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A general framework for deriving integral
preserving numerical methods for PDEs

Morten Dahlby and Brynjulf Owren

September 17, 2010

A general procedure for constructing conservative numerical integrators for
time dependent partial differential equations is presented. In particular, lin-
early implicit methods preserving a time averaged version of the invariant is
developed for systems of partial differential equations with polynomial nonlin-
earities. The framework is rather general and allows for an arbitrary number
of dependent and independent variables with derivatives of any order. It is
proved formally that second order convergence is obtained. The procedure is
applied to a test case and numerical experiments are provided.

1 Introduction

Schemes that conserve geometric structure have been shown to be useful when studying the
long time behaviour of dynamical systems. Such schemes are sometimes called geometric
or structure preserving integrators [16, 17]. In this paper we shall mostly be concerned
with the conservation of first integrals.

Even if a presumption in this work is that the development of new and better integral
preserving schemes is useful, we mention some situations where this presumption can be
easily asserted. In the literature one finds several examples where stability of a numerical
method is proved by directly using its conservative property, one example is the scheme
developed for the cubic Schrödinger equation in [10]. Another application where the exact
preservation of first integrals plays an important role is in the study of orbital stability of
soliton solutions to certain Hamiltonian partial differential equations (PDEs) as discussed
by Benjamin and coauthors [1, 2].

For ordinary differential equations (ODEs) it is common to devise relatively general
frameworks for structure preservation. This is somewhat to the contrary of the usual
practice with partial differential equations (PDEs) where each equation under consideration
normally requires a dedicated scheme. But there exists certain fairly general methodologies
that can be used for developing geometric schemes also for PDEs. For example, through
space discretisation of a Hamiltonian PDE one may obtain a system of Hamiltonian ODEs
to which a geometric integrator may be applied. Another approach is to formulate the
PDE in multi-symplectic form, and then apply a scheme which preserves a discrete version
of this form, see [3] for a review.

In this paper we consider methods for PDEs that are based on the discrete gradient
method, which is one of the most popular methods for designing integral preserving schemes
for ODEs. The discrete gradient method was perhaps first discussed by Gonzalez [15],
but see also [16, 22]. For PDEs one may derive discrete gradients either for the abstract
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Cauchy problem, where the solution at any time is considered as an element of some infinite
dimensional space, or one may semidiscretise the equations in space and then derive the
corresponding discrete gradient for the resulting ODE system. This last procedure has
been elegantly presented in several articles by Furihata, Matsuo and collaborators, see e.g.
[11, 12, 13, 18, 19, 20, 21], using the concept of discrete variational derivatives. See also
the forthcoming monograph [14]. The first part of this paper develops a similar framework
that is rather general and allows for an arbitrary number of dependent and independent
variables with derivatives of any order. The suggested approach does not require the
equations to be discretised in space.

In this paper we consider the class of conservative schemes which are linearly implicit.
In fact, this work can be seen as a generalisation of ideas introduced in [19, Section 6].
By linearly implicit we mean schemes which require the solution of precisely one linear
system of equations in each time step. This is opposed to fully implicit schemes for which
one typically applies an iterative solver that may require a linear system to be solved
in every iteration. For standard fully implicit schemes one would typically balance the
iteration error in solving the nonlinear system with the local truncation error. However,
for conservative schemes the situation is different since exact conservation of the invariant
requires that the nonlinear system is solved to machine precision.

It may not, in general, be an easy task to quantify exactly what can be expected of
gain in computational cost, if any, when replacing a fully implicit scheme with a linearly
implicit one. For illustration we present an example where the KdV equation

ut + uxxx + (u2)x = 0 (1.1)

is solved on a periodic domain using a fully implicit scheme

Un+1 − Un

∆t
+

Un+1
xxx + Un

xxx

2
+
(

(Un+1)2 + Un+1Un + (Un)2

3

)
x

= 0, (1.2)

and a linearly implicit scheme

Un+2 − Un

2∆t
+

Un+2
xxx + Un

xxx

2
+
(

Un+1 Un+2 + Un+1 + Un

3

)
x

= 0. (1.3)

These schemes are derived in Section 6. For space discretisation centered differences are
used for both schemes. The schemes are both second order in time, but in our example the
linearly implicit multistep scheme has an error constant which is about 3-4 times larger
than the fully implicit one-step scheme. In Figure 1.1 we plot the global error versus the
number of linear solves for the two schemes. The linearly implicit scheme solves one linear
system in each time step. The fully implicit scheme, on the other hand, solves a linear
system for each Newton iteration which is repeated to machine precision in each time step.
For the largest time step in our experiment this means as much as 561 linear solves per
time step. The linear systems in each of the two cases have the same matrix structure,
they are both penta-diagonal, and we therefore assume that the cost of solving the linear
system is approximately the same for both methods. The x-axis in Figure 1.1 can thus be
interpreted as a measure of the computational cost in each scheme. The plot shows that
for a given global error the linearly implicit scheme is less computationally expensive than
the fully implicit scheme.

There are situations in which the results from this example may be less relevant. For
instance, the iteration method used in a fully implicit schemes may use approximate ver-
sions of the Jacobian for which faster solvers can be applied, therefore the cost of a linear
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Figure 1.1: The global error versus the number of linear solves for the two schemes (1.2)
(FI cons) and (1.3) (LI cons).

solve may not be the same for the two types of schemes. For large time steps, both types of
schemes are likely to encounter difficulties, but for slightly different reasons. The fully im-
plicit scheme may experience slow or no convergence at all of the iteration scheme, whereas
the linearly implicit scheme may become unstable for time steps over a certain threshold
[8]. Thus, we believe that which of the two types of schemes that is preferable depends
on the PDE and the circumstances under which it is to be solved. Finally we remind the
reader that the main motivation for applying conservative schemes is the long time behav-
ior and stability of the scheme, a facet which is not addressed in the above example since
it is common to both types of schemes under consideration. We do however believe that
the example provides a convincing argument for the usefulness of linearly implicit versions
of conservative integrators. See Section 6 for an example that tests the long time structure
preserving properties of these schemes.

In the next section we define the PDE framework that we use. Then, in Section 3 we
consider discrete gradient methods and how they can be applied to PDEs. We study in
particular the average vector field method by Quispel and McLaren [24] and the discrete
variational derivative method by Furihata, Matsuo and coauthors [11, 12, 18, 19, 20, 21].
We develop a framework that works for a rather general class of equations.

The key tools for developing linearly implicit methods for polynomial Hamiltonians are
treated in Section 4, introducing the concept of polarisation. There is some freedom in
this procedure, and we show through a rather general example term how the choice may
significantly affect the stability of the scheme.

We defer the introduction of spatial discretisation until Section 5. This is done mostly
in order to keep a simpler notation, but also because our approach concerns conservative
time discretisations and is essentially independent of the choice of spatial discretisation.
The last section offers some more details on the procedure for constructing schemes and we

3



give some indication through numerical tests on the long term behaviour of the schemes.

2 Notation and preliminaries

We consider integral preserving PDEs written in the form

ut = D δH
δu

, (2.1)

where
H[u] =

∫
Ω
G[u] dx =

∫
Ω
G((uα

J )) dx (2.2)

is the preserved quantity and D is a skew-symmetric operator that may depend on u. We
write dx = dx1 · · ·dxd. We remark in passing that the class of PDEs which can be written
in the form (2.1) contains the class of Hamiltonian PDEs, however we do not make the
additional assumption that D satisfies the Jacobi identity [23]. By (uα

J ) we mean u itself,
which may be a vector u = (uα) ∈ Rm, and all its partial derivatives with respect to
all independent variables, (x1, . . . , xd), up to and including some order ν. Thus, J is a
multi-index, we let J = (j1, . . . , jr), where r = |J | the number of components in J , and

uα
J =

∂ruα

∂xj1 · · · ∂xjr
, 0 ≤ r ≤ ν.

As in [23], the square brackets in (2.2) are used to indicate that a function depends also
on the derivatives of its arguments with respect to the independent variables. In one
dimension d = 1 and m = 1, for example, we have

G[u] = G((uJ)) = G(u,
∂u

∂x
, . . . ,

∂νu

∂xν
).

The variational derivative δH
δu is an m-vector depending on uα

J for |J | ≤ ν ′ where ν ′ ≥ ν.
It may be defined through the relation [23, p. 245]∫

Ω

δH
δu

· ϕ dx =
∂

∂ε

∣∣∣∣
ε=0

H[u + εϕ], (2.3)

for any sufficiently smooth m-vector of functions ϕ(x). One may calculate δH
δu by applying

the Euler operator to G[u], the α-component is given as(
δH
δu

)α

= EαG[u] (2.4)

where
Eα =

∑
|J |≤ν

(−1)|J |DJ
∂

∂uα
J

. (2.5)

so that the sum ranges over all J corresponding to derivatives uα
J featuring in G. We have

used total derivative operators,

DJ = Dj1 . . . Djk
, Di =

∑
α,J

∂uα
J

∂xi

∂

∂uα
J

.

In parts of the paper we refer to Hamiltonians as polynomial, or specifically quadratic.
By this we mean that H is of a form such that G is a multivariate polynomial in the



indeterminates uα
J , which in the quadratic case is of degree at most two. For example, the

KdV equation (1.1) has a polynomial Hamiltonian of order 3

H[u] =
∫

Ω

(
1
2
u2

x −
1
3
u3

)
dx.

In this case G = G(u, ux) and thus m = d = ν = 1, and we get

δH
δu

= EG((uJ)) =
∂G
∂u

− ∂

∂x

∂G
∂ux

(2.6)

= −u2 − uxx. (2.7)

We always assume sufficient regularity in the solution and that the boundary conditions
on Ω are such that the boundary terms vanish when doing integration by parts, for example
periodic boundary conditions. The operator D should be skew-symmetric with respect to
the L2 inner product ∫

Ω
(Dv)w dx = −

∫
Ω

v(Dw) dx ∀ u, w. (2.8)

For the KdV case we simply have D = ∂
∂x .

Furthermore, to be a true Hamiltonian system it should induce a Poisson bracket on the
space of functionals as described e.g. in [23, Ch 7.1], meaning that the Jacobi identity must
be satisfied. However, the approach presented here only requires D to be skew-symmetric
so that the functional H is a conserved quantity. In the case that the PDE has more than
one Hamiltonian formulation, we may make a choice of which of the integrals to preserve.
Our approach does not in general allow for the preservation of more than one Hamiltonian
at the same time, for this see the upcoming paper [9].

PDEs such as the wave equation are typically written with utt appearing on the left hand
side, in such cases we double the dimension of u in order to apply the stated framework.
For complex equations one may do something similar, splitting either into a real and an
imaginary part, or adding in the complex conjugate as a separate variable.

3 Discrete gradient and variational derivative methods

Discrete gradient methods for ODEs were introduced by Gonzalez [15]. See also [5], [6],
[22], and [16, Chapter V.5]. Recently this idea has been applied to PDEs in the form of
the average vector field (AVF) method [4] and in a somewhat more general setting, the
discrete variational derivative (DVD) method.

We recall the definition of a discrete gradient as presented for ODEs. If H : RM → R,
a discrete gradient is a continuous map ∇ : RM × RM → RM such that for every u and v
in RM

H(u)−H(v) = ∇H(v,u) · (u− v),

∇H(u,u) = ∇H(u).

Since an ODE system preserving H can be written in the form

dy
dt

= S(y)∇H(y)
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for some skew-symmetric matrix S(y), one obtains a conservative method simply by defin-
ing approximations yn ≈ y(tn) through the formula

yn+1 − yn

∆t
= S̃∇H(yn,yn+1),

where S̃, typically allowed to depend on yn and yn+1, is some skew-symmetric matrix
approximating the original S.

There are many possible choices of discrete gradients for a function H, see for instance
[16, 22]. A particular example is the one used in the AVF method defined as

∇AVFH(v,u) =
∫ 1

0
∇H(ξu + (1− ξ)v) dξ.

When applying this approach to PDEs the obvious strategy is to discretise the Hamilto-
nian H[u] in space, replacing each derivative by a suitable approximation like e.g. finite
differences, to obtain a Hamiltonian Hd(u) as for ODEs. Similarly, the skew-symmetric
operator D is replaced by a skew-symmetric M ×M -matrix Dd to yield the scheme

un+1 − un

∆t
= Dd∇Hd(un,un+1) (3.1)

for advancing the numerical solution un at time tn to un+1 at time tn+1. Examples are
worked out for several PDEs in [4].

Furihata, Matsuo and coauthors present a whole framework for discretising PDEs in the
variational setting in a series of papers, providing a discrete analogue of the continuous
calculus, see for instance [11]. They discretise G to obtain Gd using difference operators,
and then the integral in H is approximated by a sum to yield Hd. Then they derive a
discrete counterpart to the variational derivative, and finally state the difference scheme
in a form which is a perfect analogue to the Hamiltonian PDE system (2.1), letting

un+1 − un

∆t
= Dd

δHd

δ(un,un+1)
.

The use of integration by parts in deriving the Euler operator is mimicked by similar
summation by part formulas for the discrete case. Their discrete variational derivative is
in fact rather similar to a discrete gradient, as it satisfies the relation

Hd(u)−Hd(v) = 〈 δHd

δ(v,u)
,u− v〉 (3.2)

for the discrete L2 inner product.
In the present paper, we focus on the time dimension in most of what follows, thus we

shall defer the steps in which H and thereby G are discretised in space. But (3.2) makes
perfect sense after removing the subscript d, replacing u and v by functions u and v, and
the discrete L2 inner product by the continuous one. A discrete variational derivative
(DVD) is here defined to be any continuous function δH

δ(v,u) of (u(ν), v(ν)) satisfying

H[u]−H[v] =
∫

Ω

δH
δ(v, u)

(u− v) dx, (3.3)

δH
δ(u, u)

=
δH
δu

. (3.4)



The integrator yields a continuous function Un := Un(x) ≈ u(tn, ·) for each tn

Un+1 − Un

∆t
= D δH

δ(Un, Un+1)
. (3.5)

By combining (3.3) and (3.5) we see that the method preserves H.
The AVF scheme can of course also be interpreted as a discrete variational derivative

method where
δHAVF

δ(v, u)
=
∫ 1

0

δH
δu

[ξu + (1− ξ)v] dξ. (3.6)

The fact that (3.6) verifies the condition (3.3) is seen from the elementary identity

H[u]−H[v] =
∫ 1

0

d
dξ
H[ξu + (1− ξ)v] dξ. (3.7)

The derivative under the integral is written

d
dξ
H[ξu + (1− ξ)v] =

d
dε

∣∣∣∣
ε=0

H[v + (ξ + ε)(u− v)]

=
∫

Ω

δH
δu

[ξu + (1− ξ)v](u− v) dx

Now substitute this into (3.7) and interchange the integrals to obtain (3.3).
In most of the cited papers by Furihata, Matsuo and coauthors, the notion of a DVD

method is less general than what we just presented, in the sense that the relation (3.2)
is not actually used as the defining equation for a discrete variational derivative. Instead
the authors present a relatively general format that can be used for discretising H, this
format is depending on the class of PDEs under consideration, and they work out the
explicit expression for a particular discrete variational derivative. To give an idea of how
the format may look like, we briefly review some points from [11] where PDEs of the form
(2.2) are considered with d = m = ν = 1 such that G = G(u, ux). G is assumed to be
written as a finite sum

G(u, ux) =
∑

`

α`f`(u)g`(ux). (3.8)

where f` and g` are differentiable functions. 1 The form (3.3) is then derived through

f`(u)g`(ux)− f`(v)g`(vx) =
f`(u)− f`(v)

u− v

g`(ux) + g`(vx)
2

(u− v)

+
g`(ux)− g`(vx)

ux − vx

f`(u) + f`(v)
2

(ux − vx)

followed by an integration by part on the second term. This technique can be extended
in any number of ways to allow for more general classes of PDEs. For instance, one may
allow for more factors in (3.8), like

G[u] =
∑

`

α`

∏
J

g`,J(∂Ju)

and repeated application of the formula ab− cd = a+c
2 (b− d) + b+d

2 (a− c) to this equation
combined with integration by parts will result in a discrete variational derivative.

1In [11] the expression is discretised in space and g`(ux) is replaced by a product g+
` (δ+

k Uk)g−` (δ−k Uk)
where δ+

k and δ−k are forward and backward divided differences respectively.
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Schemes which are built on this particular type of discrete variational derivative will be
called the Furihata methods in the sequel since it was first introduced in [11]. Matsuo
et al. extend the method to complex equations in [19], while [12, 18] derive methods for
equations with second order time derivatives. Other papers using the discrete variational
derivative approach include [13], [21], and [26].

The lack of a general formalism in the papers just mentioned, makes it somewhat difficult
to compare the approach to the AVF method and characterise in which cases they lead to
the same scheme. Taking for instance the KdV equation (1.1) one easily finds that both
approaches lead to the scheme (1.2), however, considering for instance the Hamiltonian

H[u] =
∫

Ω
uu2

x dx

one would obtain two different types of discrete variational derivative in the Furihata
method and the AVF method, that is δHF

δ(v,u) 6= δHAVF
δ(v,u) . In some important cases, the

Furihata method and the AVF method lead to the same scheme.

Theorem 3.1. Suppose that the Hamiltonian H[u] is a linear combination of terms of
either of the types

1.
∫
Ω ∂Ju · ∂Ku dx for multi-indices J and K, or

2.
∫
Ω g(∂Ju) dx for differentiable g : R → R.

Then the AVF and the Furihata methods yield the same scheme

Proof. It suffices to check one general term of each type.

1. We find the variational derivative using (2.3)

δH
δu

=
(
(−1)|J | + (−1)|K|

)
∂J+Ku.

Inserting the variational derivative into (3.6) gives

δHAVF

δ(v, u)
=
(
(−1)|J | + (−1)|K|

)
∂J+K

(
u + v

2

)
.

To find the discrete variational derivative of the Furihata method we compute

H[u]−H[v] =
∫

Ω
∂Ju · ∂Ku− ∂Jv · ∂Kv dx

=
1
2

∫
Ω

(∂Ju− ∂Jv) · (∂Ku + ∂Kv) + (∂Ju + ∂Jv) · (∂Ku− ∂Kv) dx

After integration by parts we get

δHF

δ(v, u)
=
(
(−1)|J | + (−1)|K|

)
∂J+K

(
u + v

2

)
,

and we see that
δHAVF

δ(v, u)
=

δHF

δ(v, u)
.



2. In this case we get
δH
δu

= (−1)|J |∂Jg′(∂Ju),

so that

δHAVF

δ(v, u)
= (−1)|J |

∫ 1

0
∂Jg′(∂J(ξu + (1− ξ)v)) dξ

= (−1)|J |∂J

(
g(∂Ju)− g(∂Jv)

∂Ju− ∂Jv

)
.

For the Furihata method one would here just compute

H[u]−H[v] =
∫

Ω

g(∂Ju)− g(∂Jv)
∂Ju− ∂Jv

(∂Ju− ∂Jv) dx

and integration by parts yields
δHF

δ(v, u)
=

δHAVF

δ(v, u)

4 Linearly Implicit Difference Schemes

4.1 Polarisation

The key to constructing conservative linearly implicit schemes will be to portion out the
nonlinearity over consecutive time steps. In effect, this means that we replace the original
Hamiltonian H with an approximate one H. We shall call H a polarisation of H since
its definition resembles the way an inner product is derived from a quadratic form. We
shall see that the difference scheme resulting from such a polarised Hamiltonian will be a
multistep method. The requirements on H are given in the following definition.

Definition 4.1 (The polarised Hamiltonian). Given a Hamiltonian H[u] the polarised
Hamiltonian H depends on k arguments, and is:

• Consistent
H[u, u, . . . , u] = H[u]. (4.1)

• Invariant under any cyclic permutation of the arguments

H[w1, w2, . . . , wk] = H[w2, . . . , wk, w1]. (4.2)

Polarisations exist for any Hamiltonian, this is asserted by the example

H[w1, w2, . . . , wk] =
1
k

(H[w1] +H[w2] + · · ·+H[wk]) .

We may impose the polarisation directly on the density G((uα
J )), letting

H[w1, w2, . . . , wk] =
∫

Ω
G[w1, w2, . . . , wk] dx.

The conditions (4.1), (4.2) are then inherited as

G(u, u, . . . , u) = G(u), G[w1, w2, . . . , wk] = G[w2, . . . , wk, w1].
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In Section 4.2 we will discuss local order of consistency, it will then be convenient to
make the stronger assumption that H and H are at least twice Frechet differentiable. To
distinguish from the weaker notion of variational (Gateaux) derivative, we replace δ by ∂,
noting that the first derivative in the two definitions are the same when they both exist.
We then find from (4.1) and (4.2) that the Frechet derivatives satisfy the relation

∂H
∂u

[u] = k
∂H

∂w1
[u, . . . , u]. (4.3)

For the second derivatives, we find the identity

∂2H

∂w1∂wj
[u, . . . , u] =

∂2H

∂w1∂wk+2−j
[u, . . . , u], j = 2, . . . , bk/2c+ 1. (4.4)

which is used to compute

∂2H
∂u2

[u] =


k

∂2H

∂w2
1

+ 2

k+1
2∑

`=2

∂2H

∂w1∂w`

, k odd,

k

∂2H

∂w2
1

+ 2

k
2∑

`=2

∂2H

∂w1∂w`
+

∂2H

∂w1∂w k
2
+1

, k even,

(4.5)

all second derivatives on the right being evaluated at [u, . . . , u].

4.1.1 Polynomial Hamiltonians

The polarisation of polynomial Hamiltonians will be key to constructing linearly implicit
schemes. We will now explain in detail how to do this, and we begin with an example
term in the integrand G[u] = G(∂α

J u) depending on just one scalar indeterminate, namely
G(z) = zp where z = ∂Juα for some (J, α) and where p ≤ 4. This example is important
not only as a simple illustration of the procedure, but also because terms of this type are
common in many of the Hamiltonians found in physics. As we will see in the next section,
it will be natural to use two arguments, k = 2, in the polarised Hamiltonian. In fact, we
need to restrict ourself to cases with polynomial Hamiltonians for our technique to yield
linearly implicit schemes. Then, by using k ≥ dp/2e, we can obtain polarised Hamiltonians
which are at most quadratic in each argument. We call these quadratic polarisations. We
see that if k = 2 then cyclic is the same as symmetric G(u, v) = G(v, u), and the possible
quadratic polarisations for p = 2, 3, 4 are respectively,

p = 2 : G(u, v) = θ
u2 + v2

2
+ (1− θ)uv , θ ∈ [0, 1], (4.6)

p = 3 : G(u, v) = uv
u + v

2
, (4.7)

p = 4 : G(u, v) = u2v2. (4.8)

Note that for these monomials both the third and fourth order case are uniquely given, but
the second order case is not. In Section 4.3 we will consider how the choice of θ influences
the stability of the scheme for a term which appears frequently in PDEs.

We now consider the general case when G[u] is a multivariate polynomial in Nν variables
of degree p. It suffices in fact to let G((uα

J )) be a monomial since each term can be treated



separately, for u ∈ RNν . For a convenient notation, we rename the vector of indeterminates
((uα

J )) by using a single index i.e. u = (u1, . . . , uNν ) and write

G(u) = ui1ui2 . . . uip (4.9)

One may use the following procedure for obtaining a quadratic polarisation from (4.9)

1. Group the factors of the right hand side of (4.9) into pairs zr = ui2r−1ui2r and if p is
odd zk = uip . Set

K(z1, . . . , zk) = z1 · · · zk.

Note that there are potentially many ways of ordering the factors in (4.9) which give
rise to different polarisations.

2. Symmetrise K with respect to the cyclic subgroup of permutations. Letting the left
shift permutation σ be defined through σK(z1, . . . , zk) = K(z2, . . . , zk, z1), we set

G(z1, . . . , zk) =
1
k

k∑
k=1

σk−1K(z1, . . . , zk)

The resulting G is now both consistent (4.1) and cyclic (4.2).

4.2 Linearly Implicit Methods

We may now define the discrete variational derivative for this polarised Hamiltonian as a
generalisation of (3.3) and (3.4). We let

δH

δ(w1, . . . , wk+1)

be a continuous function of k + 1 arguments, satisfying

H[w2, . . . , wk+1]−H[w1, . . . , wk] =
∫

Ω

δH

δ(w1, . . . , wk+1)
(wk+1 − w1) dx, (4.10)

k
δH

δ(u, . . . , u)
=

δH
δu

. (4.11)

Our standard example will be a generalisation of the AVF discrete variational derivative,
which we define as

δHAVF

δ(w1, . . . , wk+1)
=
∫ 1

0

δH

δw1
[ξwk+1 + (1− ξ)w1, w2, . . . , wk] dξ. (4.12)

Here the variational derivative on the right hand side, δH
δw1

is defined as before, considering
H as a function of its first argument only, leaving the others fixed. Similar discrete varia-
tional derivatives could be derived in a number of different ways. In particular one finds
that when the function H is quadratic in all its arguments, the approach used in deriving
the Furihata methods would lead to a discrete variational derivative which is identical to
that of the AVF-method.

Now we define the polarised discrete variational derivative scheme and prove that, under
some assumptions, this scheme is conservative, linearly implicit and has formal order of
consistency two.
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Definition 4.2. For a Hamiltonian PDE of the form (2.1), let H be a polarised Hamil-
tonian of k arguments, satisfying (4.1) and (4.2), and suppose that approximations U j to
u(·, j∆t) are given for j = 0, . . . , k − 1.

• The polarised DVD (PDVD) scheme is given as

Un+k − Un

k∆t
= kD

δH

δ(Un, . . . , Un+k)
, n ≥ 0. (4.13)

• D is a skew-symmetric operator approximating D. In (4.13), D may depend on Un+j,
1 ≤ j ≤ k − 1 2, and be consistent

D[u, . . . , u] = D[u]. (4.14)

D is called cyclic if

D[w1, w2, . . . , wk−1] = D[w2, . . . , wk−1, w1]. (4.15)

• If the discrete variational derivative is given by (4.12), then the scheme is called the
polarised AVF (PAVF) scheme.

Theorem 4.3. The scheme (4.13) is conservative in the sense that

H[Un, . . . , Un+k] = H[U0, . . . , Uk−1], ∀n ≥ 1.

for any polarised Hamiltonian function H.

Proof. By induction, this is an immediate consequence of (4.10)

In a framework as general as the one presented here, it is not possible to present a
general analysis for convergence or the order of the truncation error. However, it seems
plausible that a necessary condition to obtain a prescribed order of convergence can be
derived through a formal Taylor expansion of the local truncation error, we denote this the
formal order of consistency.

Theorem 4.4.

• The PAVF scheme has formal order of consistency one for any polarised Hamiltonian,
and skew-symmetric operator D satisfying (4.14).

• If in addition (4.15) is satisfied, the scheme has formal order of consistency two.

Proof. We show that when the exact solution is substituted into (4.13) where the discrete
variational derivative is given by (4.12), then the residual is O(∆t2). Throughout the proof
we assume the existence of Frechet derivatives. Writing, for any j, uj = u(tj , ·) for the
exact local solution at t = tj , we get for the left hand side

un+k − un

k∆t
= ∂tu

n +
k ∆t

2
∂2

t un +O(∆t2) = D∂H
∂u

∣∣∣∣
un

+
k∆t

2

(
∂D
∂u

(∂tu
n)

∂H
∂u

+D∂2H
∂u2

(∂tu
n, ·)

)∣∣∣∣
un

+O(∆t2). (4.16)

2D should not depend on Un+k since otherwise the method would no longer be linearly implicit.



Next we expand (4.12) to get

δHAVF

δ(un, . . . , un+k)
=
∫ 1

0

δH

δw1
(ξun+k + (1− ξ)un, un+1, . . . , un+k−1) dξ

=
∂H

∂w1

∣∣∣∣
u

+

k

2
∂2H

∂w2
1

∣∣∣∣
u

+ ∆t

k∑
j=2

(j − 1)
∂2H

∂w1∂wj

∣∣∣∣
u

 (∂tu
n, ·) +O(∆t2)

where u = (un, . . . , un). Using first (4.4) and then (4.3), (4.5) we find

δHAVF

δ(un, . . . , un+k)
=

1
k

∂H
∂u

∣∣∣∣
un

+
∆t

2
∂2H
∂u2

∣∣∣∣
un

(∂tu
n, ·) +O(∆t2). (4.17)

Expanding D we get

D[un+1, . . . , un+k−1] = D[un] + ∆t

k−1∑
j=1

j
∂D

∂wj

∣∣∣∣
u

(∂tu
n) +O(∆t2). (4.18)

If the cyclicity condition (4.15) holds for D, we can simplify (4.18) to obtain

D[un+1, . . . , un+k−1] = D[un] +
k(k − 1)∆t

2
∂D

∂w1

∣∣∣∣
u

(∂tu
n) +O(∆t2)

= D[un] +
k∆t

2
∂D
∂u

∣∣∣∣
un

(∂tun) +O(∆t2). (4.19)

By substituting into (4.13) the expressions (4.16), (4.17) and (4.19), all terms of zeroth
and first order cancel and we are left with O(∆t2).

Theorem 4.5. Suppose that the polarised Hamiltonian H is a quadratic polynomial in
each of its arguments, then the PAVF scheme is linearly implicit

Proof. Since H is at most quadratic in the first argument, it follows from (2.5) that δH
δw1

is
of degree at most 1 in its first argument, and so we see from (4.12) that

δH

δ(Un, . . . , Un+k)

is linear in Un+k. Since D does not depend on Un+k we conclude that the scheme (4.13)
is linearly implicit.

In some cases one wishes to have time-symmetric numerical schemes, see for example [16].
The numerical scheme (4.13) will in general not be symmetric, however it is not hard to
modify the procedure to yield symmetric schemes. One needs to polarise H such that H
is invariant also when the order of its arguments is reversed, it turns out that this can
be achieved by symmetrising over the dihedral group rather than just the cyclic one. A
similar adjustment must be made for D.

We remark that one can construct explicit schemes by using p time steps (as opposed
to k) in H such that H becomes p-linear (as opposed to k-quadratic). The rest of the
procedure for the explicit case is the same as for the linearly implicit case. Clearly, one
expects that explicit schemes will have more severe stability restrictions than the linearly
implicit ones.
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4.3 Stability

In [8] we studied linearly implicit schemes for the cubic Schrödinger equation, and found
that two-step schemes can develop a two-periodic instability in time. We also saw that
this can be remedied by choosing a different polarisation of the Hamiltonian.

As it turns out, a common case is when the Hamiltonian is a univariate polynomial
of order 4 or less. If we polarise this Hamiltonian using two time-steps, we get three
linearly independent H, corresponding to (4.6), (4.7), and (4.8). The third and fourth
order Hamiltonians are uniquely given. However, in the second order case we can choose
θ ∈ [0, 1] such that the scheme becomes unstable. Since Hamiltonians of the type (4.6)
appear in many important PDEs it may be useful to determine which θ ∈ [0, 1] lead to
unstable schemes.

We choose to study the test equation with Hamiltonian

H[u] =
1
2

∫
Ω

u2
x dx,

and a skew-symmetric operator D which satisfies the eigenvalue equation

Deikx = iλkeikx, λk ∈ R

for all integers k. The Airy equation

ut + uxxx = 0

is of this type with D = −∂x and λk = −k. Other equations which have such terms in
the Hamiltonian include the nonlinear Schrödinger equation, the linear wave equation, the
KdV equation, and the Kadomtsev-Petviashvili equation.

Rewriting (4.6) gives

H[v, u] =
1
2

∫ (
θ
u2

x + v2
x

2
+ (1− θ)uxvx

)
dx.

And the numerical scheme is
Un+2 − Un

2∆t
= −D

(
θ
Un+2

xx + Un
xx

2
+ (1− θ)Un+1

xx

)
. (4.20)

Since this is a linear equation we can use von Neumann stability analysis [7]. We insert
the ansatz

Un(x) = ζneikx

to obtain the quadratic equation

(1− θτ i)ζ2 − 2(1− θ)τ iζ − (1 + θτ i) = 0, τ = λk∆tk2. (4.21)

A necessary condition for stability is |ζ| ≤ 1 which implies

θ ≥ 1
2
− 1

2τ2
.

Assuming that {λkk
2}k∈Z is unbounded, we must require that θ is chosen greater than

or equal 1
2 . This is exactly the condition found in [8] for the cubic Schrödinger equation.

When θ ≥ 1
2 the roots of (4.21) satisfy |ζ1| = |ζ2| = 1.

In figure 4.1 we solve the Airy equation with the scheme (4.20) using θ = 0.5 and
θ = 0.49. We use the initial value u(x, 0) = sin(x), which, in the exact case, yields the
traveling wave solution u(x, t) = sin(x + t). The θ = 0.49 solution blows up in few time
steps, while the θ = 0.50 solution shows no signs of instability. Doing a discrete Fourier
transform of the unstable solution we see that the instability starts at high frequencies,
that is large k, which corresponds to the results shown above.
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Figure 4.1: The numerical solution of the Airy equation with two different values of θ. The
two solutions are shown after n = 106 time steps (θ = 0.5) and n = 115 time
steps (θ = 0.49).

5 Space discretisation

Until now we have mostly considered the situation where the PDE is discretised in time
while remaining continuous in space. The methodology developed in the previous sections
apply equally well to systems of ODEs. Arguably, the most straightforward approach
is simply to discretise the space derivatives in the Hamiltonian, for instance by finite
differences. This leads to

H(u) −→ Hd(u).

One also needs to replace the skew-symmetric operator D by a skew-symmetric matrix Dd.
The fully implicit method reviewed in Section 3 is then just the discrete gradient method
(3.1), which conserves the discretised Hamiltonian Hd(u) in every time step.

We consider now finite difference approximations. The function space to which the
solution u belongs, is replaced by a finite dimensional space with functions on a grid
indexed by Ig ⊂ Zd. We use boldface symbols for these functions. Let there be Nr grid
points in the space direction r so that N = N1 · · ·Nd is the total number of grid points.
We denote by uα the approximation to uα on such a grid, and by u the vector consisting
of (u1, . . . ,um). We will replace each derivative uα

J by a finite difference approximation
δJuα, and replace the integral by a quadrature rule. We then let

Hd(u) =
∑
i∈Ig

bi(Gd((δJu)))i ∆x. (5.1)

Here ∆x is the volume (length, area) of a grid cell and b = (bi)i∈Ig are the weights in the
quadrature rule. The discretised Gd has the same number of arguments as G, and each
input argument as well as the output are vectors in RN . We have here approximated the
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function uα
J by a difference approximation δJuα, where δJ : RN → RN is a linear map.

As in the continuous case, we use square brackets, say F [u], as shorthand for a list of
arguments involving difference operators F [u] = F (u, δJ1u, . . . , δJqu). We compute

Hd[u]−Hd[v] =∑
i∈Ig

bi
∑
J,α

∫ 1

0

(
∂Gd

∂δJuα

)
i

[ξu + (1− ξ)v]dξ(δJ(uα − vα)) ∆x

= 〈 δHd

δ(v,u)
,u− v〉 (5.2)

where
δHd

δ(v,u)
=
∑
J,α

δT
J B

(∫ 1

0

∂Gd

∂uJ
[ξuα + (1− ξ)vα] dξ

)
,

B is the diagonal linear map B = diag(bi), i ∈ Ig, and the discrete inner product used in
(5.2) is

〈u,v〉 =
∑

α,i∈Ig

uα
i v

α
i

Notice the resemblance between the operator acting on Gd in (5.2) and the continuous
Euler operator in (2.5). Suppose that

1. The spatially continuous method (3.5) (using (3.6)) is discretised in space, using a
skew-symmetric Dd and a selected set of difference quotients δJ for each derivative
∂J .

2. Considering (2.4) and (2.5), the choice of discretisation operators δJ used in ∂G/∂uα
J [u]

is arbitrary, but the corresponding DJ is replaced by the transpose δT
J .

In this case, using the same Dd, an identical set of difference operators in discretizing H
(5.1), and choosing all the quadrature weights bi = 1 the resulting scheme is the same.

Letting the rth canonical unit vector in Rd be denoted er, we define the most used first
order difference operators

(δ+
r u)i =

ui+er − ui

∆xr
,

(δ−r u)i =
ui − ui−er

∆xr
,

(δ〈1〉r u)i =
ui+er − ui−er

2∆xr
.

These difference operators are all commuting, but only the last one is skew-symmetric.
However, for the first two one has the useful identities

(δ+
r )T = −δ−r , (δ−r )T = −δ+

r .

Higher order difference operators δJ can generally be defined by taking compositions of
these operators, in particular we shall consider examples in the next section using the
second and third derivative approximations

δ〈2〉r = δ+
r ◦ δ−r , δ〈3〉 = δ〈1〉 ◦ δ〈2〉.



We may now introduce numerical approximations Un representing the fully discretized
system, the scheme is

Un+1 −Un

∆t
= Dd

δHd

δ(Un,Un+1)
.

The conservative schemes based on polarisation are adapted in a straightforward manner,
introducing a function Hd[w1, . . . ,wk] which is consistent and cyclic as in (4.1), (4.2), and
a skew-symmetric map Dd depending on at most k − 1 arguments. The scheme is then

Un+k −Un

k∆t
= kDd

δHd

δ(Un, . . . ,Un+k)
. (5.3)

This scheme conserves the function Hd in the sense that

Hd[Un+1, . . . ,Un+k] = Hd[U0, . . . ,Uk−1], n ≥ 0.

6 Examples

To illustrate the procedures for constructing conservative schemes presented in this paper
we consider as an example the generalised Korteweg-de Vries (gKdV) equation

ut + uxxx + (up−1)x = 0

for an integer p ≥ 3, see for example [25]. The case p = 3 is the KdV equation (1.1), the
case p = 4 is known as the modified KdV equation, and p = 6 is sometimes referred to as
the mass critical generalised KdV equation. The gKdV can be written as (2.1) with

H[u] =
∫

Ω

(
1
2
u2

x −
1
p
up

)
dx, D =

∂

∂x
.

The AVF discrete variational derivative (3.6) gives rise to the fully implicit scheme (3.5)

Un+1 − Un

∆t
+

Un+1
xxx + Un

xxx

2
+

1
p

(
p−1∑
i=0

(Un+1)p−1−i(Un)i

)
x

= 0. (6.1)

After applying the polarising procedure of Section 4.1 to H =
∫
Ω G dx we get H =∫

Ω G dx which depends on k = dp/2e arguments

G[w1, . . . , wk] =
1
2k

k∑
i=1

(wi)2x −

{
1
k

(∏k
j=1 w2

j

)(∑k
i=1

1
wi

)
, p odd,∏k

j=1 w2
j , p even.

After finding the AVF discrete variational derivative from (4.12) we get the linearly implicit
PAVF scheme (4.13)

Un+k − Un

k∆t
+

Un+k
xxx + Un

xxx

2

+


1
p

[(∏k−1
j=1(Un+j)2

)(∑k−1
i=1

Un+k+Un

Un+i + 1
)]

x
= 0, p odd,

1
2

[(∏k−1
j=1(Un+j)2

) (
Un+k + Un

)]
x

= 0, p even.
(6.2)

Notice that Un+k is indeed only appearing as linear terms in this scheme. The schemes
(1.2) and (1.3) are found by setting p = 3 (k = 2) in (6.1) and (6.2), respectively. Following
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the procedure of Section 5 one can get a fully discretised scheme by replacing U by U and
the first and third derivative operators by δ〈1〉 and δ〈3〉 respectively.

In the Figures 6.1 and 6.2 we compare the conservative methods (1.2) and (1.3) with
the fully implicit midpoint method

Un+1 − Un

∆t
+

Un+1
xxx + Un

xxx

2
+

((
Un+1 + Un

2

)2
)

x

= 0 (6.3)

and a naive linearly implicit method

Un+1 − Un

∆t
+

Un+1
xxx + Un

xxx

2
+
(
UnUn+1

)
x

= 0. (6.4)

We test the four methods on a soliton solution

Φ(x− ct) =
3c

2
sech2

(
3
√

c

2
(x− ct)

)
, c > 0

using the parameters c = 1, x = (−5, 5), ∆x = 10
32 and ∆t = 0.1. As an indication of the

long time behaviour of the presented schemes we consider to which extent the methods are
able to preserve the shape and propagation speed of a soliton solution. We define the two
quantities

εshape = min
τ
‖Un − Φ(· − τ)‖2

2 (6.5)

and

εdistance = |argmin
τ

‖Un − Φ(· − τ)‖2
2 − ctn|. (6.6)

Thus εshape measures the shape error of the numerical solution, and εdistance measures the
error in the travelled distance of the numerical soliton.

We see in Figure 6.1 the fully implicit schemes preserves the shape better than the
linearly implicit ones, and that the conservative schemes perform better than the non-
conservative ones. In Figure 6.2 we see that the linearly implicit schemes have a more
accurate phase speed than the fully implicit ones. Also note that the linearly implicit
schemes are significantly more efficient.
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