proven to be complex, given that real
UNIX sessions are sparse and, hence, difficult to obtain. This has been shown

by Chinchani et al. [11], who have attempted to synthesise sequences of user
commands, with the aim of enabling the construction of a model for ordinary
behaviour. RACOON, Chinchani et al.’s tool, synthesises user sessions in order
to get around of the inherently long time it takes the collection of real ones.
Its ultimate aim is to speed up the process of development and evaluation of
masquerade detection systems.

Recently, research on masquerade detection has been looking at alterna-
tive sources of user activity to better profile user behavior. Example alternative
sources of information include user device usage (e.g. the mouse [8]), and user
interaction with specific applications (e.g. the use of a document management
system [10].) There is large archive of research on keystroke dynamics [9]; how-
ever, though exhaustive, it makes very unrealistic assumptions, for user activity
is not recorded under normal, working conditions, but under very artificial ones.

In a complementary vein, research on masquerade detection has attempted to
characterize user activity considering a combination of several observable actions.
For example, [19] provides 22 types of user activities, including information gath-
ering, browsing, communications, etc. These activity types are defined in terms
of executions of Windows applications, dynamic link libraries, and Microsoft
Disk Operating System commands. Thus, the masquerade detection mechanism
is ad-hoc, in that it is Operating System dependent, and needs to be adapted
whenever a change on platform is in order.

2.2 Masquerade Detection Mechanisms: an Overview

Research on masquerade detection has been very prolific. Space constraints pre-
clude us from giving a reasonable overview, or a fair comparison of these mech-
anisms (even if restrained to the most significant ones). We shall hence confine
ourselves to overview a few of them, referring the reader to [12, 13] for a survey.

A masquerade detector is global, if, for determining masquerader presence,
it uses both the profile of the user being protected and the profile of that user’s
colleagues. Otherwise, it is local. Similarly, a masquerade detector is temporal-
based, if, for user profile formation, it considers both individual actions and the
relations thereof; e.g. action sequences. Otherwise, it is frequency-based. Since
global, temporal methods are more informed, they are usually more accurate
than local, frequency-based ones; however, they demand more information and
computing effort, and are inapplicable in some contexts.

Uniqueness [14] is a global, frequency-based detection method, which stems
from the observation that the appearance of a command not seen in the construc-
tion of a user profile may indicate the presence of a masquerader. A command is
said to be of popularity i if only i users use that command. It is said to be unique
if it is of popularity one. The detection model consists of a score, computed on
each test session, which increases (respectively decreases) upon the appearance
of a unique (respectively unseen) command. Uniqueness has been an obliged
reference for comparison purposes.

Customized grammars [5] is global, and temporal-based. It profiles ordinary
user behavior using the unique and most repetitive sequences of user actions.

To identify such sequences of actions amongst a user history and across other
users’ audit logs, customized grammars applies sequitur [15], a method for infer-
ring compositional hierarchies from strings. A test session is classified using an
evaluation function, which yields a high score if the session includes very long
action sequences with a high self, i.e. a high frequency in the user-history) and
low unself (i.e. a low frequency in the all-users-history).

Näıve Bayes [16, 7, 17] assumes that the actions of a user are independent
one another. Thus, the probability for an action c to have been originated from
a user u, Pru(c), is given by fuc+α

nu+α×K , where fuc is the number of times user
u issued c in the user log of actions, nu the length of u’s log, K is the total
number of distinct actions, and where 0 < α ! 1 prevents Pru(c) from becoming
zero. Thus, näıve Bayes is frequency-based. It might be either local or global,
with similar performance [17]. To evaluate a test session s, in which user u
has allegedly participated, the cumulative probability of s is compared either
against the probability that s has been output by somebody else [16] or against
a user-defined threshold [17].

Sequitur-then-HMM [6] is a local, temporal masquerader detector, which
characterises user behavior in terms of the temporal dependencies among action
sequences of most frequent occurrence. This method first applies sequitur to a
given user history of actions. Then, the main production rule of the grammar
output by sequitur is used to train a Hidden Markov Model (HMM). Conse-
quently, not only does this model consider temporal dependencies among ac-
tions, by virtue of sequitur, but it also considers temporal dependencies among
sequences, by virtue of the HMM.

The performance of these (and other) methods, however, is far from conclu-
sive. This can be seen in Figure 1, borrowed from [18] (there TRD stands for the
method of [6]), which reports on that most of these methods, when operating at
a 95% detection rate, produce over 40% of false alarms. Masquerader detectors
have not been fully or faithfully tested. This is because they have not been put to
work under stressing conditions, where it is required to distinguish an intruder
who actually is aiming at effective user impersonation (see also [18]). From this,
it follows that these methods have not been thoroughly compared either.

3 Navigation Structures

To capture how a user uses and browses her file system, we use a navigation
structure. A navigation structure contains information about both how a user
structures her own file system, and how she uses it and browses it. Objects
in a navigation structure have been visited by the user, either directly, from a
directory browser, or indirectly, from a user application. A navigation structure
contains only user objects, ignoring system- or application-related files.

A navigation structure is composed of two graphs: an access graph and a
directory graph. An access graph contains a record of the most recently visited
file system objects, as well as the order (actually, a traversal path) which the
user has followed to visit them. A directory graph is a proper subgraph of the

10−2 10−1 1000

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FALSE ALARMS (%)

M
IS

SI
N

G
 A

LA
R

M
S

(%
)

Customized Grammars
TRD
Uniqueness
Naive
Single−commands

Fig. 1. Performance of detection methods with attack diffusion.

user file system; it is indeed an arborescence, with a distinguished vertex, called
the root, and denoted by “/”.

3.1 Access Graph

Let FS denote the file system of a given user u.1 The access graph for u is a
directed graph, given by the pair G = (V, E), where V ⊂ FS collects all the
nodes (files or folders) that u has recently visited, and E records the node visiting
history. Arcs in E are annotated: n

k→ n′ ∈ E if and only if, having visited n, u
has visited n′ next, k times.

Initially, G = (V, E) is such that E = ∅, and V is a singleton, containing the
node representing the root folder. Then, G = (V, E) is updated, upon access to
node n′, having visited node n, as follows:

(V, E) =

{
(V, (E − {n k→ n′}) ∪ {n k+1→ n′}) if n

k→ n′ ∈ E

(V ∪ {n′}, E ∪ {n 1→ n′}) otherwise

Every node n ∈ V is a tuple with three elements: i) the path associated to
the file system object identified with n, denoted path(n), ii) the position of node
n in graph D (see below, §3.2), and iii) the weight of the node. As expected, for
every n ∈ V , path(n) is a string of the form “/(α/)"α”, where “α” stands for
1 Given that u is understood from the context, we omit the subscript u in all these

symbols, for the sake of clarity.

an alphanumeric, representing the name of the file system object, and " for the
transitive, reflexive closure of string concatenation, denoted by juxtaposition.

The weight of a node n, denoted weight(n), represents the number of times
n has been accessed and it is defined as follows:

weight(n) = foldl({|k | ∃n′. n′ k→ n|}, +, 0)

where {|. . .|} denotes a multiset, and where foldl is a higher-order function,
given by foldl({|X0, X1, . . . , Xn|} , F, E) = F (. . . (F (F (E, X0), X1), . . .) Xn), and
where E, and F , respectively, denote the base element, and the step function.

3.2 Directory Graph

A directory graph is a directed acyclic graph representing a subtree graph of
the user file system. Let FS denote the file system of a given user, u, with
access graph G = (V, E). Then, the directory graph for u is a pair D = (V ′, E′),
where V ⊆ V ′ and E′ denotes the usual descendant relation of a tree. For every
node n ∈ V , there are as many nodes in V ′, one for each file system object along
path(n). Arcs in E are ordered pairs: (n, n′) ∈ E′ if and only if n′ is a descendant
of E, in the user file system structure.

Like an access graph, a directory graph, D = (V ′, E′), is initially such that
E′ = ∅, and V ′ is a singleton containing the root node. Then, upon any access
to an object o, we first use path(o) to compute the pairs that potentially are to
be inserted to update D as follows. Let t be a singleton string. Then,

πo = {(n, n′) | ∃α, α′, t. path(o) = αtα′,

n, n′ are created such that path(n) = α, path(n′) = αt}

where we assume pairs can be freshly created as required. Next, for every pair
(n, n′) ∈ πo, we update D = (V ′, E′) as follows:

(V ′, E′) =
{

(V ′ ∪ {n′}, E′ ∪ (n, n′)) if (n, n′) /∈ E′

(V ′, E′) otherwise

Every node n ∈ V ′ is annotated with accounting information. Formally, it
is a tuple of three elements: i) the path associated to the file system object
identified with n, ii) the time the object was last accessed, and iii) the position
of node n, with respect to D, denoted pos(n, D, path(n)). Given that D is of the
form: /(α1, . . . , αk); i.e. it has top node / and k object children, we define node
position by:

pos(n, /(α1, . . . , αk), path(n))=






[] if path(n) = /
[i] if path(n) = /αi

[i] pos(n′, αi, path(n′)) if path(n) = /αipath(n′)

Navigation Structure Maintenance To keep the navigation structure of a given
user to a manageable size, we have readily applied Least Recently Used, a page
replacement algorithm for virtual memory management. Other algorithms, such
as FIFO or Most Frequently Used are both applicable and easy to implement,
while others, e.g. Second Chance, or Not Used Recently require us to include
more accounting information inside a navigation node. We update a navigation
structure whenever required; for example, after the user has moved or removed
a file system object. We shall have more to say, later on in text, see §5, about
how to exploit a navigation structure in the study of the masquerader detection
problem.

4 Some Preliminary Results

4.1 Construction- and Validation-Masquerade Datasets

Datasets During the experimental phase, we invited six people, three to act
as ordinary users (see Table 1), and the rest as masqueraders (see Table 2).
On each user machine, we ran a process that, in the background, built the
corresponding user navigation structure. Profile construction was, according to
users, completely unnoticeable, and was carried out during normal working days.
By way of comparison, the activities of masqueraders were tracked, while they
were allowed a free five-minute navigation on the machine of each legitimate
user; on each attempt, masqueraders aimed to compromise the victim user, as
much as possible.

User Profile Logging Log size Directory
Starting date Ending date Tidiness

1 Assistant: invoice
and purchase 12/04/2010 01/24/2011 3697 Low
orders procedures

2 Employee: Logistics
and process 12/17/2010 01/24/2011 2338 Medium
documentation

3 Manager: Finance 01/03/2011 01/24/2011 11494 High
and accounting

Table 1. User profiles

Users and intruders, as can be noticed from Tables 1 and 2, are of different
nature. We selected them this way driven towards validating our working hy-
potheses, namely: that there are users who are easy to impersonate, and that,
conversely, there are intruders who are readily detectable.

Intruder log size
Intruder Profile generated against

user 1 user 2 user 3
1 PhD student, highly

skilled in information 969 444 1076
security

2 Lawyer with basic
knowledge of 239 224 230
computer usage

3 MSc student using
specialised tools to 107 366 146
obtain sensitive data

Table 2. Intruder profiles

Näıve Bayes As a clas-
sification model, we used
Näıve Bayes, using access
frequencies of objects (see
Section 2.2). Hence, infor-
mation about the behav-
ior of the user under pro-
tection is needed. In our
case, an action c, issued
by user, u, is interpreted
as user u has accessed file
system object, c. Hence,
the cumulative probability
of a session s of length
n is given by: Pru(s) =
Pru(c1)×· · ·×Pru(cn). To
evaluate a test session s, in which user u has allegedly participated, the cumula-
tive probability of s has been compared against a user-defined threshold. If the
probability is below this threshold, the session is considered normal, and, in that
case, the user profile is updated. Otherwise, user u is considered a masquerader.

4.2 Experimentation Results

Figure 2 summarizes, via a ROC curve, our results of experimentally testing
Näıve Bayes against all three masqueraders. Our results are very promising,
suggesting that file system navigation is a good means for masquerade detection.
Two conclusions follow. First, it is more difficult to detect a masquerade attempt
against a user who carries out a few, specific tasks, or who organizes badly
his directory structure; this might be explained by that the access probability
distribution associated to a user of this kind is near the uniform. For example,
masquerade attempts against user 3 were readily detected (0% false negatives
and and 1.75% false positives); by contrast, attempts against user 1 were difficult
to spot (10.96% false negatives and 20.16% false positives). Second, it is more
difficult to detect an occasional or novice intruder; for example, our worst results
were obtained on masquerade attempts of intruder 2 against user 1. This actually
is good news, because, using our approach, masquerading becomes a challenge
for a highly skilled intruder; this is because he must behave as the legitimate
user, while compromising sensitive data (at first sight, a contradictory goal.)

5 Discussion

Although the above results are promising, we reckon that taking full advantage
of a navigation structure will improve the performance of masquerade detection
mechanisms. In this section, we lay out a few ideas which might be helpful for
further research.

Fig. 2. ROC curve: masquerade detection results

Task and Distribution Prob-
ability of Task Transition
People tend to collect sim-
ilar or related objects into
one or more common fold-
ers. Using this observation,
we conjecture that when-
ever a user is carrying out
a specific task, she will visit
objects of a few folders, and
that these folders will all
be closed one another too.
Then, we may define a sin-
gle, unique folder to be con-
sidered as an abstract repre-
sentation of a task, and call
that folder simply a task.

In what follows, we aim
to formalise this notion of
task. Let G = (V, E) be the access graph of a given user u. Let n, n′ ∈ V .
Then, n ! n′ if and only if there exists a nonempty substring α, such that
pos(n′) = pos(n)α. Let ℵ(S) stand for the cardinality of set S. Then, the load
of n, denoted load(n), is given by load(n) = ℵ({t′|(t k→ t′) ∈ E and n ! t′}).
Now, a node n is said to be a task of u if and only if load(n) ,= 0 and, except,
possibly, from the root node, /, there does not exist a node t′, such that t′ ! n,
and that (t k→ t′) ∈ E.

Using this notion of task, t, together with a relation of task activity, which
consists of visiting nodes underneath t, we have, experimentally, proven that
the principle of spatial locality of reference holds for the behaviour of a user u.
Figure 3 depicts spatial locality for user 3; there, we have conducted a simple
normalisation of the position of the accessed object for the coordinate; this has
been done so that two objects that, relative to their positions, are close one
another, they they will also get close coordinate values. Similar experiments
need to be conducted towards establishing temporal locality of reference.

Now, we could apply the notion of task to define a Markov chain in terms of
a task transition probability. This Markov model could be used to compute the
probability of reaching a particular task, having departed from some other, not
necessarily different task, after a few accesses. This probability could be applied
in a model for masquerade detection. Of course, a penalisation would have to
be considered, if there is an access to a node that does not belong to any fixed
task. Other Bayesian models, such as Hidden Markov Models, could be applied
to obtain a masquerade detection method.

Task Fault Rate Actually, an access to a node that is not in the access graph
could be regarded as a task fault. Then, the rate at which task faults occur could

Fig. 3. Spatial Locality of reference for user 3

also be applied in a model for masquerade detection. Figure 4 depicts how task
faults occur when intruder 1 is trying to masquerade user 3. We have found
that, under attack, task faults occur much more frequently than under normal
conditions.

Depth in File System Navigation Other measure that can be exploited to mas-
querade detection is the depth of node n, given by depth(n) = length(pos(n))+1.
Then, we may try to model the behaviour of a user in terms of the depth at which
she usually navigates through her file system. The lower and the upper quan-
tiles associated to a box plot could, for example, be directly used to masquerade
detection.

6 Conclusions

Towards the characterisation of file-system user navigation, we have proposed
here a navigation structure. In a preliminary experiment, we have built a mas-
querader detection mechanism, based on näıve Bayes, applying one output of
file system navigation, namely: the frequency of visited objects. Our results are
very promising, showing a 1.75% false positive ratio and 0% false negative ratio,
for a particular user, for the best case, and 79.84% of detection rate, at a cost
of a 10.96% of false positive detection rate, for the worst case.

Given people diversity, a user profile can be more suitable than others to
detect some form of intrusion. On the one hand, our results show that a very
tidy and highly structured user will be much easier to separate from an actual
masquerader. By way of comparison, a user who carries out a very restricted

Fig. 4. Object creation rate when intruder 1 is masquerading user 3

collection of tasks may yield an object access probability distribution close to
the uniform, and, hence, she might be very easy to masquerade. On the other
hand, a highly skilled masquerader is more likely to obtain sensitive information
in a short period of time. However, this behaviour might be much easier to spot,
given the number of previously unseen visited objects he will raise to during an
intrusion. Thus, a good profile, based on a navigation structure, makes a mas-
querader of this sort to become more easily detected. An occasional masquerader,
however, will be harder to spot, due to his errant, and hesitant behaviour.

There exists a number of methods with which we can build a masquerade
detection mechanism. In this paper, we have explored one method only. Further
research is needed in order to explore the additional ideas laid out in this paper.
Although a combination of various kinds of user activities will be necessary, at
the end of the day, for practical masquerade detection, our results show that file
system navigation is central to achieve an accurate user profile.

References

1. Schonlau, M., DuMouchel, W., Ju, W., Karr, A., Theus, M., Vardi, Y.: Computer
intrusion: Detecting masquerades. Statistical Science 16 (2001) 58–74

2. Schonlau, M.: Masquerading user data. http://www.schonlau.net (2008)
3. Maxion, R.A., Townsend, T.N.: Masquerade detection augmented with error anal-

ysis. IEEE Transactions on Reliability 53 (2004) 124–147
4. Oka, M., Oyama, Y., Abe, H., Kato, K.: Anomaly detection using layered networks

based on eigen co-occurrence matrix. In Jonsson, E., Valdes, A., Almgren, M.,
eds.: Recent Advances in Intrusion Detection: 7th International Symposium, RAID
2004. Volume 3224 of Lecture Notes in Computer Science., Springer (2004) 223–237

5. Latendresse, M.: Masquerade detection via customized grammars. In Julish, K.,
Kruegel, C., eds.: Proceedings of the Second International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, DIMVA 2005. Volume
3548 of Lecture Notes in Computer Science., Springer (2005) 141–159

6. Posadas, R., Mex-Perera, C., Monroy, R., Nolazco-Flores, J.: Hybrid method for
detecting masqueraders using session folding and hidden markov models. In: Pro-
ceedings of the 5th Mexican International Conference on Artificial Intelligence:
Advances in Artificial Intelligence. Volume 4293 of Lecture Notes in Computer
Science., Springer (2006) 622–631

7. Maxion, R.A.: Masquerade detection using enriched command lines. In: Pro-
ceedings of the International Conference on Dependable Systems and Networks,
DSN‘03, San Francisco, CA, USA, IEEE Computer Society Press (2003) 5–14

8. Garg, A., Rahalkar, R., Upadhyaya, S., Kwiat, K.: Profiling users in GUI based
systems masquerade detection. In: Proceedings of the 7th IEEE Information As-
surance Workshop, IEEE Computer Society Press (2006) 48–54

9. Killourhy, K.S., Maxion, R.A.: Why did my detector do that?! - predicting
keystroke-dynamics error rates. In Jha, S., Sommer, R., Kreibich, C., eds.: Re-
cent Advances in Intrusion Detection, 13th International Symposium, RAID 2010.
Volume 6307 of Lecture Notes in Computer Science., Springer (2010) 256–276

10. Sankaranarayanan, V., Pramanik, S., Upadhyaya, S.: Detecting masquerading
users in a document management system. In: Proceedings of the IEEE Interna-
tional Conference on Communications, ICC‘06. Volume 5., IEEE Computer Society
Press (2006) 2296–2301

11. Chinchani, Ramkumar, Muthukrishnan, A., Chandrasekaran, M., Upadhyaya, S.:
RACOON: Rapidly generating user command data for anomaly detection from
customizable templates. In: Proceedings of the 20th Annual Computer Security
Applications Conference, ACSAC‘04, IEEE Computer Society Press (2004) 189–
204

12. Salem, M.B., Hershkop, S., Stolfo, S.J.: A survey of insider attack detection re-
search. In Stolfo, S.J., Bellovin, S.M., Hershkop, S., Keromytis, A., Sinclair, S.,
Smith, S.W., eds.: Insider Attack and Cyber Security: Beyond the Hacker. Ad-
vances in Information Security. Springer (2008) 69–90

13. Bertacchini, M., Fierens, P.: A survey on masquerader detection approaches. In:
Proceedings of V Congreso Iberoamericano de Seguridad Informática, Universidad
de la República de Uruguay (2008) 46–60

14. Schonlau, M., Theus, M.: Detecting masquerades in intrusion detection based on
unpopular commands. Information Processing Letters 76 (2000) 33–38

15. Nevill-Manning, C.G., Witten, I.H.: Identifying hierarchical structure in sequences:
a linear-time algorithm. Journal of Artificial Intelligence Research, JAIR 7 (1997)
67–82

16. Maxion, R.A., Townsend, T.N.: Masquerade detection using truncated command
lines. In: Proceedings of the International Conference on Dependable Systems &
Networks, Washington, DC, IEEE Computer Society Press (2002) 219–228

17. Wang, K., Stolfo, S.: One-class training for masquerade detection. In: Proceedings
of the 3rd IEEE Conference Data Mining Workshop on Data Mining for Computer
Security, IEEE (2003)

18. Razo-Zapata, I., Mex-Perera, C., Monroy, R.: Masquerade attacks based on user’s
profile. Journal of Systems and Software ? (2011) ?–? Submitted for evaluation.

19. Ben-Salem, M., S., S.: Modeling user search behavior for masquerade detection.
Computer Science Technical Reports 033, Columbia University (2010)

